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Abstract

The most distinctive pathological characteristics of diabetes mellitus induced by various 
stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations 
and activity. Existing treatment strategies cannot slow disease progression; consequently, 
research to genetically engineer β-cell mimetics through bi-directional plasticity is 
ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology 
of reduced β-cell mass and activity. This review aims to summarize the etiology and 
proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there 
might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation 
to the development of diabetes, which may offer a therapeutic window to reduce β-cell 
injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review 
strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, 
and bioengineering to transdifferentiate other cell types into β-cells; the development 
of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, 
the maturation of regenerated β-cells is currently limited. Further studies are needed to 
develop simple and efficient reprogramming methods for assembling perfectly functional 
β-cells. Future investigations are necessary to transform diabetes into a potentially  
curable disease.

Introduction

Diabetes mellitus (DM) is an epidemic chronic disease 
characterized by impaired glucose homeostasis, leading 
to hyperglycemia and multiple complications such as 
cardiopathy, neuropathy, nephropathy, and retinopathy. 
The prevalence of DM has increased dramatically in 
recent decades and is projected to rise to 642 million 
people by 2040 (1), with profound impacts on quality of 
life, demands for health services, and economic costs (2). 
There are two common syndromes, type 1 (T1D) and type 
2 diabetes (T2D), characterized by an absolute or relative 
deficiency of β-cells, respectively (3). A previously held 
belief stipulated that the fate of fully differentiated β-cells is 
fixed and that gradual β-cell death due to glucotoxicity was 

a final outcome of DM (4). Treatment ultimately depended 
on supplemental insulin and islet transplantation, which 
alleviated disease severity by reducing or normalizing 
glycemic levels without curing DM (4). Long-term insulin 
treatment carries risks of hypoglycemic episodes, weight 
gain, and an increased incidence of cancer (5). The 
effectiveness of islet transplantation is limited by a shortage 
of donor islets and immune rejection (6). Therefore, new 
therapeutic strategies are urgently needed to prevent and 
treat this highly prevalent metabolic disorder.

The study of β-cell maturation and physiology 
demonstrates the heterogeneity and plasticity of mature 
β-cell phenotypes and function (7). The three main β-cell 
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phenotypes in diabetes are dedifferentiated, senescent, 
and transdifferentiated types (8). Glucotoxicity leads to 
β-cell dedifferentiation during hyperglycemia and reduces 
the expression of β-cell enrichment genes such as key 
transcription factors and genes that encode insulin; glucose 
metabolism, protein processing, and secretory pathways; as 
well as upregulation of genes that are suppressed or expressed 
at low levels in normal β-cells, including forbidden and 
progenitor cell genes (9). Under various stress conditions, 
mature β-cells may lose their differentiated phenotypes 
and return to a less differentiated or even a progenitor 
cell state. β-cell dedifferentiation is a potential adaptive 
mechanism to escape cell death during physiologic stress 
(10). Exploring the mechanisms of dedifferentiation may 
inform new strategies for the reversal of dedifferentiation 
and the restoration of β-cell functionality. We focus on 
the possible mechanisms of hyperglycemia-induced 
dedifferentiation that may result from the cascade of 
metabolic, oxidative, and endoplasmic reticulum stresses; 
and on epigenetic changes due to chronic stress. We also 
review current antidiabetic strategies and potential future 
research directions that may identify a time window 
for alleviating the β-cell stress response; thus preserving 
β-cell mass, regaining cell maturation, improving cellular 
function, and delaying disease progression.

Current research is focused on methods to 
increase β-cell numbers, maturity, function, and post-
transplantation survival in addition to protecting existing 
β-cells, thus providing potential breakthroughs in the 
treatment of DM (11). β-Cell deficiency could be reversed 
by promoting cellular replication and redifferentiation 
during the early stages of DM (12). However, the 
application of these methods has been limited due 
to low β-cell proliferation rates, instability, and high 
heterogeneity. Transdifferentiation (13), defined as the 
phenotype switch between different cell types, obviates 
the shortcomings of the aforementioned methods and 
provides a safe and efficient approach to regeneration. 
The focus herein is on the eventual differentiation of non-
β-cells into a β-cell phenotype. At present, most studies 
focus on the transdifferentiation of pancreatic non-β-cells; 
hepatic and biliary cells; gastrointestinal cells into β-cells 
through genetic programming; cytokines; and small 
molecules. These cells comprise the leading candidates 
because of their common endodermal origin with β-cells, 
abundant populations, and high conversion efficiency. 
The development of bionic technology offers an expanding 
range of options for β-cell regeneration.

Benefiting from excellent reviews of this field, we focus 
on the state of knowledge of β-cell dedifferentiation and 

transdifferentiation, as well as the highlights of exciting 
new research. Optimized protocols to augment functional 
mature β-cells will guide future precision medicine studies 
of improved treatment strategies for patients with DM and 
may even result in potential cures.

