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Bakhtiyor Rasulev

Received: 22 August 2022

Accepted: 25 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Cheminformatics Modeling of Gene Silencing for Both Natural
and Chemically Modified siRNAs
Xialan Dong and Weifan Zheng *

BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences (CHAS),
North Carolina Central University, Durham, NC 27707, USA
* Correspondence: wzheng@nccu.edu; Tel.: +1-(919)-530-6752

Abstract: In designing effective siRNAs for a specific mRNA target, it is critically important to have
predictive models for the potency of siRNAs. None of the published methods characterized the
chemical structures of individual nucleotides constituting a siRNA molecule; therefore, they cannot
predict the potency of gene silencing by chemically modified siRNAs (cm-siRNA). We propose a
new approach that can predict the potency of gene silencing by cm-siRNAs, which characterizes
each nucleotide (NT) using 12 BCUT cheminformatics descriptors describing its charge distribution,
hydrophobic and polar properties. Thus, a 21-NT siRNA molecule is described by 252 descriptors
resulting from concatenating all the BCUT values of its composing nucleotides. Partial Least Square
is employed to develop statistical models. The Huesken data (2431 natural siRNA molecules) were
used to perform model building and evaluation for natural siRNAs. Our results were comparable
with or superior to those from Huesken’s algorithm. The Bramsen dataset (48 cm-siRNAs) was used
to build and test the models for cm-siRNAs. The predictive r2 of the resulting models reached 0.65 (or
Pearson r values of 0.82). Thus, this new method can be used to successfully model gene silencing
potency by both natural and chemically modified siRNA molecules.

Keywords: gene silencing; siRNA; chemically modified siRNA; BCUT descriptors; cheminformatics

1. Introduction

Specific gene silencing has shown great potential to elucidate gene function, identify
drug targets, and develop more specific therapeutics than are currently available [1–5]. RNA
interference (RNAi) is a post-transcriptional gene regulatory mechanism through which
expression of a specific gene can be knocked down, which can be triggered either by short
interfering RNAs (siRNAs) or by microRNAs (miRNAs) [6,7]. The miRNAs are endogenous
noncoding RNAs; they usually bind target mRNAs with partial complementarity, mostly
involving residues 1–8 (the seed region) [8]. Unlike siRNAs, which regulate mRNA levels
through a cleavage event, miRNAs function by attenuating translation8. Here, we focus on
siRNA-mediated gene silencing.

A siRNA is a double-stranded RNA molecule consisting of 21–23 nucleotides (21–23 NTs)
with 2-NT overhangs at the 3′ ends and phosphate groups at 5′ ends [9,10]. siRNA
molecules can be exogenously introduced or generated by RNase III-type enzyme Dicer
from long dsRNA or hairpin RNA [6]. The two strands of a siRNA molecule have sequences
that are sense and antisense with respect to the target mRNA. Serving as the template for
sequence-specific gene silencing by the RNAi machinery, the antisense strand of siRNA is
also called the guide strand, while the sense strand is known as the passenger strand.

Chowdhury et al. have recently described an approach to design siRNAs for silencing
nucleocapsid phosphoprotein and surface glycoprotein genes of SARS-CoV-2, demon-
strating the potential power of siRNA to combat emergent pandemics [11]. Other more
advanced application of siRNA has also been described by Zhang et al., indicating the
broad application potential of the siRNA technology [12]. An excellent example of achiev-
ing imaging-guided and tumor-targeted siRNA delivery and cancer treatment has recently
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been published by Guo et al. [13], highlighting the promising potential of siRNA for transla-
tional biomedicine. Those who are interested in broader applications of siRNA technology
are referred to a recent comprehensive review by Weng [14].

There are many potential siRNA molecules that may be able to knock down a specific
target mRNA: if there are N nucleotides in the target mRNA, N-20 siRNAs of 21 nucleotides
can be designed by sliding a 21 nucleotides sequence along the entire length of the mRNA.
However, only a fraction of these candidate siRNAs is highly effective in silencing the
target mRNA [15,16]. Applying more than five different siRNAs may lead to the saturation
of the RNA-induced silencing complex with the degradation of untargeted genes [17].
Therefore, selecting the few most effective siRNAs from the large number of candidate
siRNAs is crucial for maximizing specific gene silencing and minimizing off-target effects.
Toward this end, numerous algorithms have been developed to facilitate the rational design
of siRNA.

