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METHODOLOGY

Sample size and power calculations 
for detecting changes in malaria transmission 
using antibody seroconversion rate
Nuno Sepúlveda1,2*, Carlos Daniel Paulino2,3 and Chris Drakeley1

Abstract 

Background:  Several studies have highlighted the use of serological data in detecting a reduction in malaria trans-
mission intensity. These studies have typically used serology as an adjunct measure and no formal examination of 
sample size calculations for this approach has been conducted.

Methods:  A sample size calculator is proposed for cross-sectional surveys using data simulation from a reverse cata-
lytic model assuming a reduction in seroconversion rate (SCR) at a given change point before sampling. This calcula-
tor is based on logistic approximations for the underlying power curves to detect a reduction in SCR in relation to the 
hypothesis of a stable SCR for the same data. Sample sizes are illustrated for a hypothetical cross-sectional survey from 
an African population assuming a known or unknown change point.

Results:  Overall, data simulation demonstrates that power is strongly affected by assuming a known or unknown 
change point. Small sample sizes are sufficient to detect strong reductions in SCR, but invariantly lead to poor preci-
sion of estimates for current SCR. In this situation, sample size is better determined by controlling the precision of SCR 
estimates. Conversely larger sample sizes are required for detecting more subtle reductions in malaria transmission 
but those invariantly increase precision whilst reducing putative estimation bias.

Conclusions:  The proposed sample size calculator, although based on data simulation, shows promise of being 
easily applicable to a range of populations and survey types. Since the change point is a major source of uncertainty, 
obtaining or assuming prior information about this parameter might reduce both the sample size and the chance of 
generating biased SCR estimates.
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Background
The global decline of malaria burden has brought new 
challenges to disease control and elimination [1]. These 
challenges encompass problems related to parasite rate 
(PR) estimation in detecting low parasitaemia or sub-
microscopic infections [2–4] and potentially prohibitive 
large sample sizes for PR to be epidemiologically inform-
ative. In low transmission settings, alternative malari-
ometrics, such as anti-malarial antibody seroprevalence 

(SP) and seroconversion rate (SCR) have been proposed 
to overcome some shortcomings of other measures 
[5]. In practice, SP is statistically defined as the propor-
tion of antibody-positive individuals and reflects anti-
body responses induced by current and possibly historic 
infections. Two recent studies highlighted the potential 
of using SP to discriminate sites with different Plasmo-
dium falciparum endemicity levels that otherwise would 
appear to be similar in terms of parasite rate [6, 7]. SCR is 
the frequency per unit of time (e.g., year) by which seron-
egative individuals become seropositive. This parameter, 
related to the underlying force-of-infection, is typically 
assessed via cross-sectional data where SP as function 
of age of the individual is described by a given stochastic 
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model. The reverse catalytic model is the most popular 
choice for data analysis and based on the simple notion 
that individuals randomly transit between seronegativ-
ity and seropositivity with specific transition rates over 
time [8]. The superinfection model extends the latter to 
the scenario where there are different states (or levels) 
of seropositivity resulting from recurrent malaria expo-
sure [9]. However, this more complicated model does not 
have a dramatic impact on SCR estimation [9, 10] and, 
therefore, most likely to be excluded from routine data 
analysis.

The first step of a sero-epidemiological analysis invari-
antly assumes a constant SCR that applies to every indi-
vidual in the population at all times. This assumption 
implies a simple and increasing SP curve taken as func-
tion of the age of the sampled individuals. However, there 
are several studies reporting a qualitative change of the 
SP at a given age value in relation to what is expected 
from a constant SCR assumption [7, 11, 12]. This change 
might result from more complex sero-epidemiological 
scenarios where SCR is assumed to vary over time or 
among distinct age groups, as reviewed elsewhere [13, 
14]. Three main explanations were advanced for such 
qualitative change in SP, each one implying a differ-
ent mathematical model to the data. Firstly, age-related 
behaviour might affect the malaria risk of certain age 
groups. An example of such risk behaviour was reported 
in Indonesia where SCR in adults was increased in rela-
tion to the SCR for younger individuals, most likely 
because of work-related activities in the forest and expo-
sure to forest vectors [12, 15]. Secondly, a change in the 
SP curve could be related to putative founder effects, i.e., 
an influx of non-exposed migrants to an endemic region. 
Migrants and individuals born locally would have differ-
ent infection history, thus, presenting different SP pro-
files. This situation occurred in Brazil where there was a 
wave of migration in the 1980’s from malaria-free states 
to mining sites in the heart of the Amazonia forest [16]. 
A similar founder effect was seen in Chagas disease in 
a Peruvian community [17]. Thirdly, a change in the SP 
curve might also be attributed to a reduction in malaria 
transmission after the implementation or intensification 
of a given malaria control programme [18]. It is expected 
that this scenario will become increasingly common and 
it is therefore important that surveys that collect serolog-
ical information do so with sufficient statistical power to 
detect impact on malaria transmission and be informa-
tive for the control and research communities.

