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Abstract We performed studies on extended series of 79

HEPT ligands (1-[(2-hydroxyethoxy)methyl]-6-(phenyl-

thio)thymine), inhibitors of HIV reverse-transcriptase with

anti-HIV biological activity, using quantitative structure–

activity relationship (QSAR) methods that imply analysis

of correlations and representation of models. A suitable set

of molecular descriptors was calculated, and the genetic

algorithm was employed to select those descriptors which

resulted in the best-fit models. The kernel partial least

square and Levenberg–Marquardt artificial neural network

were utilized to construct the nonlinear QSAR models. The

proposed methods will be of great significance in this

research, and would be expected to apply to other similar

research fields.

Keywords AIDS � Anti-HIV activity � HEPT ligands �
QSAR � Genetic algorithm �
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Introduction

Acquired immune deficiency syndrome or acquired

immunodeficiency syndrome (AIDS) is a disease of the

human immune system caused by the human immunode-

ficiency virus (HIV). This condition would progressively

reduce the effectiveness of the immune system and leaves

individuals susceptible to opportunistic infections and

tumors (Jabs, 2011; Chitra et al., 2011; Ganguli et al.,

2012; Holland et al., 2010; Wachira and Ruger, 2011).

Acquired immunodeficiency syndrome is now a pan-

demic, and it has been the sixth leading cause of death

among people aged 25–44 in the United States since 1995.

The World Health Organization estimated that more than

25 million people worldwide have died from this infection

since the start of the epidemic (Kallings, 2008). In 2009,

AVERT reported that there were 33.3 million people

worldwide living with HIV/AIDS, with 2.6 million new

HIV infections per year and 1.8 million annual deaths due

to AIDS. In 2007, UNAIDS estimated that 33.2 million

people worldwide had AIDS that year, AIDS killed 2.1

million people in the course of that year, including 330,000

children, and moreover 76 % of those deaths occurred in

sub-Saharan Africa. According to UNAIDS 2009 report,

we have had 60 million infected people, 25 million deaths,

and 14 million orphaned children in southern Africa since

the epidemic began (Nagata et al., 2011; Furin et al.,

2012).

Human immunodeficiency virus (HIV) causes AIDS.

The virus attacks the immune system and leaves the body

vulnerable to a variety of life-threatening infections and

cancers. Common bacteria, yeast, parasites, and viruses

which do not ordinarily cause serious diseases in people

with healthy immune systems can cause fatal illnesses in

people with AIDS.

HIV has been found in saliva, tears, nervous system

tissue and spinal fluid, blood, semen (including pre-seminal

fluid, which is the liquid that comes out before ejaculation),

vaginal fluid, and breast milk. However, only blood, semen,

vaginal secretions, and breast milk generally transmits

infection to others (Schmidt, 2011). The virus can be spread

(transmitted) by sexual contact (including oral, vaginal, and
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anal sex), blood [via blood transfusions (now extremely rare

in the U.S.) or needle sharing], exchange between mother

and baby during pregnancy, childbirth, breastfeeding, or

other exposures to one of the above bodily fluids; other

methods of spreading the virus are rare and include acci-

dental needle injury, artificial insemination with infected

donated semen, and organ transplantation with infected

organs. AIDS is not transmitted to a person who donates

blood or organs. However, HIV can be transmitted to a

person receiving blood or organs from an infected donor. To

reduce this risk, blood banks and organ donor programs

screen donors, blood, and tissues thoroughly (Johnston

et al., 2010; Firląg-Burkacka et al., 2009).

Although treatments for AIDS and HIV can slow the

course of the disease, there is no known cure or vaccine.

Antiretroviral treatment reduces both the mortality and the

morbidity of HIV infection, but these drugs are expensive,

and routine access to antiretroviral medication is not

available in all countries (Guo and Li, 2011; Fomsgaard

et al., 2011). Due to the difficulty in treating HIV infection,

preventing infection is a key aim in controlling the AIDS

pandemic, with health organizations promoting safe sex

and needle-exchange programs in attempts to slow the

spread of the virus. HIV is transmitted through direct

contact of a mucous membrane or the bloodstream with a

bodily fluid containing HIV, such as blood, semen, vaginal

fluid, preseminal fluid, and breast milk (Self, 2010).