β-Cell dedifferentiation

Stress response is an adaptation to environmental changes. 
Moderate stress responses can induce effective adaptation 
strategies to improve survival, while an excessive stress 
response will cause stress injury, leading to the onset and 
development of a variety of organic and psychological 
diseases, including DM. A growing body of evidence has 
shown that the onset and development of DM is closely 
related to metabolic, oxidative, and endoplasmic reticulum 
stresses and to epigenetic changes caused by chronic stress. 
Both T1D and T2D present with a loss of β-cell mass and 
identity that ultimately impair insulin secretion. The 
current view is that β-cell loss during the development of 
DM may be related to β-cell dedifferentiation rather than 
apoptosis, because the relatively low rate of apoptosis 
may not fully explain the loss of β-cell mass. β-cell 
dedifferentiation is characterized by decreased expression 
of specific genes that maintain the characteristics and 
function of mature β-cells and by the increased expression 
of endocrine precursor cell genes and additional genes that 
are expressed at low levels in normal β-cells. In this section, 
we discuss the various stresses and mechanisms that 
trigger dedifferentiation, as well as the currently available 
methods to inhibit β-cell dedifferentiation (Figs 1 and 2).

Nutritional stress

The effects of glucose, lipid, and amino acid metabolism on 
pancreatic β-cells have received increasing attention (14). 
β-Cells gradually change from their initial adaptive stage to 
develop metabolic disorders and apoptosis (15). This process 
was previously ascribed to glucotoxicity, lipotoxicity, 
glucolipotoxicity, and metabolic stress; however, these 
proposed etiologies could not accurately reflect the state 
changes of β-cells in the processes of mixed-nutrient 
energy balance and imbalance. At present, nutritional 
stress is considered the most appropriate terminology 
(16). Transitory metabolic imbalances stimulate insulin 
synthesis and release (17). Once the balance is broken, 
usually in the context of a poor lifestyle, long-term 
overnutrition, and aging, β-cells confront chronic and 
persistent insults that are aggravated by the individual’s 
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genetic and epigenetic composition (16). Chronic 
metabolic stress can inhibit transcription factors such as 
MAF BZIP transcription factor A (MafA), pancreatic and 
duodenal homeobox 1 (PDX-1), neuronal differentiation 1 
(NeuroD1), and insulin gene expression, thus causing β-cell 
dysfunction and failure, leading to T2DM (18).

In rodent and human pancreatic islets, β-cells 
induced by high-glucose concentrations exhibited 
cellular dysfunction, decreased insulin secretion, glucose-
stimulated insulin secretion (GSIS), and expression 
of mature β-cell genes; while expressing progenitor or 
precursor cell-related genes (19). Elevated glucose levels and 
the duration of hyperglycemia are the main factors affecting 
β-cell dedifferentiation (20). Zinc deficiency induced by 
hyperglycemia may reduce the expression of key β-cell 
transcription factors MafA, paired box 6 (Pax6), and NK2 
homeobox 2 (NKX2.2) and promote β-cell dedifferentiation 
(21). β-cells (MIN6) cultured in a high-glucose environment 
exhibited reduced expression of vitamin D receptor (VDR). 
Vitamin D3 treatment can prevent β-cell dedifferentiation 
and increase the expression of genes encoding essential 
transcription factors such as Pdx1, MafA, and VDR. 
Notably, the expressions of insulin 1(Ins1) and insulin 
2 (Ins2) are also increased (22). β-Cell absorbed free 
fatty acids (FFA) (including triglyceride hydrolyzed 
by lipoprotein lipase), very low-density lipoprotein, 
and low-density lipoprotein produced by endocytosis 
attenuate glucose toxicity (22). Thus, circulating lipid 
levels appear to influence not only glucose toxicity but 
also β-cell adaptation to hyperglycemia. Hyperglycemia 

and hyperlipidemia interact to impair β-cell function 
(23, 24). Circulating glucose and lipid levels are elevated 
prior to the onset of obesity-related T2D, so a reasonable 
suggestion is that excessive levels of these two nutrients 
are pathogenic. In the context of overnutrition associated 
with T2D, disorders of lipid homeostasis associated with 
hyperlipidemia and hypercholesterolemia, and often 
elevated plasma FFA, precede the onset of T2D in both 
human clinical experience and in rodent models. Multiple 
in vitro studies using β-cell lines (INS, MIN6, or HIT cells) or 
isolated rodent and human islets have shown synergistic 
toxicity of elevated glucose and FFA on β-cell function and 
survival (25, 26). A recent 6-year Canadian follow-up study 
showed a strong negative association between total plasma 
FFA levels and β-cell function (27). Similarly, another study 
showed that elevated plasma FFA is strongly associated 
with decreased β-cell function in children and adults and 
impaired insulin secretion rather than insulin sensitivity 
(28). Reduced in vivo and in vitro GSIS is associated with 
changes in the glyceride/fatty acid cycle (29, 30, 31, 32, 
33, 34). In lipid-treated MIN6 cells, inhibition of ID1 
expression can reduce the expression of islet stress genes 
and increase insulin secretion. ID1 is a negative regulator 
of insulin secretion, and its expression plays a crucial role 
in the etiology of β-cell dedifferentiation under conditions 
of glucose intolerance, insulin secretion dysfunction, and 
increased lipid load, providing a molecular link between 
chronic lipid-induced damage and β-cell dedifferentiation 
and dysfunction (35). None of these models demonstrated 
β-cell apoptosis or reduced cell mass, suggesting that β-cell 