Two categories of approaches have been published: rule-based methods and machine
learning-based methods. The rule-based methods exploited a variety of features that are
more easily interpretable, such as the thermodynamic features describing binding free ener-
gies and the sequence stability [18–20], compositional features describing the occurrences of
certain nucleotides at certain positions of the siRNA sequences [16,21,22], secondary struc-
ture characteristics of the mRNA target and the siRNA [23–25], and uniqueness of the target
site [26,27]. These siRNA features have been reviewed [28–30], and methods based on these
features are intuitive and beneficial to uncovering the fundamental requirements for active
siRNA molecules. However, they often produced high levels of false positive predictions
when tested on data from external sources [31,32]. More complicated factors are likely
involved in RNAi, and cooperative interactions among the various factors may play an
important role in determining the efficacy of siRNA-mediated gene silencing. To improve
the prediction accuracy and model robustness, more rational approaches involving machine
learning methods and multivariate data analysis emerged [33–35]. These algorithms have
advanced the prediction tools in terms of quantitatively predicting siRNA potency in a
genome-wide gene silencing study, and they based their predictions on such features as
duplex stability, sequence characteristics, mRNA secondary structure, siRNA secondary
structure, and the target site uniqueness. For example, He et al. [36] have described a study
of a combination of nucleotide frequency, thermodynamic stability, as well as thermody-
namic siRNA–mRNA interaction as a new kind of mixed features. These features work
well for natural siRNAs and do not take the chemical structures into account. Jia et al.
employed C-features that are based on frequencies of different combinations of nucleotide
letters [37]. As with similar features based on nucleotide single-letter representation, fre-
quencies of single-letter combinations do not reflect the chemical nature of nucleotides
involved, especially when dealing with chemically modified nucleotides. Ayyagari [38]
has recently described an in silico study using existing siRNA predicting services to de-
sign potential siRNAs against SARS-CoV2. This article described an excellent example to
demonstrate the significance of siRNA prediction in cases of urgent needs. We note that in
all these works, no chemical structural features of individual nucleotides (NTs) of a siRNA
sequence have been encoded. Thus, they cannot be used to predict the potency of gene
silencing mediated by chemically modified siRNA molecules, which provides solutions
to many of the challenges facing siRNA therapeutics [39]. Tatabatake et al. demonstrated
that chemical modification could improve the nuclease resistance of siRNA molecules,
prolonging their activity [40]. Koller et al. suggested that chemical modification could
increase the potency of the modified siRNAs [41]. To reduce or avoid immune-mediated
and hybridization-dependent off-target effects, careful sequence design is an essential first
step, while chemical modifications can provide further protection [39,42,43].

Here, we propose a novel approach that describes siRNA molecules in a more physic-
ochemical way, and the models can thus predict the potency of gene silencing triggered
by chemically modified siRNAs (as well as by natural siRNAs). While the sequence in-
formation of a siRNA is at the core of siRNA-mediated gene silencing, in this approach,
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we hypothesize that the potency of a siRNA is also strongly dependent on the chemical
structure of individual nucleotides that compose a siRNA molecule. Thus, we can describe
a siRNA molecule in terms of two crucial characteristics: we first numerically describe each
nucleotide (NT) using a set of cheminformatics descriptors, which together should capture
its physicochemical properties that might be correlated with molecular interactions, and
then the whole siRNA sequence is described by simply concatenating all the descriptors in
the order of the siRNA’s sequence. In contrast, current literature methods do not encode the
chemical nature of each nucleotide; instead, they simply use the one-letter representation
of different nucleotides, e.g., counting the frequencies or thermodynamic stability based
on local pairs of nucleotides. Since there are chemical similarities/differences among the
nucleotides, encoding the chemical nature of each of the composing nucleotides can offer
additional information to reflect the chemical similarity and dissimilarity when comparing
different strands of siRNAs.

The partial least square (PLS) regression [44] method is employed to develop statistical
models of gene silencing potency. For regular siRNAs, the Huesken dataset (with 2431 siR-
NAs) [33] was used to perform model building, validation, and comparative analysis.
The results from this study were comparable with or superior to those from the Huesken
paper [33] in terms of the Pearson coefficients; to model the chemically modified siRNAs,
the Bramsen dataset (with 48 chemically modified siRNA molecules) [45] was used to
build and validate the models. The predictive power of the resulting models has reached
0.64–0.65 (i.e., the Pearson coefficients ranged from 0.81 to 0.82). In the following sections,
we first detail the methodology for descriptor generation and the modeling workflow,
followed by results and discussion.

2. Materials and Methods
2.1. The Huesken Dataset

To build and validate models for the potency of siRNAs composed of natural nu-
cleotides, 2431 siRNA sequences (antisense format) of the Huesken dataset [33] were used.
The dataset is considered to be the first landmark data publicly available for siRNA gene
knockdown experiments, targeting 34 different mRNAs. Both 19 NT sequences without the
overhangs (2 NT), as well as the 21 NT sequences with overhangs, are available. Consider-
ing that the overhangs have an effect on the potency of gene silencing, the 21-NT sequences
were used in building models in this study. The gene knockdown potency was expressed as
normalized. Figure 1a shows the distribution of the gene silencing potency by the siRNAs
in this dataset, indicating a wide potency range.