Acquired immunodeficiency syndrome begins with HIV

infection. People infected with HIV may have no symp-

toms for 10 years or longer, but they can still transmit the

infection to others during this symptom-free period. If the

infection is not detected and treated, the immune system

gradually weakens and AIDS develops. People with AIDS

also have an increased risk of developing various cancers

such as Kaposi’s sarcoma, cervical cancer, and cancers of

the immune system known as lymphomas. In addition,

people with AIDS often have systemic symptoms of

infection like fevers, sweats (particularly at night), swollen

glands, chills, weakness, and weight loss (Holmes et al.,

2003). The specific opportunistic infections that AIDS

patients develop depend, in part, on the prevalence of these

infections in the geographic area in which the patient lives.

The initial infection with HIV may produce no symptoms:

some people, however, do experience flu-like symptoms

with fever, rash, sore throat, and swollen lymph nodes,

usually 2–4 weeks after contracting the virus. Some people

with HIV infection stay symptom-free for years between

the time they are exposed to the virus and when they

develop AIDS (Lyons et al., 2011).

An anti-HIV agent can exert its biological activity in

different stages of the viral life cycle inhibiting them.

Studies were limited to those stages and phenomenon that

appear during viral replication: viral binding to the target

cell, viral fusion with the host cell by viral penetration into

the host cell’s membrane, viral uncovering in the host cell,

reverse genomic RNA transcription, integration of the new

viral DNA into the host cell’s chromosomes, provirus

activation producing mRNA, viral detachment from the

host cell, and viral maturation.

Reverse transcription of viral genomic RNA into double

strained DNA by the RT enzyme is essential for HIV

replication. Thus, the inhibition of this essential phase of

HIV life cycle provides the most attractive target in order

to develop a compound with biological anti-HIV potential.

For example, most drugs approved by the FDA for HIV

infection treatment are RT inhibitors. High resolution

electronic microscopy shows that HIV-1 is a 100 nm virus

with a capsule. The external layer is a double lipidic layer

derived from the host cell during maturation and contains

two major viral glycoproteins (gp): the transmembranar

gp41 and outside gp120. There is a protein associated to

the membrane (p 18) which provides the matrix for the

viral structure and is essential for the integrity of the virus.

The matrix surrounds a dense cylindrical characteristic

nucleoid which contains the p24 protein from the capside.

Inside the nucleoid, there are two identical RNA strains;

the viral RNA dependent DNA-polymerase (p66/p55)

called reverse-transcriptase (RT) is related to p9 nucleo-

protein, to p12 integrase protein, and to components of p15

protease, see Fig. 1 (Ganguli et al., 2012; Wachira and

Ruger, 2011; Holmes et al., 2003; Lyon et al., 2011).

By these means, HEPT (1-[(2-hydroxyethoxy)methyl]-

6-(phenylthio)thymine) derivatives can be regarded as non-

nucleosidic reverse transcriptase inhibitors (NNRTI), see

Figs. 2 and 3, and are analogs of the natural substrate.

HEPT derivatives don’t interact with the binding site of the

DNA or RNA-dependent DNA polymerase. Because of this

it is expected that these ligands would not determine side

effects. HEPT ligands interact uncompetitively with an

allosteric site of the enzyme and don’t affect the substrate

binding in a direct way. Actually, NNRTI have a higher

binding affinity to the ligand–enzyme complex than to the

free enzyme. The HEPT ligand–enzyme interaction leads

to enzymatic conformational variations; in other words, the

enzyme’s active site has a decreased affinity to the natural

substrate. This property is valid only regarding the HIV-1

RT; HEPT ligands are inactive against HIV-2 or other

retroviruses. The NNRTI exclusive specificity for the HIV-

1 RT is attributed to the presence—at the level of this

enzyme (and not in the case of other RT or DNA poly-

merases)—of a flexible extreme hydrophobic pocket in

which HEPT derivatives (different from natural substrate

analogs) fit and can be bound (Ji et al., 2007; Wang et al.,

2009; Bajaj et al., 2005).

The term ‘half maximal effective concentration’ (EC50)

refers to the concentration of a drug, antibody, or toxicant,
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which induces a response between the baseline and maximum

after some specified exposure time. It is commonly used as a

measure of a drug’s potency. The EC50 of a graded dose–

response curve represents the concentration of a compound

where 50 % of its maximal effect is observed. The EC50 of a

quantal dose–response curve represents the concentration of a

compound where 50 % of the population exhibits a response,

after specified exposure duration (Luis et al., 2010).