Figure 1
β-Cells lost the mature phenotype under various stressors and dedifferentiated as an adaptive response to avoid apoptosis.
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dysfunction, rather than cell death, promotes the onset 
of DM (36). The effects of glucose and lipids on β-cells in 
different experiments were discriminating. Another study 
suggested that β-cell dedifferentiation could be induced in 
lipotoxic conditions with or without hyperglycemia (37). 
This may be related to the composition and quantity of 
FFA. Nutritional stress in β-cells may result not only from 
glucose and lipids but also from amino acids, especially 
branched-chain amino acids (BCAA), including leucine, 
isoleucine, and valine. These three amino acids, as well 
as tyrosine and phenylalanine, were increased while 
glycine was decreased in obese hyperinsulinemic patients  
(14, 38, 39). Elevated plasma levels of BCAA and aromatic 

amino acids (tyrosine and tryptophan) are associated 
with obesity, insulin resistance, and susceptibility to T2D. 
The β-cell dysfunction induced by disordered amino acid 
metabolism is possibly mediated through the continued 
activation of the mammalian target of rapamycin (mTOR) 
signaling and consequent mitochondrial dysfunction (40).

An increasing body of evidence suggests that reduced 
nutritional stress can improve β-cell function (37). Low-
calorie diets (41), hypoglycemic drugs (42), dietary 
additives (43), or bariatric surgery (44, 45) have led to 
diabetic remission and/or improved insulin secretion in a 
significant proportion of T2D patients. We suggest that in 

Figure 2
Mechanisms of β-cell dedifferentiation. (A) Reduced expression of raptor-induced suppression of the mTORC1 signaling pathway increased the 
expressions of β-cell-specific disallowed genes (e.g. Hk1, Dlk1, Pdgfra, Oat, and Mylk). (B) Stress is a major contributor to β-cell dedifferentiation via 
activating Nf-κB signaling, which compromises β-cell identity and thus decreases insulin secretion. (C) The JNK pathway is activated under diabetic 
conditions such as stress and cytokine release, accompanied by Pdx1 nuclear translocation and suppression of insulin and GLUT2 gene expression. (D) 
The p38 MAPK pathway mediates the degradation of endogenous MafA during hyperglycemia. The dotted and solid boxes represent signaling pathway 
inhibition and activation, respectively. 4E-BP1, 4E binding protein 1; eIF4F, eukaryotic initiation factor 4F; Hk1, hexokinase 1; Oat:,ornithine 
aminotransferase; Pdgfrα, platelet-derived growth factor receptor α; Mylk, myosin light chain kinase; IKK, IκB kinase; IκB, nuclear factor-kappaB inhibitor 
alpha; NIK, Nf-κB inducing kinase; RTK, receptor tyrosine kinases; TNF, tumor necrosis factor; TRAF2, TNF receptor-associated factor 2; RIP1, receptor-
interacting protein1; MEK, MAPK kinase; MEKK, MEK kinase; TRADD, TNFR1-associated death domain-containing protein; FADD, Fas-associated death 
domain-containing protein; TAK-1, TGF-beta-activating kinase 1.
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most cases, these benefits are derived from the reversal of 
pancreatic β-cells dedifferentiation (37, 46).

