CASE REPORT

Clinical Case Reports GronAccos WILEY

Sumatriptan poisoning and its clinical presentation in humans: A case report

Peyman Erfan Talab Evini¹ | Laya Ohadi² | Farbod Amiri² | Shahin Shadnia¹ Babak Mostafazadeh¹ | Mehdi Forouzesh³ | Mohammad Javad Hedayatshodeh³ | Mitra Rahimi¹

¹Toxicological Research Center, Clinical Toxicology Department, Loghman Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

²Shahid Beheshti University of Medical Sciences, Tehran, Iran

³Iranian Legal Medicine Research Center, Tehran, Iran

Correspondence

Mitra Rahimi, Toxicological Research Center, Clinical Toxicology Department, Loghman Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: mrahimi744@gmail.com

Abstract

This case report displays some of the possible complications of sumatriptan poisoning, including nephritic syndrome.

KEYWORDS

complication, nephritic syndrome, poisoning, sumatriptan

1 **INTRODUCTION**

One of the most prevalent and socioeconomically impactful disabling primary headache is migraine, and its acute daily attacks can be treated by prescription of sumatriptan orally or subcutaneously.^{1,2}

This potent drug acts on 5-HT1 receptors, leading to vasoconstriction. Like other medications, it has side effects like tachycardia, transient hypertension, behavioral instability, facial edema, angle-closure glaucoma, cardiac arrhythmias, abdominal pain, bloody diarrhea because of vascular ischemia, splenic infarction, hepatotoxicity, and Raynaud's syndrome.^{3–6}

Previously, Owen et al. revealed side effects of sumatriptan poisoning in rodents and dogs. Moreover, Mobasheran et al. demonstrated renal injury by activating nitric oxide synthase in rats induced by sumatriptan, but there is no available information in humans.^{3,5,7} This case report presents a case with sumatriptan poisoning who had complications including nephritic syndrome.

2 CASE PRESENTATION

In February 2022, a 20-year-old bodybuilder man presented to the emergency department with unusual sweating, agitation, hallucination, and urine and fecal incontinency. He was admitted to the toxicology ward due to the injection of 30 vials of sumatriptan (each vial is 6 mg/0.5 ml solution) with the intention of committing suicide 2 days before his admission. He had no complaints, such as respiratory difficulties or chest pain.

Past medical and habitual history for any drug or substances were negative. At admitted time, vital signs demonstrated high blood pressure (150/90 mm of mercury) and tachycardia (126 per minute). On the contrary,

_____ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Clinical Case Reports published by John Wiley & Sons Ltd.

WILEY ______Clinical Case Reports __

respiratory rate (18 per minute), temperature (37.1°C), and oxygen saturation (99%) were normal. Moreover, the initial Glasgow coma scale (GCS) was 15/15.

According to the protocol, primary conservative treatment was started for this patient. After a few hours, he became unconscious (GCS = 9/15) and was intubated.

Laboratory findings displayed hypernatremia and increased creatinine, liver function markers, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and D-dimer level. Qualitative measurement of cardiac biomarkers such as troponin was also positive in this patient. Besides, hematuria (3+) and proteinuria (2+) were detected in the urine analysis but his urine drug test was negative for morphine, tramadol, methadone, and tetrahydrocannabinol, amphetamine, and methamphetamine. Laboratory tests are described in Table 1.

Additionally, normal sinus rhythm was detected in his electrocardiogram (ECG). Full cardiac monitoring and serial ECG and troponin were performed for him because of positive troponin. Computed tomography (CT) angiography was requested because pulmonary embolism (PE) was suspected but was not performed due to hemodynamic instability. Due to the high suspicion of PE according to the patient's condition including bedridden and