Various partial drugs which have been created would

treat the HIV infection at various stages but no drug has

been found yet to cure. Because of this, we need to com-

prehend the chemicals and mathematical models that could

be applied as an extrapolation model to study the desired

features of an anti-HIV drug. The best mathematical model

that can quantitatively relate the anti-HIV activity with the

structural descriptors is the QSAR model (Quantitative

Structure Activity Relationship). The QSAR analysis has

been done for various groups of compounds and also for

diverse sets of anti-HIV compounds (Goodarzi and Freitas,

2010; Bharate and Singh, 2011; Goodarzi et al., 2009;

Si et al., 2008).

There is a trend to develop QSAR from a variety of

methods. In particular, genetic algorithm (GA) is fre-

quently used as search algorithm for variable selections in

chemometrics and QSAR (Yanmaz et al., 2011). Moreover,

nonlinear statistical treatment of QSAR data is expected to

provide models with better predictive quality as compared

with linear models. In this perspective, artificial neural

network (ANN) modeling has become quite common in the

QSAR field (Afantitis et al., 2011; Zuperl et al., 2011).

Extensive use of ANN, which does not require the

‘‘a priori’’ knowledge of the mathematical form of the

relationship between the variables, largely rests on its

flexibility (functions of any complexity can be approxi-

mated). In recent years, nonlinear kernel-based algorithm

as kernel partial least squares (KPLS) has been proposed

(Postma et al., 2011). KPLS can efficiently compute latent

variables in the feature space by means of nonlinear kernel

functions. Compared to other nonlinear PLS methods, the

main advantage of the kernel-based algorithm is that it does

Fig. 1 a The human immunodeficiency virus (HIV) Anatomy b Life

cycle of HIV
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Fig. 3 Typical examples of HEPT (1-[(2-hydroxyethoxy)methyl]-6-

(phenylthio)thymine) derivatives
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not involve nonlinear optimization; thus it essentially

requires only linear algebra which makes it as simple as the

conventional linear PLS. In addition, because of its ability

to use different kernel functions, KPLS can handle a wide

range of nonlinearities (Cao et al., 2011). In the present

study, GA-KPLS and L–M ANN were employed to gen-

erate QSAR models that correlate the structure of HEPT

ligands and inhibitors of HIV reverse-transcriptase (RT),

with anti-HIV biological activity log (1/EC50).

Computational

Data set

The anti-HIV biological activity log (1/EC50) of 79 HEPT

derivatives which were taken from the literature (Duda-

Seiman et al., 2004) has been presented in Table 1. In this

table are given the group of substituents considered on the

general structure of Figs. 2 and 3. Biological activities are

given as log (1/EC50) where EC50 represents the concen-

tration and also produces a 50 % protection of MT-4 cells

against the direct toxic HIV-1 effect.

Computer hardware and software

All calculations were run on a HP laptop computer with an

AMD Turion64X2 processor and a Windows XP operating

system. The optimizations of molecular structures were

done by HyperChem 7.0 and descriptors were calculated by

Dragon Version 3.0 software. Cross validation, GA-KPLS,

L–M ANN and other calculations were performed in the

MATLAB (Version 7, Mathworks, Inc.) environment.

Molecular modeling and theoretical molecular

descriptors

The derivation of theoretical molecular descriptors pro-

ceeds from the chemical structure of the compounds. In

order to calculate the theoretical descriptors, molecular

structures were constructed with the aid of HyperChem

version 7.0. The final geometries were obtained with the

semi-empirical AM1 method in HyperChem program. The

molecular structures were optimized using Fletcher–

Reeves algorithm until the root mean square gradient was

0.01 kcal mol-1. The resulting geometry was transferred

into Dragon program in order to calculate 1,497 descrip-

tors, which was developed by Todeschini et al., (2003).

Genetic algorithm for descriptor selection

To select the most relevant descriptors with GA, the evo-

lution of the population was simulated (Noorizadeh and

Noorizadeh, 2012; Van Dijck and Van Hulle, 2011;

Cséfalvayová et al., 2010). Each individual of the popu-

lation, defined by a chromosome of binary values, repre-

sented a subset of descriptors. The number of the genes at

each chromosome was equal to the number of the

descriptors. The population of the first generation was

selected randomly. A gene was given the value of one if its

corresponding descriptor was included in the subset;

otherwise, it was given the value of zero. The number of

the genes with the value of one was kept relatively low to

have a small subset of descriptors (Hao et al., 2011); in

other words, the probability of generating zero for a gene

was set greater. The operators used here were crossover

and mutation. The application probability of these opera-

tors was varied linearly with a generation renewal. For a

typical run, the evolution of the generation was stopped,

when 90 % of the generations had taken the same fitness.