Endoplasmic reticulum stress

Endoplasmic reticulum (ER) stress is caused primarily 
by reactive oxygen species (ROS) accumulation, toxic 
substances, and genetic mutations. Stressors usually 
originate from changes in the cellular internal environment 
and include protein misfolding, aggregation of misfolded 
proteins, calcium homeostasis disorders, and other ER 
dysfunctions (47). In prediabetes, complexes of misfolded 
proteins accumulate in the ER of β-cells, suggesting that 
the disruption of ER balance is an early event in the 
development of T2D (48). There is solid evidence that ER 
stress contributes to β-cell dysfunction in both T1D and 
T2D (49, 50, 51). In the context of DM, chronic ER stressors 
such as hyperglycemia, hyperlipidemia, hypoxia, and pro-
inflammatory cytokines (TNF-α, IL-1) lead to the gradual 
loss of β-cell-specific transcription factors, including Pdx1, 
MafA, and forkhead box O1 (FoxO1), and the acquisition 
of endocrine progenitor cell markers such as neurogenin3 
(Ngn3) and octamer-binding transcription factor 4 (Oct4) 
(52, 53, 54). In this setting, ER homeostasis will collapse 
and initiate the unfolded protein response (UPR). The 
UPR is a protective mechanism that maintains the balance 
between synthesis and degradation; supports correct 
folding and function; sustains protein homeostasis, or 
proteostasis (55). Many factors in pancreatic β-cells can 
disrupt the UPR balance to trigger ER stress. These include 
genetic mutations, cytokines, infections, excess nutrients, 
islet amyloid polypeptide (IAPP), and insulin resistance 
(IR) and can result in DM (50, 56, 57, 58). This disruption of 
the adaptive UPR promotes diabetic progression and β-cell 
dedifferentiation (59). Combinatorial signals from the 
three core components of the UPR (protein kinase R-like 
endoplasmic reticulum kinase (PERK), inositol-requiring 
enzyme 1 (IRE1), and activating transcription factor 6 
(ATF6)) initially trigger transcriptional programs that 
upregulate genes encoding many of the aforementioned 
ER-resident protein-folding machines that play important 
roles in insulin biosynthesis (60, 61). Consequently, 
further research is needed to clarify which steps of the ER 
stress process are easily targeted, because activation of key 
proteins of the UPR may be beneficial in the treatment of 
T2D (62). In fact, some of the therapeutic effects of drugs 
currently used to treat DM may stem from their ability to 
regulate ER stress, target protein folding, and modulate 
the UPR signaling pathway. These processes may provide 

targets for future drug candidates such as chemical 
chaperone molecules 4-phenylbutyric acid and taurine-
deoxycholic acid to promote correct protein folding and 
cellular function (63, 64).

Oxidative stress

Oxidative stress and metabolic disorders are considered the 
two most important pathogenic factors of insulin secretion 
disorder (65). The development of T2D results from a variety 
of cellular changes associated with oxidative stress and 
impaired redox signaling, usually caused by lipotoxicity 
and glucotoxicity due to continued overfeeding (66). 
Oxidative stress is not only closely related to lipotoxicity 
and glucotoxicity but is also associated with inflammation, 
ER stress, hypoxia, and mitochondrial damage in the 
promotion of β-cell dedifferentiation (66, 67, 68). Oxidative 
stress impairs pancreatic β-cell maintenance and function 
(69), which is widely believed to be associated with the 
onset of DM and diabetic complications. The consequent 
increase of oxidized biological components leads directly 
not only to pathologies such as inhibited insulin secretion 
but also to the induction of new cellular responses, namely 
programmed cell death, i.e., apoptosis. These phenomena 
occur in parallel after cumulative oxidative stress reaches a 
certain threshold (66). In T1D, ROS promote autoimmune 
responses, cytokine release, and inflammation-induced 
impairment of β-cell function (70). Drews et al. suggested 
that oxidative stress-mediated loss of cellular function 
(e.g. impaired secretion and increased insulin resistance) 
plays an important role in the pathogenesis of both T1D 
and T2D (36). Oxidative stress-related β-cell dysfunction 
induces cytoplasmic transposition and inactivation of 
transcription factors MafA, NKX6.1, and Pdx1 in the islets 
of T2D patients (54, 71). The expression of oxidative stress-
related genes increased the release of pro-inflammatory 
cytokines and upregulated the expressions of pancreatic 
progenitor cell-specific transcription factors such as SRY-
Box transcription factor 4 (SOX4), SRY-Box transcription 
factor 9 (SOX9), inhibitor of DNA binding (ID2), and 
vimentin in islet cells cultured for 3 days. These findings 
indicated that cells dedifferentiated under oxidative stress 
in vitro (72). Oxidative stress leads to dephosphorylation 
and inactivation of these pathways by stimulating 
the activity of phosphatases such as protein tyrosine 
phosphatase 1B (PTP1B) and SH2-containing tyrosine-
protein phosphatase, thus inhibiting insulin effect (73). 
Free radicals not only have the aforesaid direct effects but 
can also indirectly activate various intracellular signaling 
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pathways such as mTOR, nuclear factor-kappa b (Nf-κB), 
p38 mitogen-activated protein kinases (p38 MAPK), stress-
activated protein kinase/c-Jun NH (2)-terminal kinase 
(JNK/SAPK), hexosamine pathways, protein kinase C 
(PKC), and advanced glycation end product/receptor for 
AGE (AGE/RAGE) interaction (74). The inactivation of 
mTOR signaling reduced β-cell mass and insulin secretion. 
The mTOR complex 1(mTORC1) was suppressed under 
oxidative stress, suggesting that the mTOR pathway has a 
potential role in β-cell dedifferentiation under oxidative 
stress (75, 76). p38 inhibition can reduce β-cell apoptosis 
and protect cellular function (77). Administration of 
antioxidants to β-cells may restore free radical scavenging 
potential and reduce oxidative stress, thereby increasing 
PDX-1, Ins-1, ngn3, GLUT, and IRS-1 expressions, thus 
promoting β-cell regeneration and subsequent pancreatic 
insulin release (78). Oxidative stress in the setting of 
diabetes activates the JNK pathway, which impairs insulin 
signaling, thereby increasing IRS1 serine phosphorylation 
and decreasing both IRS1 tyrosine phosphorylation and 
IRS1-associated PI3K activity. JNK activation reduces the 
phosphorylation of FoxO1, which in turn inhibits the 
expression of the insulin transcription factor Pdx1, thus 
lowering insulin levels and ultimately impairing β-cell 
function (79, 80). Activation of the p38 MAPK and JNK 
signaling pathways contributes to β-cell dysfunction in the 
pathogenesis of T2DM (81).