Eight subsets of sequences were created according to Huesken et al. [33] for comparison
purposes. These subsets are named All (2182), All human (1744), Human E2s (1229), Rodent
(438), Random all (1091), Random all (727), Random all (545), and Random all (218). These
subsets were used as training sets to build corresponding models. Four subsets were
also created for use as the test sets, and they are All (249), All human (198), hE2 (139),
and Rodent (51). Note that the numbers in the parentheses refer to the number of siRNA
sequences in that subset.

2.2. The Bramsen Dataset

In order to predict the potency of siRNAs consisting of chemically modified nu-
cleotides, 48 siRNA sequences targeting eGFP from Bramsen et al. [45] were used to build
and evaluate models. There are 21 different types of chemical modifications involved
in this dataset. The modifications can be broadly categorized into 2′-substituted RNAs,
4′-modified RNAs, locked RNAs, and RNAs with radical modifications of the ribose sugar
ring [45]. For each modified siRNA molecule, the 21 NT antisense sequences with over-
hangs were used in this study. The gene knockdown potency was expressed as eGFP level,
where a larger eGFP level indicates a poorer potency. Figure 1b shows the distribution of
the gene silencing potency by this set of chemically modified siRNAs; clearly, the potency
of this dataset is less diverse compared with the Huesken data.
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Figure 1. Histograms of gene silencing potencies: (a) the Huesken dataset and (b) the Bramsen dataset.

2.3. Overall Workflow for the Predictive Modeling of siRNA Potency

The overall workflow for building predictive models for siRNA potency is shown
in Figure 2. It involves the following major steps: (1) preparation of the siRNA dataset,
where all the structures of the individual nucleotides involved are built and processed
utilizing the MOE program, while the siRNA antisense sequences and the corresponding
potency values are verified; (2) generation of the BCUT descriptors for each of the siRNA
molecules in the dataset; (3) rational partitioning of the dataset into pairs of training and
test sets; (4) building predictive models utilizing the partial least square (PLS) procedure
as implemented in MOE; (5) validating the models, where each model is tested using the
corresponding test set.
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Figure 2. The workflow for model building and model validation. Rational design of training and test
sets were achieved using ART-2a to cluster the dataset. Partial least square (PLS) models were built
upon each of the training sets. Models were then used to predict test set siRNAs, and the Pearson r
(and r2 for the chemically modified siRNA dataset) were obtained for all the test sets.

It is worth noting that in some implementations of PLS, one uses LOO (leave-one-out)
as the way to select the optimum number of principal components (PC) for developing final
models. Alternatively, as implemented here in MOE, it is customary to scan the number
of principal components (PC) to find the optimum models and use a second set as the
validation set. In recent years, a second “external” set is often employed to further validate
the models; however, it has been an accepted practice in the QSAR community to employ
one training vs. one test set [46], which is employed in this study.

Details of siRNA descriptor generation, the rational design of the pairs of training and
test sets, model building, and validation procedures are as follows.

2.4. Generation of the BCUT Descriptors for Each siRNA Molecule

Specifically, we choose the 12 BCUT descriptors [47,48] implemented in the MOE
software (Chemical Computing Group, Montreal, CA, USA), describing the charge distri-
bution, hydrophobic property distribution, and polar property to characterize the chemical
structure of each individual nucleotide. A 21-NT siRNA molecule is then numerically
described by 252 BCUT descriptors.

One straightforward approach to describing a siRNA molecule is to calculate typical
cheminformatics descriptors used to describe small organic molecules. However, it often
fails to capture the sequential information of polymeric molecules such as peptides and
nucleotides-the repeated occurrence of the same chemical building blocks composing a
polymeric molecule often leads to the degeneracy of descriptors. This issue had been dis-
cussed by Sandberg [49] as well as by Jonsson [50,51]. Thus, our approach to characterizing
siRNA molecules is similar to those by Sandberg and Jonsson in their respective description
of peptides and DNA molecules. The basic concept is that a polymeric molecule can be
numerically characterized by molecular descriptors of its composing building blocks. Thus,
a siRNA molecule can be described by molecular descriptors of its composing nucleotides
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(A, U, G, C, T, and their different chemical modifications). Specifically, each nucleotide
position in a siRNA sequence can be translated into the corresponding descriptor values
for the chemical structure of the NT.