In this paper, size of the population is 30 chromosomes, the

probability of initial variable selection is 5:V (V is the

number of independent variables), crossover is multi Point,

the probability of crossover is 0.5, mutation is multi Point,

the probability of mutation is 0.01, and the number of

evolution generations is 1,000. For each set of data, 3,000

runs were performed.

Nonlinear model

Artificial neural network

An artificial neural network (ANN) with a layered structure

is a mathematical system that stimulates biological neural

network consisting of computing units named neurons and

connections between neurons named synapses (Noorizadeh

and Farmany, 2012; Garkani-Nejad and Ahmadi-Roudi,

2010; Singh et al., 2010). All feed-forward ANN used in

this paper are three-layer networks. Each neuron in any

layer is fully connected with the neurons of a succeeding

layer. Figure 4 shows an example of the architecture of

such ANN. The Levenberg–Marquardt back propagation

algorithm was used for ANN training and the linear func-

tions were used as the transformation functions in hidden

and output layers.

Results and discussion

Nonlinear models

Results of the GA-KPLS model

The leave-group-out cross validation (LGO-CV) has been

performed. In this research, a radial basis kernel function,

kðx; yÞ ¼ exp x� yj jj j2
.

c
� �

, was selected as the kernel
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Table 1 The data set, structure, and the corresponding observed log (1/EC50) values