Commonly used antidiabetic drugs include 
metformin, thiazolidinediones, α-glucosidase inhibitors, 
insulin, glucagon-like peptide-1 (GLP-1) receptor agonists, 
dipeptidyl peptidase-4 inhibitors, and sodium-glucose 
cotransporter type 2 inhibitors (SGLT2is); which may 
enhance the regulation of adaptive responses to multiple 
stressors. Metformin has direct and indirect antioxidant and 
anti-inflammatory properties, inhibits the PERK/CHOP 
signaling pathway, reduces the ER stress response, and also 
prevents lipotoxic β-cell apoptosis (82, 83). Pioglitazone 
attenuates β-cell oxidative stress, inflammation, and ER 
stress by inhibiting Nf-κB activation (84). Rosiglitazone 
prevents oxidative stress by regulating Nf-κB activity 
through a PPARα-dependent mechanism (85). Exendin-4 
augments cellular defenses by inducing the ER chaperone 
BIP and the anti-apoptotic protein JUNB (86), and also 
prevents β-cell dysfunction and apoptosis by inhibiting the 
activation of JNK and p38 MAPK signaling (87, 88). SGLT2i 
attenuates the oxidative stress mediated by AGE-RAGE 
(89). Drugs that are currently used to treat diabetes exhibit 
excellent performance in stabilizing glycemic levels; 
however, the morbidity caused by diabetic complications 

obliges the development of novel alternatives and the 
creation of new preventive protocols for patients at high 
risk of insulin resistance (24, 63).

The discovery of safe and effective antioxidants could 
yield novel therapeutic options for the treatment of DM. 
Significantly, vitamin E, contained in nuts, reduces cellular 
oxidation by reacting with lipid radicals produced in the 
lipid peroxidation chain. Vitamin C, obtained from green 
leafy vegetables and fruits, acts synergistically with vitamin 
E to quench ROS through antioxidant activity (90). Several 
herbal derivatives (i.e. curcumin, cinnamon, garlic, and 
resveratrol) may have potential roles in maintaining β-cell 
function and inhibiting oxidative injury through their 
antioxidant properties (90).

In addition, the interaction of multiple cellular 
stressors induces epigenetic changes that can disrupt 
cellular function and trigger β-cell dedifferentiation. 
DNA methylation, histone modification, and noncoding 
RNA (ncRNA)-mediated gene regulation are examples of 
epigenetic mechanisms (91). A role of ncRNAs in epigenetic 
inheritance has been suggested recently (91). The function 
of ncRNAs, including miRNAs and long noncoding 
RNAs (lncRNAs), in β-cell dedifferentiation, has attracted 
increasing attention (91). lncRNA is abundant in β-cells 
and plays a vital role in differentiation (92). β-cell-specific 
lncRNAs interact with transcription factors to orchestrate 
transcription networks. lncRNAs could represent 
therapeutic targets to mitigate β-cell dysfunction. MiR-24 
may trigger β-cell dedifferentiation (93). Ectopic MiR-24 
expression in Min6 cells and primary islets increases Ngn3 
and SOX9 expression and also inhibits its direct target Ire1α, 
which consequently reduces XBP1 and ATF4 expressions. 
MiR-302 upregulation simultaneously suppresses the 
expression of several β-cell identity genes such as NeuroD1, 
peroxisome proliferator-activated receptor α (PPARα), and 
lysine acetyltransferase 2B (Kat2B), suggesting a role of MiR-
302 as a therapeutic target to prevent β-cell dedifferentiation 
(94). Defects in β-cell-specific lncRNAs cause DM in 
humans (95). MEG3, an lncRNA associated with normal 
β-cell function, acts as a unique controller to decrease MafA 
and Pdx-1 expressions. A crucial mechanistic role of PLUTO 
in preventing β-cell dedifferentiation is highly likely (9). 
PLUTO promotes Pdx1 expression by facilitating binding 
between the Pdx1 promoter and its enhancer cluster (95). 
Novel lncRNAs will probably be characterized in the near 
future to further elucidate their regulation of pancreatic 
development and β-cell function (96). The role of lncRNAs 
in β-cell dedifferentiation is a fascinating research topic 
that deserves further exploration.
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Although existing therapies improve glycemic 
control effectively, the increasing prevalence of serious 
diabetic complications suggests that targeting existing 
β-cell populations is inadequate. The exploitation of new 
resources to produce β-like cells may generate solutions 
to replenish depleted β-cells. Transdifferentiation offers a 
promising option.