This paper focuses on sample size calculations for 
detecting an abrupt reduction in disease transmission 
occurred somewhere in the past. It is worth noting that 
this statistical exercise is affected by the transmission 
intensities acting before and after the reduction, and the 

time between the change point and sample collection. 
Until now only a few studies have reported a change in 
transmission using SP data and those referred to dra-
matic reductions in SCR after intervention (Table  1). 
Similar observation can be taken for sero-epidemiologi-
cal studies of Chagas disease and trachoma [17, 19, 20]. 
One possible explanation is that a slowly decreasing trend 
in malaria transmission might not result in a clear quali-
tative change in the age-adjusted SP, as demonstrated in 
Western Kenya [21]. Alternatively it may be that studies 
were underpowered to detect small reductions in disease 
transmission.

Previously two sample size calculators were proposed 
for estimating SCR under stable disease transmission 
[22]. The present paper extends this work to the setting of 
detecting a reduction in SCR at a given time point before 
sampling and attributed to a field intervention. This new 
calculator is based on logistic approximations for the 
power using simulated data sets. As in a previous study 
[22], bias and precision of ensuing parameter estimates 
were also assessed via data simulation.

Methods
Reverse catalytic models for seropositivity data
Reverse catalytic models have recently been used to ana-
lyse seropositivity data [5, 13, 14]. Using a Markov chain 
formalism, these models describe the dynamics of the 
serological state of an individual under the assumption 
that every one is born seronegative and becomes sero-
positive upon malaria infection. Reversion to a seronega-
tive state might occur in absence of sufficiently frequent 
malaria exposure. The basic notion is that the frequency 
by which individuals become seropositive (i.e., SCR) 
reflects the underlying force-of-infection while the rate 
by which seropositive individuals revert to a seronegative 
state (i.e., seroreversion rate (SRR)) might result from a 
variety of host factors (e.g., genetics or age).

The simplest epidemiological setting is to consider a 
constant disease transmission over time. In this situa-
tion, the resulting reverse catalytic model is described 
by the following probability of an individual aged t being 
seropositive.

where � and ρ are SCR and SRR, respectively. Notwith-
standing its simplicity, this model would appear to be 
appropriate for the P. falciparum malaria history of the 
Somalia [6], Brazilian Amazonian region [7], northeast 
Tanzania [8], or even when SCR randomly fluctuates 
around a given mean value over time [5].

A more interesting setting is to assume the occurrence 
of a sudden reduction in malaria transmission due to an 
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intervention. In this scenario, SRR is commonly assumed 
to be constant over time, thus, precluding any significant 
changes in factors affecting seroreversion. The probability 
of an individual aged t being seropositive is now given by

where �1 and �2 are the SCRs before and after the reduc-
tion in disease transmission, respectively (�2 < �1) and τ 
is the time point when that reduction actually occurred 
(in years before sampling). In simple terms, the above 
equation is divided into two branches according to the 
time when the individuals were born in relation to the 
change time t. For individuals born before the change 
point (t > τ), the seropositivity probability results from the 
sum of two probabilities: (1) one referring to the event of 
an individual being seropositive at the change point and 
remained so after that; and, (2) another one describing the 
chance of an individual being seronegative at the change 
point and seroconverting after that. The individuals 
born after the intervention (t < τ) have only experienced 
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current malaria transmission intensity and, thus, the cor-
responding seropositivity probability is described by the 
simple reverse catalytic model, as shown in Eq. (1). For a 
detailed mathematical derivation of the above equation, 
see Additional file 1.

Model parameterization, estimation and comparison
Model parameterization was the same as previously 
described [22]. Briefly, the relationships between PR, ento-
mological inoculation rate (EIR), SP, and SCR were used 
to derive realistic values for SCR and SRR. These relation-
ships were derived from two independent data sets from 
northeast Tanzania where altitude is highly correlated to 
these different malaria risk measures. EIRs of 10, 1, 0.1, 
and 0.01 were used as the core values for studying reduc-
tions in disease transmission. The corresponding values 
for SCR associated with P. falciparum MSP1 antigen are 
0.0969, 0.0324, 0.0108, 0.0036, respectively. Although some 
variations on SRR may be found across different studies, 
this parameter was fixed at 0.017 as the average value of a 
large study from 24 sites in Tanzania with differing malaria 
endemicity [5] and genetic background [23, 24].

With respect to parameter estimation, the sampling 
distribution was assumed to be a binomial-product 

Table 1  Reported seroconversion rate (SCR) estimates before and after a reduction in malaria transmission intensity at a 
given estimated change point (in years before sampling)

a  Expected number of events per year
b  Years before sampling

Country, site (antigen) Sample size SCR beforea SCR afterb Reduction (%) Change pointb

Bioko Island [10]

 Malabo (PfAMA1) 2181 0.17 0.05 70.6 4

 North East (PfAMA1) 1171 0.16 0.03 81.3 6

 South East (PfAMA1) 656 1.90 0.09 95.3 7

 South West (PfAMA1) 568 0.72 0.07 90.3 12

Brazil [7]