First, we calculate the 12 BCUT molecular descriptors for each of the nucleotides
involved: for the Huesken dataset, BCUT for five natural nucleotides was calculated, while
for the Bramsen dataset, BCUT for 98 chemically modified nucleotides was calculated
employing the MOE program. The original siRNA sequences for both datasets and the
corresponding BCUT values for involved nucleotides are provided in the Supplementary
Materials. Then by concatenating the BCUT descriptors for composing nucleotides on the
basis of a given siRNA sequence, the descriptors for a siRNA molecule are obtained. The
procedure is depicted in Figure 3.

Figure 3. Descriptor generation for a siRNA molecule.

Rational Design of Pairs of Training and Test Sets. The basic idea behind the rational
design of a pair of training and test sets is that molecules in the test set should be properly
represented by the molecules in the training set. Golbraikh et al. used what they called the
sphere exclusion algorithm to select molecules for training and test sets [52,53]. Here, we
adopted a well-validated clustering algorithm called ART-2a developed by Carpenter [54].
One advantage of the ART-2a algorithm is that it keeps updating the centroid of each
cluster so that the centroid of each cluster faithfully represents the molecules in that cluster.
In this work, the whole set of siRNAs is first converted to their numerical representation
as described above. The data matrix was subject to ART-2a clustering. The vigilance
parameter was adjusted so that the desired number of multimember clusters was obtained:
278 multimember clusters and 9 multimember clusters were obtained for the Huesken
dataset and the Bramsen dataset, respectively. The test set molecules were then randomly
picked to cover all the above clusters on the condition that the most potent siRNA and the
least potent siRNA were not included in the test set. After the test set siRNAs were selected,
the remaining siRNAs were used as the corresponding training set. The main reason for
using chemical structure-based clustering for training–testing set design is to ensure the
structural diversity of the siRNAs in the training set. Chemical structure-based diversity
design is critical for training and testing set design, as discussed by Golbraikh [53].

To demonstrate the statistical confidence of the models, this process was repeated
several times; as a result, multiple pairs of training and test sets were generated for model
building and model validation: 30 pairs for the Huesken dataset and 30 pairs for the
Bramsen dataset.

Model Building Technique. Many different machine learning algorithms have been
used in the modeling of gene silencing potency. The most popular ones are linear re-
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gression [35], Support Vector Machine (SVM) [26], Artificial Neural Network (ANN) [33],
and decision tree [20]. In this study, the partial least square (PLS) regression method was
selected to build the predictive models to avoid any potential overfitting issues facing many
of the above algorithms. It generalizes and combines features from principal component
analysis (PCA) and multiple linear regression analysis. This prediction is achieved by
extracting from the predictors a set of orthogonal factors (a.k.a. latent variables or principal
components) which have the best predictive power. The advantages of PLS include the
ability to handle multi-collinearity among the predictors, robustness in noisy and missing
data, and reduction in overfitting when the number of predictors gets too large. In our
studies, the number of principal components was set as an adjustable variable scanned
in each model development to avoid both overfitting and under-fitting issues for any
given dataset.

Model Validation Strategies. Validation is a crucial aspect of quantitative predictive
modeling. We employed five analyses to ensure the quality of the built models as follows:

1. Correlation strength and predictive power. The correlation coefficient r (i.e., Pearson
r) was computed to measure the correlation strength, and the predictive r2 was
used to measure the prediction power. The values of model development r (or r2)
were calculated on the basis of the actual potency and model-predicted potency for
the training set siRNAs. They served as the necessary requirement for a reliable
quantitative model. Testing r (r2) was calculated on the basis the actual potency and
model-predicted potency for the test set molecules. The value of r (or r2) was viewed
as another necessary requirement for a suitable predictive model [46]. Equation (1)
was used to determine the value of r, and Equation (2) was used to compute the
value of r2, applicable to both training and test sets. In the equations, yi and pi are the
actual and predicted potencies, respectively; y and p are the means of the yi and pi,
respectively. N is the number of siRNA molecules.

r =

N
∑

i=1
(yi − y)(pi − p)√

N
∑

i=1
(yi − y)2 N

∑
i=1

(pi − p)2

(1)

r2 = 1−

N
∑

i=1
(yi − pi)

2

N
∑

i=1
(yi − y)2

(2)

2. The effect of the number of principal components on the predictive models. The prin-
cipal component analysis technique was used to extract a set of orthogonal factors
that afford the best predictive power. The proper number of principal components is
dependent on the size of the training set and the relationship between the descriptors.
To establish the best models for a given dataset, we scanned the number of principal
components to find the optimal numbers for use in the model.