β-Cell transdifferentiation

Cellular transdifferentiation, also known as lineage 
reprogramming, can be used to regenerate β-cells (97). 
Since hepatic, gastrointestinal, and pancreatic exocrine 
cells are derived from common endodermal progenitor 
cells, the transdifferentiation of developmentally related 
cells into β-cells can be easily accomplished. Because 
of identical developmental transcription mechanisms, 
similar epigenetic landscapes, and unique locations of 
endogenous cells, only a small portion of the epigenome 
needs to be rearranged, thus providing an attractive process 
for cellular reprogramming (98). The efficacy of particular 
technical strategies and the feasibility of using specific cell 
types for transdifferentiation are key questions that have 
been explored in exciting new studies of pancreatic β-cell 
regeneration (11) (Fig. 3 and Table 1).

Transdifferentiation of pancreatic non-β-cells 
to β-cells

Pancreatic non-β-cells, such as α, δ, acinar, and duct cells, 
share developmental histories and have similar epigenetic 
profiles. Because they may share common pathways during 
transdifferentiation into β-cells (97), we summarize their 
processes here. α-cell to β-cell transdifferentiation was 
observed upon β-cell loss in mice from puberty to adulthood 
(13). Near-total in vivo ablation of β-cells can be induced by 
diphtheria toxin (99), pancreatic duct ligation (PDL), and 
partial pancreatectomy (PPX) (98). PDL and PPX promote 
β-cell transdifferentiation not only from α-cells but also 
from duct (100) and acinar cells (101) in murine models. 
However, cell reprogramming is technically difficult. 
Current transdifferentiation strategies lack uniform 
methods. Efficiencies are usually low, and reprogrammed 
cells may exhibit unstable or immature phenotypes (97). 
Regulation of transcription factor expression and the use 
of several drugs offer more promising options. MafA and 
Pdx1 are essential transcription factors that interact with 
other factors to regulate transdifferentiation. The ablation 
of the Aristaless-related homeobox gene (Arx) (102) or 
the overexpression of PAX4 (103), MafA, and Pdx1 (104) 
promotes the transdifferentiation of β-cells from α-cells. 
Transdifferentiation from adult murine pancreatic duct (105) 

Figure 3
Alternative sources of β-cells by transdifferentiation from other cell types.
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and acinar cells (106) to β-cells can be induced by MafA, Pdx1, 
and Ngn3/NeuroD, while induction of Pax6 was also needed 
to reprogram human ductal cells into β-cells (107). GLP-1 
(108) may transform α-, duct, and acinar cells into cells with 
a β-cell-like phenotype. GABA (109) and artemisinins (110) 
promote the transdifferentiation of α-cells into β-cells. EGF 
in combination with ciliary neurotrophic factor (CNTF), 
nicotinamide, and leukemic inhibitory factor (LIF) (111, 112, 
113) can also induce transdifferentiation of pancreatic acinar 
cells to insulin-producing cells in culture. Other growth 
factors such as gastrin and transforming growth factor-α 
(TGF-α) (114) as well as the DNA methyltransferase inhibitor 
5-aza-2ʹ-deoxycytidine (115) induced Pdx1 expression in 
ductal cells to promote endocrine differentiation. These 
processes may be related to the PI3K/AKT/FOXO1 (116) and 
MAPK/STAT3 signaling pathways (117). The aforementioned 
results indicate that overexpression of endocrine genes, 
inhibition of exocrine genes, and treatment with cytokines 
or small molecules are promising strategies for β-cell 
regeneration. Results are variable due to the different models 
and methods; conversion rates are often low. More data are 
needed to identify safe and effective transcription factors 
and drugs to promote transdifferentiation for clinical use.

Transdifferentiation of hepatocytes and biliary 
cells to β-cells

Due to the proliferative ability and tissue specificity of liver 
tissue, as well as the common endodermal origin shared 
between hepatocytes and pancreatic cells, the clinical 
manipulation of genetic factors in combination with small 
molecules targeting specific pathways could render the 
human liver an ideal source of functional insulin-producing 
cells (118). Some hepatocytes display ectopic expression of 
Pdx1. These hepatocytes are typically located near central 
veins and seem predisposed to transdifferentiation into 
β-cells (119). Ectopic overexpression of Pdx1 and NeuroD1, 
downregulation of the expressions of hepatic transcription 
factors HNF1α and HNF4α, the reprogramming of 
hepatocytes into insulin-producing cells, and activation 
of the Wnt signaling pathway are necessary conditions for 
maintaining this plasticity (119, 120). Other factors such 
as GLP-1R agonists, Notch inhibitors, and transforming 
growth factor-β (TGF-β) inhibitors could enhance 
hepatocyte transdifferentiation (121). A notable finding is 
that the plasticity of the extrahepatic biliary tree enables 
intrahepatic biliary epithelial cells to express Pdx1, NeuroD, 
Pdx1/VP16, the insulin gene Ins, and Glut2 (122). In Hes1 
knockout models, biliary epithelium differentiated into 
pancreatic exocrine and endocrine cells that formed acinar 