 Anajás (PfAMA1/PfMSP1) 113 0.014 0.008 42.9 29

 Jacareacanga (PfAMA1/PfMSP1) 172 0.514 0.017 96.7 29

 Goianésia (PfAMA1/PfMSP1) 262 0.047 0.018 61.7 29

 Itaituba (PfAMA1/PfMSP1) 183 0.014 0.004 71.4 29

 Trairão (PfAMA1/PfMSP1) 204 0.024 0.011 54.2 29

 Belém do Pará (PfAMA1/PfMSP1) 143 0.002 <0.001 >50 29

Tanzania [33]

 Same (PfMSP1) 1888 0.025 0.005 80.0 8

 Same (PfAMA1) 1888 0.066 0.010 84.9 15

 Vanuatu [15]

 Northern Tanna (PfMSP1) 361 0.060 0.012 80.0 32

 Northern Tanna (PfSE) 362 0.051 0.006 88.2 32

 Northern Tanna Highlands (PfSE) 514 0.045 0.005 88.9 27

 Southern Tanna (PfSE) 364 0.012 0.001 91.7 18

 Aneityum (PfSE) 517 0.015 0.001 93.3 23
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distribution, one binomial distribution per age value. 
The simple reverse catalytic model was estimated via 
standard maximum likelihood method [25], whereas the 
parameter estimates of the model assuming a change in 
transmission were determined using a profile likelihood 
method. In general, the latter estimation method aims 
to reduce the dimensionality of the maximization prob-
lem associated with the maximum likelihood method. 
The basic idea is to maximize the log-likelihood function 
considering one of the parameters fixed at a given value. 
Maximization is successively carried out using different 
values of interest for that fixed parameter. The overall 
estimates are the ones associated with the maximum of 
all the maximized log-likelihood functions obtained from 
considering those fixed values. This simple idea has been 
applied to statistical problems where one aims to estimate 
a model that includes a parameter defined in the integer 
space, such as the number of different T cell receptors 
present in the organism [26]. In this line of thought, the 
change time point was then considered to be an integer 
value (i.e., years before sampling) leading to the follow-
ing profile likelihood algorithm: (1) fix the change point 
τ at 1; (2) determine the respective maximum likelihood 
estimates for the remaining parameters; (3) calculate the 
corresponding log-likelihood function; (4) increase one 
unit (e.g., one year before sampling) to the change point 
and repeat steps (2-3); (v) keep increasing the change 
point until reaching the maximum expected value for 
that parameter. The final maximum likelihood estimates 
are those associated with the change point τ with the 
maximum value of the log-likelihood function. A detailed 
example on using this algorithm in real data can be found 
in Cook et al. [18].

After performing parameter estimation, the two 
reverse catalytic models were compared to each other 
using the Akaike’s information criteria (AIC) [27]. This 
pragmatic approach seems more appropriate than the 
popular Wilks’ likelihood ratio test because the usual 
Chi-Square approximation associated with the latter may 
be affected by the sample size to be determined. Theo-
retically, AIC weights the likelihood of a model given the 
data with its intrinsic dimension (i.e., the total number of 
parameters). One should then select the model that leads 
to the smallest AIC estimate. In this scenario, power to 
detect a reduction in SCR was estimated by the num-
ber of (simulated) data sets in which the corresponding 
model was considered better than the one assuming a 
stable SCR.

Simulation study and sample size calculations
Before conducting the sample size calculation per se, data 
sets were first simulated from the simple reverse catalytic 
model assuming stable transmission intensity and tested 

against the reverse catalytic model but assuming a change 
in transmission. To simulate each data set, the following 
algorithm was used: randomly select the age of each indi-
vidual in the sample, and then generate the seroposivity 
state of each individual at the time of sampling, using a 
Bernoulli trial with success probability given by the sero-
prevalence expected under a given model [22]. Assuming 
SRR =  0.017, four SCR situations were studied, 0.0969, 
0.0324, 0.0108 and 0.0036, corresponding to 10, 1, 0.1 
and 0.01 EIR units, respectively, as described elsewhere 
[22]. The total number of simulated data sets per SCR 
value was 1000 that seemed to provide a good precision 
of power estimates and feasible total time to perform the 
simulation study. The results demonstrated that sample 
sizes of at least 100 individuals ensure a null probability 
of detecting a spurious change point irrespective of the 
transmission intensity (Table  2). Therefore, given the 
typical sample sizes used in sero-epidemiological studies 
(see examples in Table  1), it is very unlikely to report a 
spurious change point.

A simulation study under the assumption of a change 
in transmission was then performed using four differ-
ent reductions in SCR: 0.0969 to 0.0324 and 0.0108 
(10–1 and 0.1 in EIR units, respectively), and 0.0324 
to 0.0108 and 0.0036 (1 to 0.1 and 0.01 in EIR units, 
respectively). These four reductions were then com-
bined with three possible change points: three, five 
and ten years before sampling. In total, there are 12 
parameter combinations under study that, in theory, 
comprise the most interesting situations for using a 
serological approach in malaria epidemiology. The 