Markers	Value w/Units	Normal range
Urea	3.3 mmol/L	2.8-8.1
Creatinine	1.7 mg/dl	0.7-1.3
Sodium	153 mmol/L	136-145
Potassium	4.5 mmol/L	3.5-5.1
White blood cell count	$10 \times 10^3/ul$	4.0-10.0
Hemoglobin	15 g/dl	13.2-16.6
Platelet count	$321 \times 10^3/\text{ul}$	150-400
Calcium	9.1 mg/dl	8.6-10.3
Magnesium	$1.05\mathrm{mmol/L}$	0.66-1.07
Albumin	4.7 g/dl	3.4–5.4
Aspartate aminotransferase	157 U/L	10-40
Alanine aminotransferase	359 U/L	7-56
Alkaline phosphatase	219 U/L	30-120
Creatine phosphokinase	2620 U/L	39-308
Lactate dehydrogenase	1448 U/L	140-280
РН	7.39	7.35-7.45
PCO2	44.8 mmHg	35-45
HCO3	27.4 mEq/L	22-28
PT	13.3 s	11-13.5
PTT	26.7 s	25-35
INR	1.1	<1.1

Bold values that were presented above are out of normal range.

tachycardia, treatment was started immediately. Despite advanced medical treatment, the cardiopulmonary arrest happened after 6 days and the probable cause of death was ventilator-associated pneumonia.

At autopsy, the lungs were dilated with purulent discharge, and a normal-sized heart was observed with no apparent stenosis in coronary arteries and no fibrosis and hyperemia in myocardial sections. Besides, abnormalities were not found in the liver, spleen, or kidneys. Cerebral edema due to hypoxia was detected in the brain with normal consistency. Moreover, post-mortem toxicological assessment had no scientific value due to more than 6 days of hospitalization.

Consequently, hypernatremia, positive troponin, elevated level of creatinine, liver enzymes, CPK and LDH, hematuria, and proteinuria were associated with sumatriptan poisoning.

3 | DISCUSSION

Sumatriptan, a potent drug with a vasoconstriction effect prescribed in the treatment of migraine attacks, can cause minor complications, including sweating, transient hypertension, tachycardia, behavioral changes, fatigue, sleepiness, and skin reaction.⁵ Similarly, our case presented with a significant rise in blood pressure level and heart rate. Moreover, agitation and hallucination were seen in this patient. On the contrary, despite injecting 30 vials of sumatriptan, no reaction at the injection site was detected. Persistent to our study, Owen et al. demonstrated tachycardia induced by sumatriptan in animals as well.³ Some of these complications are related to serotonin syndrome, a drug-induced syndrome associated with sumatriptan administration.⁸

This effective drug has major adverse effects such as hepatotoxicity by causing oxidative stress in hepatocytes.⁶ Besides, an increased level of liver enzymes in this patient was a sign of affecting the liver.

Additionally, urine and fecal incontinency were realized in this case. Another study on rabbits proved that drugs that act on 5-HT1 receptors have regulatory action on bladder activity.⁹ On the contrary, there are no available data about this pivotal effect on humans.

Increased creatinine level was detected in this case that, previously proved by Mobasheran et al. In 2019, they performed a trial on rats that revealed the administration of sumatriptan induces renal injury by activating nitric oxide synthase and oxidative responses.⁷ In addition, bilateral renal infarction, a rare side effect, was recognized in a healthy 45-year-old woman after prescribing sumatriptan.¹⁰ Additionally, Sharma et al. reported renal cortical infarction induced by sumatriptan in a kidney allograft

WILEY

recipient.¹¹ On the contrary, Sheibani et al. displayed that the prescription of low doses of sumatriptan in male rats has protective effects on renal injury because of its anti-inflammatory agents.¹²

Previously, Kelly displayed that one dose of sumatriptan can cause sudden cardiac arrest because of coronary artery vasoconstriction.¹³ Despite positive troponin, and increased level of LDH and CPK, there was no positive clue about myocardial infarction in our patient according to the biopsy.

4 | CONCLUSION

Sumatriptan, that is used to treat migraine episodes, can affect many systems in healthy humans, including cardiovascular system, causing myocardial infarction.¹⁴ There are some studies about the toxicity of this drug just in animals.³ Our case supports the novel complications of sumatriptan toxicity in humans, including urine incontinency, nephritic syndrome, and hepatotoxicity. Further clinical trials are required to reveal the complications of the sumatriptan, especially in patients with positive past medical history.