and islet-like structures in bile ducts with upregulated 
expression of Ngn3 (123, 124). Murine gallbladder epithelial 
cells were reprogrammed into β-like cells through the 
overexpression Pdx1, Ngn3, and MafA, that led to increased 
expressions of pancreatic endocrine genes (insulin, 
NeuroD1, Nkx2.2, and Isl1) (125). The overexpression of 
critical transcription factors combined with suppression of 
inhibitory factors may potentially enhance the efficiency 
of cell reprogramming.

Transdifferentiation of gastrointestinal cells 
to β-cells

The gastrointestinal tract is a highly regenerative organ 
system rich in endocrine cells that are highly similar to 
pancreatic β-cells and is also an immune-privileged site. 
Based on these advantages, the gastrointestinal tract can 
be used as a site for either transdifferentiation to produce 
β-like cells or for the engraftment of regenerated cells that 
mimic β-cell function (126, 127).

By screening adult cell types capable of becoming 
insulin-producing cells in vivo, we found that due to 
the ectopic expression of Pdx1, MafA, and Ngn3 in the 
intestinal crypts, intestinal cells can form β-like cells 
and may represent an accessible and abundant source 
of functional insulin-producing cells (128). Under the 
influence of Pdx1, MafA, and Ngn3 (PMN), enterocytes are 
capable of acquiring β-like characteristics that include the 
abilities to process preproinsulin into its mature form (with 
the release of C-peptide); to upregulate genes encoding 
the β-cell KATP channel subunits Kir6.2 and Sur1, and to 
display distinctive β-granules (128). Ablation of the FoxO1 
transcription factor in enteroendocrine cells produces 
functional β-like cells (126). GLP-1 treatment induces 
insulin production in developing enterocytes, and to a 
lesser extent, in adult enterocytes both in vitro and in vivo; 
this process is mediated by the activation of Ngn3 and its 
downstream genes (128, 129).

However, the success rate of intestinal epithelial 
transdifferentiation is low, the transformation of 
enterocytes is relatively incomplete and the lifespan of 
intestinal insulin+ cells is shorter than that of sinus insulin+ 
cells due to CDX2, the intestine-specific cell surface 
marker, which prevents enterocytes from reprogramming 
into effective β-cells (130). Although these studies have 
revealed the feasibility of producing β-like cells from the 
intestinal epithelium, intestinal insulin+ cells cannot be 
regarded as completely regenerated β-cells because of their 
deficient NKX6.1 expression and unstable phenotype (131, 
132, 133). A new framework that promotes a complete 
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reprogramming of intestinal epithelial cells to become 
fully functioning β-cells is urgently needed.

However, the stomach represents a potential source of 
reprogrammable cells that may be transdifferentiated to 
produce insulin-secreting cells (134). The transformation 
mechanisms of different gastric cell types are varied. Based 
on the regenerative capacity of the antrum, native stem 
cells can supplement the increased demand for antral 
insulin+ cells and provide an excellent source of functional 
β-like cells. Antral endocrine cells mediated by PMN can be 
effectively reprogrammed into insulin+ cells, with robust 
expressions of key β-cell genes such as Sur1, and Glp1R, 
resulting in substantially improved glucose responsiveness. 
The gastric corpus contains a small amount of Ngn3-derived 
endocrine cells which differ from those of the antrum or 
intestinal tract and are not derived through PMN-mediated 
β-cell transformation (134, 135, 136). To summarize, cell 
plasticity and mechanisms of transdifferentiation differ 
in various segments of the gastrointestinal tract. The 
advantages of easy accessibility and transformability of 
gastrointestinal cells have attracted increasing attention. 
Further developments in biotechnology are expected to 
yield functional β-cells.

Bioengineered approaches

The in situ induction of β-cells from the native 
gastrointestinal tract may be limited due to a 
physiological environment that may disrupt normal 
endocrine homeostasis. In addition, the functionality 
of reprogrammed gastrointestinal cells remains to be 
determined. Unresolved issues include whether they 
express all key beta cytokines, whether their physiological 
function is complete, and whether they can reliably control 
insulin production in response to various physiologic 
stimuli. The development of regenerative engineering 
offers a potential replacement option described as 
organoids or functional 3D structures assembled with 
cell types from different sources. This strategy is widely 
used in regenerative medicine for tissue replacement or 
repair (137). However, the tissue-engineered stomach 
represents a versatile in vivo tool. ‘Stomach mini-organs’ 
that contain genetically engineered antral tissue enable 
both the formation and protection of transformed cells 
to constitute a new β-cell reservoir (134). Bioengineered 
gastric spheres isolate newly derived β-mimetic cells from 
the native organ, maintaining the physiological stability of 
the endocrine cell population in the intestinal tract, while 
on the other hand protecting the deposited β-mimetic cells 
from inappropriate glucose responses under stress (138). 