Table 2  Percentage of  simulated data sets detecting a 
change point where  there is none using AIC for  the com-
parison of  the simple reverse catalytic model assuming 
stable transmission against  the same model assuming a 
change in transmission

a  Expected number of events per year

SCR (EIR)a Sample size AIC

0.0969 (10) 100 0.0

250 0.0

500 0.0

0.0324 (1) 100 0.0

250 0.0

500 0.0

0.0108 (0.1) 100 0.0

250 0.0

500 0.0

0.0036 (0.01) 100 0.0

250 0.0

500 0.0



Page 5 of 14Sepúlveda et al. Malar J  (2015) 14:529 

corresponding age-adjusted SP curves are shown 
in Fig.  1a–d. At this point the visualization of these 
curves is key to obtain some qualitative expectation 
for the ensuing sample sizes. On the one hand, the 
reduction of one order of magnitude in EIR units does 
not show dramatic differences in the corresponding SP 
curves in relation to a situation of stable SCR (Fig. 1a, 

c), thus, implying larger sample sizes for the corre-
sponding detection. On the other hand, the reduction 
of two orders of magnitude in EIR units shows a clear 
biphasic behaviour in the SP curves (Fig.  1b, d), thus 
relatively small sample sizes may be required, espe-
cially when those reductions occur ten years before 
sampling.
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The total number of simulated data sets per parameter 
combination was 1000 assuming an appropriate balance 
between the precision of power estimates and the total 
time to perform the simulation study.

Central to the assumptions of the simulation study is 
the age distribution of a given population. For that a typi-
cal age distribution from African population was used 
(Fig.  1e), as described elsewhere [22]. To gain intuition 
on the relationship between the change point and the 
expected sample size, it was convenient to calculate the 
percentages of the following age groups: one to three, 
four to five, six to ten, >10 years old (Fig. 1f ). These per-
centages imply that the frequency of individuals born 
after the reduction in transmission is 9.9, 16.6 and 31.9 % 
for the change points of three, five and ten years before 
sampling, respectively. This suggests that reductions 
in SCR occurring further in the past should be easier 
to detect than changes which occur closer to the time 
of sampling. Furthermore, since the frequency of the 
individuals born after the reduction increases with the 
change point, the precision of current SCR should also 
increase.

Before conducting any formal sample size calculation, 
the simulation results were first assessed for any potential 
bias of SCR and change point estimators. Although no 
sampling bias was introduced in the simulation of each 
data set, statistical theory predicts that the maximum 
likelihood method would only lead to unbiased estimates 
in settings of infinitely large samples [28]. The bias of a 
given estimator was estimated by the difference between 
the average of the estimates for a given parameter and the 
true parameter value that generated the data.

Approximate sample sizes were calculated by estimating 
power over a predefined set of sample sizes (e.g., 250, 500, 
1000, 2500). The power was calculated under the assump-
tion of a known and unknown change point. In some 
cases, simulation was extended to additional sample sizes 
(e.g., 100 or 5000) in order to increase the resolution of the 
underlying power curve. To approximate the power func-
tions, separate logistic regression models were fit to the 
power estimates obtained from each one of the 12 param-
eter combinations; the package easynls for the R software 
was used for such purpose. In these models, the sample 
size was considered as a covariate. Better model fits were 
obtained using the sample size in log rather than in lin-
ear scale. The use of this transformed scale also ensured a 
null power for a sample size of 0, as predicted by statisti-
cal theory. The minimum sample size that would warrant 
a power β0 was determined by the smallest integer greater 
than the value provided by the following formula

(3)ni,β0 =
log

(

(1− β0)
/

β0
)

− âi,β0

b̂i,β0

,

where ni,β0, âi,β0 and b̂i,β0 are the sample size, the intercept 
and the slope of the logistic regression estimated from 
simulated power associated with the i-th parameter com-
bination (i  =  1,…, 12), respectively. Sample sizes were 
calculated for β0 = 0.80, 0.90 and 0.95.

The final step of this study was to learn the estimation 
implications of the calculated sample size. In particu-
lar, it was of key interest to assess the bias and relative 
precision associated with the estimates for current SCR. 
Bias was calculated as described above while estimation 
of relative precision was conducted as for the situation 
of stable SCR [22]. In brief, relative precision associ-
ated with a given sample size was defined as the differ-
ence between 2.5 and 97.5 % quantiles of the distribution 
of current-SCR estimates divided by the true parameter 
value that generated the corresponding data. This differ-
ence was calculated for the predefined set of sample sizes 
and then predicted for a specific one using the following 
linear regression model

where γ̂0,i, γ̂1,i, γ̂2,i and γ̂3,i are coefficients estimated from 
the corresponding simulated data associated with i-th 
parameter combination. Further details on the use of this 
model for estimating precision can be found in a previous 
study [22].

All simulations and estimations were performed in the 
R software (version 3.2.1) using scripts written for the 
purpose. In a near future these scripts together with oth-
ers for the analysis of stable transmission models will be 
assembled in a convenient R package. For now they are 
available from the first author upon request and free to 
be adapted to different sampling scenarios. It is worth 
noting that, to speed up the simulation study, parallel 
computing was carried out manually by running the anal-
ysis of each parameter in a different node of a computer 
cluster.