3. The effect of data partitioning on the predictive models. To ensure the predictive
power of the built models, we rationally split/partition the dataset into training and
test sets. The training set was used to establish the models, and the corresponding test
set was used to validate the models. The molecules in the test set were not involved
in the model building; thus, the predictive r2 calculated on the basis of the test set will
more objectively indicate the true predictive ability. Different partitioning of training
and test sets could give rise to models with different predictive powers, especially
when the dataset is small, and we performed a series of computational experiments
to find the best models.

4. The effect of training set size on the predictive models. The predictive power is
strongly dependent on the size of the training set. Thus, different percentages of the



Molecules 2022, 27, 6412 8 of 19

original dataset were selected to be used in the training set. The ideal case was to
use the least number of siRNAs to develop models, which are then used to predict
the greatest number of siRNAs. We used the Huesken dataset to demonstrate this
where 1%, 2%, 3%, . . . , and 90% of the whole dataset were used as the training set;
and the models were used to predict the potency of 99%, 98%, 97%, . . . , and 10% of
the remaining siRNAs, respectively.

5. Effect of random shuffling on model development. The predictive models built should
faithfully reflect the intrinsic relationship between the descriptors and the gene silenc-
ing potency for a given dataset. A random dataset should not result in a predictive
model. To prove this, we first randomly shuffled the potencies among the whole
dataset, and then the models were built from these scrambled datasets. A different
number of principal components was used to perform the PLS (partial least square)
modeling. We should expect a dramatic decrease in the predictive power of the
models built on the scrambled dataset.

In addition, when models are used to predict truly unknown molecules, the applica-
bility domain should be applied before the prediction is made. For example, one should
employ the applicability domain as one of the filters, as recommended in the standard
workflow protocol advocated by Tropsha [55].

3. Results and Discussion
3.1. Modeling of the Huesken Dataset

BCUT Descriptors for Natural Nucleotides. The chemical structures of the five natu-
ral nucleotides (A, C, G, U, and T) were sketched; and the 12 BCUT descriptors were calcu-
lated: BCUT_PEOE_0, BCUT_PEOE_1, BCUT_PEOE_2, BCUT_PEOE3, BCUT_SLOGP_0,
BCUT_SLOGP_1, BCUT_SLOGP_2, BCUT_SLOGP_3, BCUT_SMR_0, BCUT_SMR_1,
BCUT_SMR_2, and BCUT_SMR_3. The BCUT_PEOE descriptors describe the charge dis-
tribution of a molecule. They are calculated from the eigenvalues of a modified adjacency
matrix; the BCUT_SLOGP and BCUT_SMR descriptors characterize the hydrophobic prop-
erty and the polarizability of a molecule, respectively. These two sets of descriptors are
determined from the eigenvalues of their respective modified adjacency matrixes. Table 1
shows the values of the BCUT descriptors for the five natural nucleotides. Because the
12 BCUT descriptors represent the main features involved in intermolecular interactions,
we replace the nucleotides in the siRNA sequences with their 12 BCUT descriptors; the
numerical descriptors coupled with the multivariate analytical tool (PLS) should capture
any correlation that might exist in the dataset.

Table 1. MOE BCUT descriptors of natural nucleotides.

NT PEOE_0 PEOE_1 PEOE_2 PEOE_3 SLOGP_0 SLOGP_1 SLOGP_2 SLOGP_3 SMR_0 SMR_1 SMR_2 SMR_3

A −2.08 −0.62 0.72 2.13 −2.32 −0.60 0.76 2.19 −1.75 −0.40 0.96 2.45
C −2.26 −0.49 0.58 2.21 −2.52 −0.44 0.63 2.10 −1.91 −0.38 0.68 2.54
G −2.26 −0.66 0.73 2.30 −2.63 −0.60 0.77 2.23 −1.92 −0.49 0.92 2.60
U −2.30 −0.56 0.55 2.29 −2.61 −0.51 0.66 2.10 −1.97 −0.38 0.69 2.60
T −2.36 −0.49 0.49 2.37 −2.62 −0.34 0.60 2.34 −2.06 −0.31 0.59 2.66

The Effect of Dataset Partitioning/Splitting on the Models. To avoid the bias of
individual rational splitting of the dataset into training and test set, we performed 30 rounds
of rational splitting; 30 pairs of training and test sets were thus generated. For each training
set, we developed 15 PLS regression models corresponding to the number of principal
components being “all”, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14, respectively. Each of
the 15 models was then used to predict the potencies of siRNAs in the corresponding test
set. For comparison with the original Huesken results, we used the correlation coefficient r
as the measure for the quality of models. For each number of principal components, the
mean and the standard deviation of the Pearson correlation coefficients were calculated
from 30 rational splits. As shown in Figure 4, the standard deviations were very small
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for each case, meaning that each of the 30 splits gives consistent results. Table 2 lists the
related statistics to detail the information in Figure 4. The best model reported by Huesken
et al. had a Pearson coefficient of 0.66 for one specific pair of training and test sets. This
falls within our resulting range of 0.58–0.68 (for the test set), indicating that our method
produced comparable models to Huesken’s model BioPredsi [33]. According to a recent
benchmark study by Matveeva et al. [35], BioPredsi was the best model tested thus far.
Therefore, our new approach has demonstrated a performance similar to the best model
reported in the literature.