AUTHOR CONTRIBUTIONS

PE collected the data and corrected the manuscript for its scientific basis. LO collected the data for the study and wrote the manuscript. FA wrote and corrected the manuscript for its scientific basis. SS and BM revised the manuscript for grammar and syntax mistakes. MR corrected the manuscript for its scientific basis and revised the manuscript for grammar and syntax mistakes. MF and MJH collected and wrote the autopsy part. All authors read and approved the final manuscript.

ACKNOWLEDGMENT

The authors appreciate medical staff of the intensive care unit at Loghman Hakim Hospital.

FUNDING INFORMATION

No additional funding for the execution of the present study was received.

CONFLICT OF INTEREST

The authors declare that they have no competing or conflict of interests.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

CONSENT

Written informed consent was obtained from the patient's family to publish this case report and any accompanying images. A copy of the written consent is available for review by the journal's Editor-in-Chief.

ORCID

Laya Ohadi Dhttps://orcid.org/0000-0001-7480-8975 Shahin Shadnia Dhttps://orcid. org/0000-0002-9401-0781

REFERENCES

- Kaube H, May A, Pfaffenrath V. Sumatriptan. Br Med J. 1994;308(6943):1573-1574.
- Eigenbrodt AK, Ashina H, Khan S, et al. Diagnosis and management of migraine in ten steps. *Nat Rev Neurol.* 2021;17(8):501-514.
- Owen K, Hartley K, Tucker M, Parkinson M, Tweats D, Jackson M. The preclinical toxicological evaluation of sumatriptan. *Hum Exp Toxicol*. 1995;14(12):959-973.
- 4. Laine K, Raasakka T, Mäntynen J, Sakko P. Fatal cardiac arrhythmia after oral sumatriptan. *Headache*. 1999;39(7):511-512.
- 5. Brar Y, Hosseini SA, Saadabadi A. Sumatriptan. StatPearls; 2021.
- Fard JK, Hamzeiy H, Sattari M, Eghbal MA. Protective roles of N-acetyl cysteine and/or taurine against sumatriptan-induced hepatotoxicity. *Adv Pharmaceut Bull*. 2016;6(4):627-637.
- Mobasheran P, Rajai N, Kohansal P, Dehpour AR, Shafaroodi H. The effects of acute sumatriptan treatment on renal ischemia/reperfusion injury in rat and the possible involvement of nitric oxide. *Can J Physiol Pharmacol.* 2020;98(4):252-258.
- 8. Shapiro RE, Tepper SJ. The serotonin syndrome, triptans, and the potential for drug-drug interactions. *Headache*. 2007;47(2):266-269.
- Lychkova AE, Pavone LM. Role of serotonin receptors in regulation of contractile activity of urinary bladder in rabbits. *Urology*. 2013;81(3):696.e13–e18.
- Abramovitz B, Leonberg-Yoo A, Bahrainwala JZ, Litt H, Rudnick MR. Bilateral renal infarctions during the use of sumatriptan. *Kidney Int Rep.* 2018;3(5):1233-1236.
- 11. Sharma SG, Post JB, Herlitz LC, Markowitz G. Renal cortical infarction following treatment with sumatriptan in a kidney allograft recipient. *Am J Kidney Dis*. 2013;61(2):326-329.
- Sheibani M, Faghir-Ghanesefat H, Azizi Y, et al. Antiinflammatory and antioxidative effects of sumatriptan against doxorubicin-induced cardiotoxicity in rat. *Acta Med Iran*. 2021;59(7):406.
- Kelly KM. Cardiac arrest following use of sumatriptan. Neurology. 1995;45(6):1211-1213.
- 14. Mueller L, Gallagher RM, Ciervo CA. Vasospasm-Induced Myocardial infarction with sumatriptan. *Headache*. 1996;36(5):329-331.

How to cite this article: Erfan Talab Evini P, Ohadi L, Amiri F, et al. Sumatriptan poisoning and its clinical presentation in humans: A case report. *Clin Case Rep.* 2022;10:e06453. doi: <u>10.1002/ccr3.6453</u>