Results
Estimation bias when the true change point is assumed 
to be known and unknown
The simulated results were firstly studied in terms of 
estimation bias in relation to the true parameter values 
that generated the data (Table  3). When the simulated 
data sets were analysed assuming a known change point, 
the resulting SCR estimates showed slight bias for sam-
ple sizes of 250 and 500 individuals. Unsurprisingly, the 
most extreme case was observed for a change point of 
ten years before sampling and a reduction in SCR from 
0.0324 to 0.0108 (from 1 to 0.1 in EIR units, respectively). 
For sample sizes of 1000 and 2500 individuals, estimation 
bias was highly reduced and tended to be close to the 

(4)prni

(

�̂2

)

= γ̂0,i +
γ̂1,i

ni
+

γ̂2i

n2i
+

γ̂3i
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nominal value of 0 %. Since the change point was consid-
ered known and there was no selection bias introduced 
by a community-based sampling scheme, the estima-
tion bias must be derived from the maximum likelihood 
method itself. Therefore, SCR estimation based on this 
method might require a bias-correction adjustment spe-
cifically for small sample sizes.

When the simulated samples were analysed under the 
assumption of a unknown change point, the SCR esti-
mates were highly biased for sample sizes of 250, 500 and 
1000 individuals (Table  4). In particular, the estimates 
of past SCR tended to overestimate the true parameter 
value whereas the opposite happened for current SCR 
where a negative bias was found for the corresponding 
estimates. Again, the most extreme estimation bias was 
observed for a change in transmission occurring ten 
years before sampling from 0.0324 to 0.0108 (1 to 0.1 in 
EIR units, respectively). Likewise for the case of a known 
change point, some estimation bias might result from the 
application of the maximum likelihood method itself. 
However, the highest contribution for estimation bias in 
this situation would appear to derive from highly skewed 
distributions for the change point estimates (Fig.  2 and 
Additional file  2). This skewness implied a tendency of 
overestimating the true change point and, because of 
that, estimation of the historic SCR might only use lim-
ited sample information of individuals likely to be in the 

plateau of age-adjusted SP curves (Fig. 1a–d). In practice, 
when overestimation of the change point occurs, the sim-
ple model assuming a constant SCR was mostly preferred 
to the data. Finally, it is worth noting the wide confidence 
intervals for the true change point even for sample sizes 
of 2500 individuals (Fig. 2, Additional file 2). This result 
suggests that the antibody data taken as a binary out-
come might not have sufficient information to estimate 
the true change point with a high precision, thus, dem-
onstrating the necessity of finding alternative approaches 
for that specific purpose. As an exceptional case, the situ-
ation related to a reduction from 0.0969 to 0.0108 (from 
10 to 0.1 in EIR units) using a sample size of 2500 indi-
viduals implied at least 60 % chance of generating a data 
set that would lead to the correct change point estimate 
and relatively small confidence interval.

Sample size determination
Sample size calculations were then performed using 
logistic curves fit to the simulated power (Fig.  3, Addi-
tional file  3). The sample size decreased with the true 
change point for a given value of power and reduction 
in disease transmission (Table  5). This implied that the 
detection of a short-term reduction requires larger sam-
ple sizes compared to settings where the same reduction 
is occurring further in the past. The exception would 
appear to be the analysis assuming a known change 

Table 3  Bias of SCR estimates before and after a change in transmission assuming the true change point known

a  Expected number of events per year
b  Years before sampling

True time point for change in transmission

3 yearsb 5 yearsb 10 yearsb

SCR beforea SCR aftera Sample size SCR before SCR after SCR before SCR after SCR before SCR after

0.0969 0.0324 250 7.6 −7.7 9.3 −3.6 15.9 −1.9

500 2.5 −1.4 4.4 −0.4 8.1 0.1

1000 1.4 −5.4 1.6 0.2 4.3 0.0

2,500 0.4 1.0 1.4 0.0 1.1 −0.5

0.0969 0.0108 250 2.3 −6.7 5.9 1.1 11.1 −1.2

500 1.0 0.8 4.4 −2.7 5.6 0.1

1000 0.6 1.8 0.8 0.5 2.5 0.2

2500 0.2 −0.3 1.0 −1.4 1.5 −0.4

0.0324 0.0108 250 6.9 −6.6 12.3 −5.6 36.5 −2.9

500 5.3 −4.8 4.8 −3.2 13.2 −0.3

1000 1.5 0.0 3.0 −1.7 5.0 −0.4

2500 0.1 0.4 1.6 0.5 3.0 −0.1

0.0324 0.0108 250 4.1 11.0 8.5 −2.8 20.0 −1.5

500 2.9 12.7 4.4 −6.6 7.1 0.5

1000 1.4 −1.1 1.5 2.2 3.2 1.2

2500 0.9 −1.7 0.8 −0.7 1.0 −0.3
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point and describing a reduction in SCR from 0.0969 to 
0.0324 (Fig. 3a). In this case, the simulation results sug-
gested that a reduction in SCR occurring five years before 
sampling was easier to detect than the same occurring 
ten years prior to sampling. However, the correspond-
ing power functions were almost indistinguishable from 
each other and thus, these variations in the results might 
solely be attributed to the randomness associated with a 
simulation study. Notwithstanding these variations, it is 
clear that each parameter combination required a differ-
ent set of sample sizes. On the one extreme, the lowest 
sample sizes were obtained for a reduction in SCR from 
0.0969 to 0.0108 (from 10 to 0.1 in EIR units, respectively; 
Fig. 3b). This was unsurprising and agreed with the visual 
inspection of the SP curves shown in Fig. 1. In this case, 
a sample size of 485 individuals considering the change 
point known was enough to generate a power of at least 
95 % to detect a reduction occurring between three and 
ten years before sampling. On the other extreme, the 
reduction in SCR from 0.0324 to 0.0108 (from 10 to 1 in 
EIR units, respectively; Fig. 3c) required the largest set of 
sample size irrespective of considering or not the change 
point known. The most extreme case was the sample 
size of 5675 individuals to detect a reduction occurring 
ten years before sampling with 95  % power under the 
assumption of a unknown change point.