Figure 4. The effect of splits on models for the Huesken dataset. The mean and the standard deviation
of the Pearson correlation coefficients are calculated among 30 rational splits. The number of siRNAs
in the training set is 2153, and the number of siRNAs in the test set is 278. Pearson r for both the
training set (in gray) and test set (in dark gray) are shown.

Table 2. Model statistics (Pearson r) for 30 pairs of training and test sets of the Huesken dataset.

Dataset Mean Standard Deviation Maximum Minimum

Training 0.66 0.003 0.67 0.65
Test 0.63 0.02 0.68 0.58

In all the reported cases, the Pearson correlation coefficient r has been used as the
quality indicator. It has been reported [33] that the potency data experimentally tested on
two different plates of siRNAs had a Pearson correlation coefficient of about 0.70. Thus,
all the models with Pearson correlation coefficients of >0.60 were considered reasonable
models in the context of these experiments.

The Effect of Training Set Size on Model Quality. For a dataset as large and diverse
as the Huesken dataset, there should be greater flexibility for the size of the training set (as
well as the size of the corresponding test set) to be used. We set the training set size as the
percentage of the whole dataset to be 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 55%,
60%, 65%, 70%, 75%, 80%, 85%, and 90%, respectively, to develop the models and predict
the corresponding 99%, 98%, 97%, 96%, 95%, 90%, 80%, 70%, 60%, 50%, 45%, 40%, 35%,
30%, 25%, 20%, and 15% of the whole dataset. We set the number of principal components
to be “all” for all the models for this experiment. The Pearson correlation coefficients of
the models were calculated both for the training and the test sets. Figure 5 shows that if
20% or more of the dataset was taken as the training set to build the models and predict the
remaining 80%, the resulting Pearson correlation coefficients were all greater than 0.60. All
the models were regarded as acceptable.
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Figure 5. Pearson correlation coefficients as the function of the size of the training set. Both training
set r (in red) and the corresponding test set r (in black) are shown.

The Effect of Number of Principal Components on Model Quality. To obtain the best
models for the Huesken dataset, we set the numbers of principal components of PLS models
to be “all”, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 to build models. These models were
used to predict the potency of siRNAs in the corresponding test sets. To be consistent with
the original work, we used 2153 siRNAs as the training set, and the remaining 278 siRNAs
were used as the test set. Pearson r was computed for both the training set and the test
set to measure the quality of the models. One pair of training and test sets was shown in
Figure 6, while the other 29 pairs of training and test sets gave similar results. If the number
of principal components is “all” or greater than 10, all the models were of acceptable quality.
If the number of principal components was “all” or greater than 5, all the models also had
Pearson r greater than 0.60.

Figure 6. Pearson r as the function of the number of principal components. There are 2153 and
278 siRNAs in this training set and test set, respectively. Pearson r was shown for both the training
set (in green) and the test set (in gray).
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The Effect of Random Shuffling on Modeling. To ensure that the models faithfully
reflect the intrinsic relationships between the descriptors of siRNA and the gene silencing
potency, rather than finding spurious correlations, we randomly shuffled the potencies of
the Huesken dataset. We tried to build models based on the scrambled dataset. Fifteen
models were built with the number of principal components fixed to “all”, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, and 14, respectively. As shown in Figure 7, the scrambled dataset
did not result in any reliable models—the values of Pearson r for the scrambled data had
significantly decreased (by 66–75%) compared with the original dataset. These results
further supported the conclusion that our models were not spurious ones.

Figure 7. Effect of randomly shuffled siRNA potencies on the models. The Pearson r values are
shown for models built on both the original Huesken dataset (in green) and the scrambled dataset
(in red).

Predictive Models Have Been Obtained. To demonstrate the quality of the resulting
models, the scatter plots of actual against predicted potencies are shown in Figure 8a (of
the training set) and Figure 8b (of the test set) for one of our final models. As mentioned in
the discussion on data partitioning effect on model quality, other models also gave similar
results with a standard deviation of 0.003 for the training sets and 0.02 for the test sets. The
Pearson r is 0.67 for both the training set and test set, as shown in Figure 8. The RMSE (root
mean square error) [56] values for both the training and test sets are 0.15.