No. R1 R2 R3 X log (1/EC50)EXP

Calibration set

1 Methyl 4-Methylphenylthio 2-Hydroxyethyl O 3.66

2 Methyl 3-Hydroxyphenylthio 2-Hydroxyethyl O 4.09

3 Methyl 2-Methylphenylthio 2-Hydroxyethyl O 4.15

4 Benzyl Phenylthio 2-Hydroxyethyl O 4.37

5 Methyl 3-Methoxyphenylthio 2-Hydroxyethyl O 4.66

6 Methyl 2-Methoxyphenylthio 2-Hydroxyethyl O 4.72

7 Methyl 3-Tertbutylphenylthio 2-Hydroxyethyl O 4.92

8 Methyl 3-Cyanophenylthio 2-Hydroxyethyl O 5.00

9 Methyl Phenylthio 2-Methoxyethyl O 5.06

10 Methyl 3-Methoxycarbonylphenylthio 2-Hydroxyethyl O 5.10

11 Methyl Phenylthio 2-Benzoyloxyethyl O 5.12

12 Methyl Phenylthio 2-Acetyloxyethyl O 5.17

13 2-Phenylethenyl Phenylthio 2-Hydroxyethyl O 5.22

14 Methyl Phenylthio 2-Azidoethyl O 5.24

15 Methyl Phenylthio Butyl O 5.33

16 Ethyl Phenylthio Cyclohexyl O 5.40

17 Propyl Phenylthio 2-Hydroxyethyl O 5.47

18 Methyl Phenylthio Propyl O 5.48

19 Methyl 3-Ethylphenylthio 2-Hydroxyethyl O 5.57

20 Allyl Phenylthio 2-Hydroxyethyl O 5.60

21 Methyl Phenylthio Methyl O 5.68

22 Ethyl Phenylthio Cyclohexyl S 5.79

23 Methyl Phenylthio 2-Chloroethyl O 5.82

24 Methyl Phenylthio Propyl S 5.92

25 Methyl Phenylthio 2-Hydroxyethyl S 6.01

26 Ethyl Phenylthio Cyclohexylmethyl O 6.35

27 Ethyl Phenylthio Isopropyl O 6.47

28 Methyl Phenylthio Ethyl O 6.48

29 Methyl 3,5-Dimethylphenylthio 2-Hydroxyethyl O 6.59

30 Ethyl Phenylthio Isopropyl S 6.66

31 Ethyl Phenylthio 2-hydroxyethyl O 6.92

32 Cyclopropyl Phenylthio Ethyl O 7.00

33 Ethyl Phenylthio 2-Cyclohexylethyl O 7.02

34 Methyl Phenylthio Benzyl O 7.06

35 Ethyl Phenylthio 4-Methylbenzyl S 7.11

36 Isopropyl Phenylthio 2-Hydroxyethyl O 7.20

37 Ethyl 3,5-Dichlorophenylthio 2-Hydroxyethyl S 7.37

38 Ethyl Phenylthio Ethyl S 7.58

39 Ethyl 3,5-Dichlorophenylthio 2-Hydroxyethyl O 7.85

40 Isopropyl Phenylthio Ethyl S 7.89

41 Ethyl Phenylthio 4-Chlorobenzyl S 7.92

42 Ethyl Phenylthio Benzyl S 8.09

43 Ethyl 3,5-Dichlorophenylthio Ethyl O 8.13

44 Isopropyl Phenylthio Benzyl S 8.14

45 Ethyl Phenylthio Benzyl O 8.23

46 Isopropyl 3,5-Dimethylphenylthio 2-Hydroxyethyl S 8.30

47 Isopropyl Phenylthio Benzyl O 8.51
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function with c ¼ rmr2 where r is constant that can be

determined by considering the process to be predicted (here

r set to be 1), m is the dimension of the input space, and r2

is the variance of the data (Kim et al., 2005). It means that

the value of c depends on the system under the study. The

14 descriptors in five latent variables—space chosen by

GA-KPLS feature selection methods—were contained

constitutional descriptors (number of Oxygen atoms (nO)

and number of non-H bonds (nBO)), topological descrip-

tors (centralization (CENT)), geometric descriptors (grav-

itational index G2 (bond-restricted) (G2), 3D Petitjean

shape index (PJI3), and Qxx COMMA2 value/weighted by

atomic van der Waals volumes (QXXv)), 3D-MoRSE

descriptors (3D-MoRSE—signal 09/weighted by atomic

masses (Mor09m)), WHIM descriptors (first component

accessibility directional WHIM index/weighted by atomic

polarizabilities (E1p) and A total size index/weighted by

atomic electrotopological states (As)), atom-centered

fragments (number of terminal primary C(sp3) (nCp),

CH3R/CH4 (C-001) and phenol/enol/carboxyl OH (O-057))

and charge descriptors (relative positive charge (RPCG)