Recent advances in genetic engineering have expanded 
the accessibility of gastric organoids. The potential 
research (139) and therapeutic applications of genetically 
engineered organoids are substantial.

Emerging advances in synthetic biology have 
enabled the construction of specialized cells capable of 
performing vital functions. Conditioned media and the 
addition of a glucose sensing medium have been employed 
to synthesize β-cell-mimetic designer cells (140). We 
engineered a glucose-inducible transcriptional system by 
coupling a β-cell-mimetic cascade of glycolysis-mediated 
calcium entry to a synthetic excitation transcription 
coupling system in human embryonic kidney 293 (HEK-
293) cells. These engineered cells are capable of glucose 
sensing and concentration-dependent expression of 
insulin and GLP-1. Injection of microencapsulated cells 
increased insulin secretion and improved hyperglycemia 
in diabetic mice (141). A semi-autonomous light control 
system stimulated the secretion of glucose-lowering 
hormones by photoactivated HEK293 cells implanted in 
diabetic mice, thus restoring glucose homeostasis (142, 
143). Glucose-sensing devices loaded with biomimetic 
cells displayed glucose-induced insulin release comparable 
to endogenous β-cells; these constructs may be modified to 
secrete therapeutic proteins such as GLP-1 required for T2D 
therapy. However, the elucidation of the long-term in vivo 
effects of biomimetic cells will require additional studies.

Future research could explore the potential advantages 
of combining bioengineering (utilizing polymers such as 
PTFE or polycaprolactone, and/or microencapsulation of 
β-cells in materials such as alginate, polyacrylate, collagen 
or agarose) (144); gene-editing tools (CRISPR-Cas9) 
(145, 146); immune tolerance induction (147, 148); the 
adaptation of cell lines for enhanced mass production in 
bioreactors; optimization of biological process parameters 
and bioreactor environments; the promotion of cell 
growth and differentiation to augment biological function. 
The efficient mass production of cells that are stable, 
functionally mature, and that can mitigate functional 
deficiencies will accelerate the development of long-term 
cell replacement therapy for DM.

Acellular bioengineered constructs may offer 
alternatives to avoid design complexities and 
bioincompatabilities of reprogrammed cells. These non-
living biomimetic assemblies include vesicles that carry 
drug payloads in cell membrane-cloaked nanoparticles 
that deliver insulin in a dynamic response to hyperglycemia 
and could theoretically act as β-cell surrogates for DM 
therapy (149). A disadvantage of acellular constructs is that 
they only provide basic β-cell functions such as insulin 
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secretion. Capacities for insulin synthesis, its modulation 
through amplifying signal pathways, and the fine control 
of relative insulin content in response to external stimuli 
are absent (13). However, these constructs represent an 
exciting advance in the search for β-cell alternatives.

Conclusion

Dedifferentiation is a key mechanism of pancreatic β-cell 
failure. β-cell dysfunction induced by stress is driven 
by a complex set of reversible environmental factors. 
Improved understanding of the mechanisms of β-cell 
dedifferentiation will inform its reversal. Augmentation 
of β-cell volume and mass is essential to maintain normal 
glucose homeostasis and treat DM.

Recent studies have shown that supplementation of 
endogenous β-cells by transdifferentiation of other cell 
types may be a better approach than the differentiation of 
pluripotent stem cells and induced pluripotent stem cells 
with reduced proliferative capacity. The transdifferentiation 
of endogenous cells to produce β-cell mimetics is 
considered a safer approach. Recent studies have reported 
different conversion efficiencies of various cell types. 
Conversion rates range from 10 to 20% in pancreatic ductal 
cells; 0.2 to 70% (typically 20 to 30%) in acinar cells; 30% 
in gastrointestinal cells; 5 to 20% in biliary cells; 10 to 30% 
in hepatocytes. In addition, the different combinations 
of islet transcription factors such as Pdx1, Ngn3, MafA, 
and NeuroD1 affect the efficiency of transdifferentiation, 
and the co-expression of islet transcription factors 
and EGF/TGFβ growth factors promotes insulin gene 
expression. Studies of the effects of GABA, artemisinin, 
and GLP-1 on β-cell transdifferentiation have yielded 
contradictory results. Drug effects need further validation 
because of the different cell types, animal models, 
study intervals, and methods used in previous studies. 
Numerous strategies have been developed to improve the 
efficiency of cellular transformation, but there are also 
significant challenges to be addressed. Although there 
are obstacles to the reconstitution of β-cell populations 
through dedifferentiation and transdifferentiation, the 
development and application of regenerative medicine 
may provide a wide range of options for the generation of 
targeted and effective DM treatments.
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