Estimation bias and precision associated with a 
given sample size calculation
Statistically speaking, the final decision of using of a given 
sample size must be taken not only on the basis of the 
underlying power, but also on the corresponding impact 
over parameter estimation. The above results suggested 
a negligible estimation bias for reasonably large sample 
sizes under the assumption of a known change point. In 
contrast, unbiased estimates might only be obtained for 
large sample sizes when the change point is considered 
unknown. Ideally, one wishes to have enough power to 
detect a reduction in SCR and high estimation precision.

For the analysis assuming a known change point, all 
determined sample sizes led to estimates for current SCR 
with up to 5 % bias (Table 6). The only exception was the 
setting of a reduction from 0.0969 to 0.0324 occurring 
three years before sampling where a -13 % bias was found 
for a power of 80 %. In this case, estimation bias can be 
avoided by increasing the power to 90 or 95 %. Although 
estimation bias was negligible for all determined sample 
sizes, the corresponding relative precision was in most 
cases greater than 1.00 in relation to the true value for 
current SCR. The only two settings where relative preci-
sion was less than 1.00 were related to reductions in EIR 
units of one order of magnitude for a change point of ten 
years before sampling. Therefore, when the change point 

Table 4  Bias of  SCR estimates before  and after  a change in  transmission under  the assumption of  a unknown change 
point

a  Expected number of events per year
b  Years before sampling

True time point for change in transmission

3 yearsb 5 yearsb 10 yearsb

SCR beforea SCR aftera Sample size SCR before SCR after SCR before SCR after SCR before SCR after

0.0969 0.0324 250 368.2 −11.4 549 −23.2 1835.9 −7.1

500 34.2 −22.1 47.4 −21.9 998.1 −2.4

1000 11.2 −8.2 9.1 −10.7 143.1 −2.4

2500 2.5 −5.1 4.4 −3.0 8.4 −1.6

0.0969 0.0108 250 215.5 −9.3 113.8 −17.6 671.3 −10.0

500 18.0 −8.2 23.8 −17.0 96.6 −4.1

1000 5.9 1.3 5.2 −3.4 27.3 −2.0

2500 2.0 4.7 2.1 −2.6 3.2 −1.4

0.0324 0.0108 250 325.3 −14.0 191.9 −26.7 5384.0 −11.2

500 66.0 −21.5 25.4 −32.8 1227.1 −7.8

1000 13.2 −24.6 13.2 −25.2 126.7 −5.0

2500 5.2 −16.6 6.4 −9.5 12.9 −2.8

0.0324 0.0108 250 534.7 20.9 105.9 −29.9 2254.6 −10.2

500 59.8 0.6 31.0 −25.2 237.8 −9.4

1000 12.6 −8.2 10.6 −11.3 20.8 −7.4

2500 4.7 −0.4 4.5 −2.4 4.7 −3.2
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is assumed to be known, sample size calculation based 
only on power, although avoiding estimation bias, would 
result in studies with limited estimation precision for 
current SCR.

For the analysis assuming a unknown change point, 
the sample size that would balance power, bias, and pre-
cision was not easily determined (Table  6). Most of the 
determined sample sizes led to underestimation with bias 
greater than 10 % in absolute terms, specially, when it was 
easy to detect a reduction in transmission (i.e., reduc-
tion in SCR of two orders of magnitude measured in EIR 
units). Having biased estimates would make any subse-
quent precision-based analysis elusive. Notwithstand-
ing this problem, the corresponding results suggested 

poor estimation precision (>1.00) for the calculated sam-
ple sizes. Therefore, the uncertainty associated with a 
unknown change point brings problems in terms of bal-
ancing power with estimation bias.

Discussion
This paper describes a pragmatic approach to calculate 
the minimum sample size for detecting a reduction in 
SCR with a given power. The approach was applied to dif-
ferent epidemiological settings but with a special focus 
on lower endemicity settings. The analysis was based 
on antibody responses to P. falciparum MSP1 antigens. 
A discussion about using antibody data from alternative 
antigens can be found elsewhere [22].
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Fig. 2  Distributions of the change point estimates according to the 12 parameter combinations used in the simulation study. For each parameter 
combination, the plot represents the variations in the distribution of change point estimates obtaining from 1000 simulated data sets with a given 
sample size using a profile likelihood method for the respective estimation. The corresponding 95 % confidence intervals for the true change point 
are shown on top of each plot
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Sample size calculations were performed assuming 
demographics for African populations and using com-
munity-based surveys. The demographic distribution 
is different elsewhere and has been shown to impact 
SCR under stable SCR [22]. This study concluded that, 
under an unknown SRR, non-African studies using 
community sampling might require larger sample sizes 
than their African counterparts in order to obtain the 
same estimation precision. With respect to the present 
case of a reduction in SCR, one expects a higher preci-
sion of past-SCR estimates in non-African studies for a 
given sample size, owing to an increased frequency of 
older individuals that experienced both past and current 
malaria transmission intensity. In contrast, precision of 
current SCR would be increased in African studies due to 
a higher percentage of young individuals who only expe-
rienced current disease transmission intensity. Although 