and submolecular polarity parameter (SPP)). The R2 and

RE for training and test sets were (0.861, 0.748) and

(14.37, 23.09), respectively. For the constructed model,

two general statistical parameters were selected to evaluate

the prediction ability of the model for the log (1/EC50). The

Table 1 continued

No. R1 R2 R3 X log (1/EC50)EXP

48 Isopropyl 3,5-Dimethylphenylthio 2-Hydroxyethyl O 8.57

Prediction set

49 Methyl 3-Trifluoromethylphenylthio 2-Hydroxyethyl O 4.35

50 Methyl 3-Chlorophenylthio 2-Hydroxyethyl O 4.89

51 Propyl Phenylthio 2-Hydroxyethyl S 5.00

52 Methyl Phenylthio 2-Hydroxyethyl O 5.15

53 Methyl 3-Fluorophenylthio 2-Hydroxyethyl O 5.48

54 Methyl Phenylthio Methyl S 5.66

55 Methyl 3,5-Dichlorophenylthio 2-Hydroxyethyl O 5.89

56 Ethyl Phenylthio Cyclohexylmethyl S 6.45

57 Ethyl Phenylthio 2-Hydroxyethyl S 6.96

58 Cyclopropyl Phenylthio Ethyl S 7.02

59 Ethyl Phenylthio Ethyl O 7.72

60 Ethyl 3,5-Dichlorophenylthio Ethyl S 7.89

61 Isopropyl Phenylthio Ethyl O 7.99

62 Ethyl 3,5-Dimethylphenylthio 2-Hydroxyethyl S 8.11

63 Ethyl 3,5-Dimethylphenylthio Ethyl O 8.24

64 Ethyl 3,5-Dimethylphenylthio Benzyl O 8.55

Test set

65 Methyl 2-Nitrophenylthio 2-Hydroxyethyl O 3.85

66 Methyl 3-Nitrophenylthio 2-Hydroxyethyl O 4.47

67 Methyl 3-Iodophenylthio 2-Hydroxyethyl O 5.00

68 Methyl 3-Acetylphenylthio 2-Hydroxyethyl O 5.14

69 Methyl 3-Bromophenylthio 2-Hydroxyethyl O 5.24

70 Iodo Phenylthio 2-Hydroxyethyl O 5.44

71 Methyl 3-Methylphenylthio 2-Hydroxyethyl O 5.59

72 Ethenyl Phenylthio 2-Hydroxyethyl O 5.69

73 Methyl Phenylthio 2-Fluoroethyl O 5.96

74 Methyl 3,5-Dimethylphenylthio 2-Hydroxyethyl S 6.66

75 Ethyl Phenylthio 2-Phenylethyl S 7.04

76 Isopropyl Phenylthio 2-Hydroxyethyl S 7.23

77 Ethyl 3,5-Dimethylphenylthio 2-Hydroxyethyl O 7.89

78 Ethyl 3,5-Dimethylphenylthio Benzyl S 8.14

79 Ethyl 3,5-Dimethylphenylthio Ethyl S 8.30
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predicted values of log (1/EC50) are plotted against the

experimental values for training and test sets in Fig. 5.

Consequently, as a result, the number of components

(latent variables) is less than the number of independent

variables in KPLS analysis. The statistical parameters

highest square correlation coefficient leave-group-out cross

validation (R2) and relative error (RE) were obtained for

proposed models. Each of the statistical parameters men-

tioned above was used for assessing the statistical signifi-

cance of the QSAR model. This GA-KPLS approach

currently constitutes the most accurate method for pre-

dicting the anti-HIV biological activity of the drug com-

pounds. The KPLS model uses higher number of

descriptors that allows the model to extract better structural

information from descriptors to result in a lower prediction

error. This suggests that GA-KPLS holds promise for

applications in choosing variables for L–M ANN systems.

This result indicates that the log (1/EC50) of these drugs

possesses some nonlinear characteristics.

Results of the L–M ANN model

With the aim of improving the predictive performance of

nonlinear QSAR model, L–M ANN modeling was per-

formed. The networks were generated using the 14

descriptors appearing in the GA-KPLS models as their

inputs and log (1/EC50) as their output. For ANN genera-

tion, data set was separated into three groups: calibration,

prediction, and test sets. A three-layer network with a

sigmoid transfer function was designed for each ANN.

Before training the networks, the input and output values

were normalized between -1 and 1. Then, the network was

trained using the training set and the back propagation

strategy for optimizing the weights and bias values. The

proper number of nodes in the hidden layer was determined

by training the network with different number of nodes in

the hidden layer. The root-mean-square error (RMSE)

value measures how good the outputs are in comparison

with the target values. It should be noted that for evaluating

the over fitting, the training of the network for the pre-

diction of log (1/EC50) must stop when the RMSE of the

prediction set begins to increase while RMSE of calibration

set continues to decrease. Therefore, training the network

was stopped when overtraining began. All of the above

mentioned steps were carried out using basic back propa-

gation, conjugate gradient, and Levenberge–Marquardt

weight update functions. Accordingly, one can realize that

the RMSE for the training and test sets are minimum when

five neurons were selected in the hidden layer. Finally, the

number of iterations was optimized with the optimum

values for the variables. The R2 and RE for calibration,

prediction, and test sets were (0.916, 0.894, 0.868) and

(9.98, 11.34, 15.29), respectively. The experimental, cal-

culated, relative error and RMSE values log (1/EC50) by

L–M ANN are shown in Table 2. Inspection of the results

reveals a higher R2 and lowers other values parameter for

the training, test, and prediction sets compared with their

counterparts for GA-KPLS. Plots of predicted log (1/EC50)

versus experimental log (1/EC50) values by L–M ANN for

calibration, prediction, and test sets are shown in Fig. 6a, b.

Obviously, there is a close agreement between the exper-

imental and predicted log (1/EC50), and the data represent a

very low scattering around a straight line with respective

slope and intercept close to one and zero. This clearly

shows the strength of L–M ANN as a nonlinear feature

selection method. The key strength of L–M ANN is their

ability to allow for flexible mapping of the selected features

by manipulating their functional dependence implicitly.

The residuals (predicted log (1/EC50) - experimental log

(1/EC50)) obtained by the L–M ANN modeling versus the

experimental log (1/EC50) values are shown in Fig. 7a, b.