To compare the performance of our new method with that of the Huesken [33], we
performed modeling of the exact same set of subsets as Huesken. Specifically, the same
subsets of training and test molecules reported by Huesken were used to conduct our
studies. The subset specification is given in Materials and Methods. Some of the subsets
were based on species, such as human vs. rodent; others were based on genes (E2 sequences)
as well as random selections of siRNAs. The results are shown in Table 3. The Pearson
correlation coefficients in parentheses are quoted from Huesken or comparison. In some
cases, the Huesken model (i.e., BioPredsi) performed slightly better; in other cases, our
method outperformed BioPredsi. Overall, our approach is comparable with or superior to
BioPredsi [35].
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Figure 8. Model-predicted potency versus the actual potency for the Huesken dataset: (a) the training
set and (b) the test set.
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Table 3. Pearson correlation coefficients for different training and test sets of the Huesken set.

Training Sets (21-NT) b
Test Sets (21-NT)

All (249) All-human (198) hE2 (139) Rodent (51)

All (2182) 0.65 (0.66) a 0.62 (0.63) a 0.62 (0.63) a 0.76 (0.77) a

All-human (1744) 0.64 (0.65) 0.60 (0.61) 0.60 (0.62) 0.75 (0.76
Humans-E2s (1229) 0.64 (0.65) 0.6 (0.62) 0.6 (0.62) 0.75 (0.76)

Rodent (438) 0.61 (0.55) 0.6 (0.54) 0.59 (0.53) 0.63 (0.57)
Random-all (1091) 0.64 (0.65) 0.60 (0.62) 0.60 (0.61) 0.76 (0.75)
Random-all (727) 0.64 (0.65) 0.62 (0.63) 0.63 (0.63) 0.72 (0.76)
Random-all (545) 0.60 (0.62) 0.59 (0.60) 0.59 (0.60) 0.66 (0.70)
Random-all (218) 0.52 (0.47) 0.48 (0.47) 0.46 (0.46) 0.68 (0.46)

a All correlation coefficients in parentheses were numbers reported by Huesken. b Both training and test sets were
represented on the basis of 21-NT sequences.

The predictive models developed on the basis of the Huesken dataset can be used in
the virtual screening of potential siRNA molecules of natural nucleotides for a given target
mRNA. Those siRNA molecules that have passed the Watson–Crick pairing with the target
mRNA and are scored well by our models could be prioritized as top choices for focused
RNAi experiments. These models should be useful in designing potential siRNA molecules
or therapeutics against specific genes under study.

Sequence-based Features and Critical BCUT Descriptors. As mentioned in the in-
troduction, we hypothesized that both the sequence and the chemical structures of the
composing nucleotides play a significant role in siRNA gene silencing potency. Thus, in
addition to accurately predicting the potencies of siRNAs, we also proposed an analysis
that can provide more insights into siRNA design. To be more specific, we performed
relative importance analyses regarding the 21 nucleotide positions and the 12 different
BCUT descriptors, respectively. We calculated the relative importance for the i-th descriptor
as the normalized absolute value of the regression coefficients for the i-th descriptor in the
PLS models. We calculated the relative importance for one of the 12 BCUT descriptors as
an averaged value among 30 rational splits and the 21 nucleotide positions.

Figure 9a shows the relative importance of the 12 BCUT descriptors for siRNAs of
natural nucleotides. The charge distribution may be less important compared with hy-
drophobic distribution and polar property distribution of the natural nucleotides. Likewise,
the relative importance for one of the nucleotide positions is averaged among 30 rational
splits and 12 BCUT descriptors of the nucleotide. Here, nt1, nt2, . . . , and nt21 represent the
nucleotides in the first, second, . . . , and 21st positions of a siRNA, respectively. The nt20
and nt21 are the overhangs. Figure 9b depicts the relative importance among the 21 com-
posing nucleotides. It is consistent with previous publications [36,57] that the overhang
has a noticeable contribution to the potency even though their contributions are not among
the highest (see Figure 9a). Specifically, the descending order of relative importance among
the 21 nucleotide positions is: nt1, nt2, nt7, nt11, nt19, nt3, nt14, nt6, nt4, nt12, nt17, nt18,
nt15, nt9, nt21, nt20, and nt5.

3.2. Modeling of the Bramsen Dataset

Following the same approach detailed in Materials and Methods, we performed data
preparation, model development, and model validation for the Bramsen dataset. To our
best knowledge, this is one of the first modeling work for gene silencing potency by siRNAs
of chemically modified nucleotides. Since this dataset is relatively small (48 chemically
modified siRNAs), we decided to use more stringent criteria to measure the quality of
models. Instead of the Pearson correlation coefficient alone, we also used predictive r2 to
judge the quality of the models. Specifically, we selected the models based on criteria of
both Pearson r and predictive r2 equal to or greater than 0.60 for the test sets.