expected, these estimation implications need to be fur-
ther investigated. Alternatively, some statistical improve-
ment might be achieved by sampling specific age groups. 
Malaria transmission due to P. falciparum is typically 
much lower outside Africa [29], indicating larger sample 
sizes for detecting putative reductions in SCR and the 
need for alternative sampling approaches. This is par-
ticularly important when transmission risk is behavioural 
and associated with older ages [12, 15].

Besides describing a framework for sample size calcula-
tion, this paper has also important implications in terms 
of estimation bias and precision, especially when the true 
change point is assumed to be unknown. In commu-
nity surveys, the expected 95 % confidence intervals for 
the true change point tend to be wide suggesting a high 
uncertainty in estimating such parameter. The respec-
tive point estimates tend to overestimate the true change 
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Fig. 3  Statistical power to detect a change in SCR as function of sample size assuming the true change point is known. Changes in SCR are given in 
EIR units for better readability. Solid lines represent the best logistic function that could be fit to the respective simulated results (filled circles)
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point being located further in the past than in reality. In 
agreement with this result is the serological study from 
the Bioko Island in Equatorial Guinea [11] where a cross-
sectional survey was conducted four years after the ini-
tiation of a comprehensive malaria control programme 
in the island but the estimated change points suggested 
a reduction in transmission further in the past (Table 1). 
Similarly, a serological study from Vanuatu estimated 
a change point occurring 30  years before sampling that 
appeared to overestimate in 13  years a putative change 
point due to a known insecticide-treated net distribution 
across the islands (Table  1) [18]. Biologically speaking, 
the most likely explanation for obtaining overestimates of 
the change point is the putative difference in antibody-
decay rates between younger children and older indi-
viduals. More precisely, the former would have a higher 
loss rates than the latter, who have more established 
antibody responses [30, 31]. In practice, it is unlikely to 
have enough information to distinguish between statis-
tical and biological bias, thus the necessity of applying 
different bias-reduction strategies to data collection and 
analysis.

To minimize the estimation bias and decrease uncer-
tainty of the estimates, five possible solutions can be 
envisioned. The first one consists of fixing the change 
point at an expected value. In that case, the SCR esti-
mates were found to be approximately unbiased for 
relatively small sample sizes (e.g., 250 or 500 individu-
als depending on the size of the underlying reduction in 
SCR). Assuming a given change point would appear to be 
a reasonable data analysis strategy for post-intervention 

studies where the start of the intervention is known, 
such as the above-mentioned study from Bioko where 
an intensive malaria control programme was launched in 
2004 [11]. However, fixing a change point might not be so 
easily applicable to exploratory (or preliminary) studies. 
As an example, a recent study from the Brazilian Ama-
zonia region reported a strong reduction in SCR for P. 
falciparum antigens occurring 30  years before sampling 
[7]. In this specific example, different malaria control 
programmes have been operating in the area since the 
1980’s [32] but are likely to have been scaled up over time 
making a known change point difficult to assess. Health 
system records of changes in malaria case number could 
additionally provide indicators of potential change points 
for a given study. The second solution for reducing bias 
is to use alternative estimators, such as the jackknife [33] 
or the bootstrap estimator [34], which are particularly 
tailored to solve this statistical problem. However, these 
estimators are in general computationally intensive due 
to the use of leave-one-out or re-sampling techniques. In 
this scenario, the application of these estimators would 
appear to be feasible in small samples where estimates 
might be more affected by bias. For large samples, esti-
mation bias is reduced and, therefore, the decision of 
using such estimators should be weighted with the real 
implications of obtaining more reliable estimates. A third 
route for bias reduction is to choose a sampling strategy 
where the chance of detecting the true change point is 
increased. One might define three age groups according 
to the kind of epidemiological information each one pro-
vides. The first one refers to individuals born before the 

Table 5  Minimum sample size to detect a change in transmission with 80, 90 and 95 % probability using AIC and under 
the assumption of a known or unknown true change point