As the calculated residuals are distributed on both sides of

the zero line, one may conclude that there is no systematic

error in the development of the neural network. The whole

Input layer
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Output layer

Fig. 4 Used three layer ANN
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Fig. 5 Plots of predicted log (1/EC50) against the experimental

values by GA-KPLS model
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of these data clearly displays a significant improvement

of the QSAR model consequent to nonlinear statistical

treatment.

Model validation and statistical parameters

The applied internal (leave-group-out cross validation

(LGO-CV)) and external (test set) validation methods were

used for the predictive power of models. In the leave-

group-out procedure, one compound was removed from the

data set, the model was trained with the remaining com-

pounds and used to predict the discarded compound. The

Table 2 Experimental, calculated, relative error, and RMSE values

log (1/EC50) by L–M ANN model

No. log (1/

EC50)EXP

log (1/

EC50)CAl

Relative

error

Residuals RMSE

Calibration set

1 3.66 3.84 4.86 0.18 0.03

2 4.09 4.21 3.02 0.12 0.02

3 4.15 4.52 8.80 0.36 0.05

4 4.37 4.66 6.66 0.29 0.04

5 4.66 3.90 16.31 -0.76 0.11

6 4.72 4.84 2.60 0.12 0.02

7 4.92 4.49 8.84 -0.43 0.06

8 5.00 5.04 0.84 0.04 0.01

9 5.06 5.02 0.89 -0.04 0.01

10 5.10 5.47 7.26 0.37 0.05

11 5.12 5.48 7.10 0.36 0.05

12 5.17 5.14 0.56 -0.03 0.00

13 5.22 5.52 5.74 0.30 0.04

14 5.24 5.40 3.12 0.16 0.02

15 5.33 4.80 10.00 -0.53 0.08

16 5.40 5.00 7.38 -0.40 0.06

17 5.47 5.46 0.10 -0.01 0.00

18 5.48 4.97 9.23 -0.51 0.07

19 5.57 5.27 5.45 -0.30 0.04

20 5.60 5.41 3.44 -0.19 0.03

21 5.68 6.13 7.99 0.45 0.07

22 5.79 5.57 3.73 -0.22 0.03

23 5.82 5.53 4.97 -0.29 0.04

24 5.92 5.84 1.34 -0.08 0.01

25 6.01 6.42 6.85 0.41 0.06

26 6.35 5.95 6.31 -0.40 0.06

27 6.47 6.10 5.72 -0.37 0.05

28 6.48 6.42 0.96 -0.06 0.01

29 6.59 6.00 8.95 -0.59 0.09

30 6.66 6.50 2.40 -0.16 0.02

31 6.92 7.45 7.73 0.53 0.08

32 7.00 7.37 5.23 0.37 0.05

33 7.02 7.56 7.68 0.54 0.08

34 7.06 7.00 0.85 -0.06 0.01

35 7.11 7.54 5.98 0.43 0.06

36 7.20 6.20 13.89 -1.00 0.14

37 7.37 6.73 8.69 -0.64 0.09

38 7.58 7.39 2.50 -0.19 0.03

39 7.85 7.00 10.83 -0.85 0.12

40 7.89 7.86 0.32 -0.03 0.00

41 7.92 8.66 9.39 0.74 0.11

42 8.09 7.83 3.16 -0.26 0.04

43 8.13 7.73 4.95 -0.40 0.06

44 8.14 8.28 1.70 0.14 0.02

45 8.23 8.27 0.47 0.04 0.01

46 8.30 7.74 6.73 -0.56 0.08

Table 2 continued

No. log (1/

EC50)EXP

log (1/

EC50)CAl

Relative

error

Residuals RMSE

47 8.51 8.49 0.27 -0.02 0.00

48 8.57 8.56 0.08 -0.01 0.00

Prediction set

49 4.35 4.15 4.58 0.20 0.05

50 4.89 4.22 13.72 0.67 0.17

51 5.00 5.60 12.00 -0.60 0.15

52 5.15 5.21 1.17 -0.06 0.02

53 5.48 4.94 9.94 0.54 0.14

54 5.66 5.60 1.05 0.06 0.01

55 5.89 6.30 6.96 -0.41 0.10

56 6.45 6.34 1.65 0.11 0.03

57 6.96 7.01 0.72 -0.05 0.01

58 7.02 7.90 12.54 -0.88 0.22

59 7.72 7.90 2.33 -0.18 0.05

60 7.89 7.70 2.41 0.19 0.05

61 7.99 8.51 6.51 -0.52 0.13

62 8.11 7.73 4.75 0.39 0.10

63 8.24 7.78 5.56 0.46 0.11

64 8.55 8.70 1.75 -0.15 0.04

Test set

65 3.85 3.95 2.62 -0.10 0.03

66 4.47 4.47 0.11 0.00 0.00

67 5.00 5.60 12.00 -0.60 0.15

68 5.14 5.24 1.95 -0.10 0.03

69 5.24 4.85 7.42 0.39 0.10

70 5.44 4.70 13.61 0.74 0.19

71 5.59 6.84 22.36 -1.25 0.32

72 5.69 5.10 10.37 0.59 0.15

73 5.96 6.29 5.52 -0.33 0.08

74 6.66 6.01 9.79 0.65 0.17

75 7.04 6.62 6.02 0.42 0.11

76 7.23 8.01 10.79 -0.78 0.20

77 7.89 6.85 13.14 1.04 0.27

78 8.14 8.62 5.86 -0.48 0.12

79 8.30 8.28 0.30 0.03 0.01
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process was repeated for each compound in the data set.

The predictive power of the models developed on the