Molecules 2022, 27, 6412 14 of 19

Figure 9. The relative importance of BCUT descriptors and nucleotide positions: (a) the BCUT
descriptors and (b) the nucleotide positions.

Following the same protocol as that for the Huesken dataset, we replaced each nu-
cleotide with its 12 BCUT descriptors, resulting in 252 descriptors for a siRNA molecule. By
rational splitting, we generated 30 pairs of training and test sets. The number of siRNAs in
each training set and test set was 39 and 9, respectively. Given that there are 252 descriptors
and 39 training set molecules, the number of principal components of PLS modeling will
have a strong effect on the quality of models. To find models of best predictive power, for
each of the 30 training sets, we examined the number of principal components (from 1,
2, 3, 4, 5, 6, 7, 8, 9, and 10) to build the models, and the corresponding test set was used
to validate the models. For the Bramsen dataset, if the number of principal components
is smaller than 4, the resulting models were not predictive by our criteria, although the
Pearson r and the predictive r2 were good for the training set. When the number of principal
components employed was too large, there was overfitting. After careful examination,
we selected three reliable predictive models, each of which has a number of principal



Molecules 2022, 27, 6412 15 of 19

components of 4. The Pearson r for the test set was 0.82, 0.82, and 0.81 for model 1, model
2, and model 3, respectively. The RMSE values for the test set were 0.135, 0.136, and 0.136,
respectively. The predictive r2 for the test set was 0.63, 0.62, and 0.60 for model 1, model
2, and model 3, respectively. Figures 10–12 are the scatterplots for model 1, model 2, and
model 3, respectively. Collectively, Figure 10 through Figure 12 show that the three models
for chemically modified siRNA have both good training and testing quality. The original
and predicted values for the three splits, as well as the source code for conducting rational
splitting, are provided in the Supplementary Materials. On the basis of these results, we
believe that our new approach could play a fundamentally important role in modeling gene
silencing of chemically modified siRNA molecules, and it could facilitate the development
of therapeutic siRNAs based on modeling chemically modified siRNA molecules.

Figure 10. Model-predicted potency value versus the actual value by top model 1 for the Bram-
sen dataset.

Figure 11. Model-predicted potency value versus the actual value by top model 2 for the Bram-
sen dataset.
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Figure 12. Model-predicted potency value versus the actual value by top model 3 for the Bram-
sen dataset.

4. Conclusions

To summarize, we have developed a new approach for quantitatively predicting gene
silencing potency by siRNAs. By characterizing a siRNA molecule using both sequence
information and the chemical structures of the composing nucleotides, the new approach
has overcome the drawbacks of existing methods that cannot model the potency of gene
silencing triggered by chemically modified siRNAs. Our approach has laid a general
foundation for quantitative modeling of siRNA gene silencing potency, both natural and
chemically modified. This new numerical description of siRNA molecules coupled with
PLS (partial least square) affords predictive models of a dataset of 48 chemically modified
siRNAs judged by both the Pearson correlation coefficient r and predictive r2 obtained for
both training and test sets. To demonstrate the general applicability of the new approach
to siRNA modeling, we also built predictive models for a larger dataset with 2431 natural
siRNA molecules. The performance of our models was comparable with or superior to
that of one of the best models reported in the literature. The robustness of this model-
ing approach to siRNA-mediated gene silencing has also been established by a series of
validation strategies that highlighted the effects of the number of principal components,
rational splitting, and the training set size on the quality of models. To our best knowledge,
a Web-based prediction tool [58] has been published that used nucleotide compositional
patterns (but not chemical structures of nucleotide) as descriptors for the chemically modi-
fied siRNA modeling. Our new method is the first attempt to introduce cheminformatics
descriptors to the modeling of chemically modified siRNA potency. We emphasize that our
approach is complementary to other methods in that cheminformatics descriptors can cap-
ture the nature of nucleotide chemical structures as opposed to other methods describing
nucleotides as arbitrary alphabets—the BCUT cheminformatics descriptors could capture
the similarities and differences between different nucleotides in terms of their chemical
and physical properties. Because chemical modification provides solutions to many of the
challenges facing siRNA design, our new approach can be used to facilitate chemically
modified siRNA design for therapeutic purposes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196412/s1, the original siRNA sequences for Huesken
and Bramsen datasets, the corresponding BCUT values and the data related to the partitions and
predictions are provided in respective Supplemental files.

https://www.mdpi.com/article/10.3390/molecules27196412/s1
https://www.mdpi.com/article/10.3390/molecules27196412/s1
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