selected training set is estimated on the predicted values of

test set chemicals. The data set should be divided into three

new sub-data sets, one for calibration and prediction

(training), and the other one for testing. The calibration set

was used for model generation. The prediction set was

applied to deal with overfitting of the network, whereas test

set, the molecules of which have no role in model building

was used for the evaluation of the predictive ability of the

models for external set.

On the other hand by means of training set, the best

model is found and then, its prediction power is checked by

test set, as an external data set. In this study, from all 79

components, 48 components are in calibration set, 16

components are in prediction set, and 15 components are in

test set).

The result clearly displays a significant improvement of

the QSAR model consequent to nonlinear statistical treat-

ment and a substantial independence of model prediction

from the structure of the test molecule. In the above analysis,

the descriptive power of a given model has been measured by

its ability to predict partition of unknown drugs.

For the constructed models, some general statistical

parameters were selected to evaluate the predictive ability

of the models for log (1/EC50) values. In this case, the

predicted log (1/EC50) of each sample in prediction step was

compared with the experimental acidity constant. The first

statistical parameter was relative error (RE) that shows the

predictive ability of each component, and is calculated as:

RE ð%Þ ¼ 100� 1

n

Xn

i¼1

ðy^i � yiÞ
yi

" #
ð1Þ

The predictive ability was evaluated by the square of the

correlation coefficient (R2) which is based on the prediction

error sum of squares and was calculated by the following

equation:

R2 ¼

Pn
i¼1

ðy^i � �yÞ

Pn
i¼1

ðyi � �yÞ
ð2Þ

where yi is the experimental log (1/EC50) in the sample i,

y^i represented the predicted log (1/EC50) in the sample i, �y
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Fig. 6 Plot of predicted log (1/EC50) obtained by L–M ANN against

the experimental values a calibration and prediction set of molecules

and b for test set
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Fig. 7 Plot of residuals obtained by L–M ANN against the exper-

imental log (1/EC50) values a training set of molecules and b for test

set
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is the mean of experimental log (1/EC50) in the prediction

set and n is the total number of samples used in the test set.

The main aim of the present study was to assess the

performances of GA-KPLS and L–M ANN for modeling

the anti-HIV biological activity of drugs. The procedures of

modeling including descriptor generation, splitting of the

data, variable selection, and validation were the same as

those performed for modeling of the log (1/EC50) of HEPT

ligands and RT drugs.

Conclusion

In the current research, two nonlinear methods (GA-KPLS

and L–M ANN) were used to construct a quantitative

relation between the anti-HIV biological activity of HEPT

ligands and RT drugs and their calculated descriptors. The

results obtained by L–M ANN were compared with the

results obtained by GA-KPLS model. The results demon-

strated that L–M ANN was more powerful in the log

(1/EC50) prediction of the drug compounds than GA-

KPLS. A suitable model with high statistical quality and

low prediction errors was eventually derived. This model

could accurately predict the anti-HIV biological activity of

these components that did not exist in the modeling pro-

cedure. It was easy to notice that there was a good prospect

for the L–M ANN application in the QSAR modeling.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original
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