a  Expected number of events per year
b  Years before sampling

Assumption on the true change point

Known Unknown

SCR beforea SCR aftera True change pointb 80 % 90 % 95 % 80 % 90 % 95 %

0.0969 0.324 3 475 797 1284 660 1158 1942

5 356 562 857 441 707 1091

10 355 541 798 445 742 1187

0.0108 3 208 271 345 257 358 485

5 112 156 212 148 215 304

10 91 123 163 100 144 201

0.0324 0.0108 3 1324 2669 5091 1759 3236 5675

5 748 1322 2234 997 1706 2798

10 617 1104 1886 809 1513 2693

0.0036 3 443 755 1234 695 1118 1731

5 260 365 498 340 488 681

10 182 229 283 219 275 339
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change point but with age ‘‘far’’ from it (e.g., young chil-
dren up to three years old for a change point of five years 
before sampling). This age group is essential to estimate 
current SCR since the corresponding target population 
would not have experienced any change in disease trans-
mission. The second group consists of children or adoles-
cents with age in the vicinity of the putative change point 
(e.g., children aged between four to seven years old for a 
change point of five years before sampling), thus, having 
the highest sampling information over that parameter. 
The age range should be defined in order to approxi-
mately sample the same amount of individuals that expe-
rienced the different exposure periods. Sampling in this 
way should jointly increase the power to detect a change 
in SCR and the accuracy of the corresponding change-
point estimates. The third group targets older individuals 

because of the putative information they might show of 
historical disease exposure. Since this group refers to 
older individuals, it also embodies important information 
on seroreversion rate. Having all of these different possi-
ble sampling options, future research is critical to deter-
mine the most optimal sampling strategy for controlling 
power, precision and bias altogether. A fourth solution 
is to jointly analyse data from different study sites. The 
theoretical expectation is that, under the assumption of 
a shared change point, more accurate information can 
be borrowed from sites where such a parameter is more 
easily estimated. This solution was followed in the above-
mentioned Brazilian study where there is evidence for 
a common change point for P. falciparum malaria that 
could not be easily detected due to the uncertainty of 
the change point estimates when the corresponding data 

Table 6  Expected bias and precision (in percentage) of estimates for current SCR using the sample sizes shown in Table 5

a  Expected number of events per year
b  Years before sampling
c  As percentage in relation to the true parameter value
d  Difference between 2.5 and 97.5 % quantiles of the distribution of current−SCR estimates divided by the true parameter value that generated the corresponding 
data

Assumption on the true change point

Known Unknown

Estimation SCR beforea SCR aftera True change pointb 80 % 90 % 95 % 80 % 90 % 95 %

Biasc 0.0969 0.0324 3 −3.62 −2.18 −1.44 −17.15 10.16 −5.06

5 −1.30 0.18 0.10 −23.62 −16.29 −10.27

10 0.34 0.14 0.08 −5.20 −3.24 −2.39

0.0108 3 −12.86 −4.85 −1.13 −13.95 −11.42 −7.91

5 −3.20 −0.78 −0.04 −28.33 −23.17 −18.07

10 0.23 −0.64 −0.88 −28.42 −23.02 −17.75

0.0324 0.0108 3 −0.35 1.14 1.89 −19.30 −17.64 −16.67

5 −2.10 −0.69 0.16 −22.70 −14.89 −9.85

10 −0.25 −0.22 −0.34 −6.00 −3.96 −2.91

0.0036 3 0.39 −4.13 −6.48 −0.37 −3.35 −4.96

5 −2.82 −0.53 1.02 −27.64 −21.20 −16.04

10 0.86 0.53 0.17 −17.20 −15.22 −13.42

Precisiond 0.0969 0.0324 3 1.96 1.50 1.27 2.01 1.78 1.66

5 1.48 1.21 1.06 1.65 1.65 1.46

10 0.80 0.70 0.64 1.02 0.85 0.66

0.0108 3 7.56 3.97 3.42 4.75 4.68 4.23

5 3.62 3.22 3.10 3.13 3.13 3.05

10 2.95 2.55 2.23 2.73 2.13 2.13

0.0324 0.0108 3 2.04 1.74 1.55 2.10 1.84 1.68

5 1.66 1.38 1.23 1.79 1.66 1.60

10 1.01 0.83 0.73 1.40 1.04 0.80

0.0036 3 5.23 4.43 3.97 4.82 4.14 3.73

5 4.30 3.60 3.19 3.65 3.37 3.10

10 2.70 2.70 2.58 2.96 2.95 2.86
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of each study site was analysed separately (Table  1) [7]. 
A fifth and last solution is to analyse antibody concen-
tration data using appropriate antibody density mod-
els as reviewed elsewhere [13]. The use of a quantitative 
outcome is expected to be more informative about the 
underlying phenomenon than its binary-derived coun-
terpart, as suggested by several genetic studies aiming 
to estimate the location of quantitative trait loci [35, 36]. 
Similar line of evidence was observed in a sero-epidemi-
ological study from Nigeria where the antibody values of 
the sampled individuals declined over an intervention 
period but the corresponding age-adjusted seropreva-
lence curves remained unaltered [37, 38]. However, this 
solution remains to be tested in real world data.

In general, controlling power via sample size is an 
ideal strategy to increase the chance of drawing the right 
conclusion if different explanations exist for the same 
data. Here, the power was calculated using the stable 
SCR assumption as the only alternative explanation for 
the data. However, an effect of age-dependent risk fac-
tor might be yet another competing explanation for the 
occurrence of biphasic SP curves. This is the case of an 
Indonesian population where adults working in the for-
est were more exposed to malaria vectors than younger 
workers [15]. In theory, the intervention-based and risk-
factor models are mathematically distinguishable but 
very closely related [13]. Therefore, the sample sizes cal-
culated here would also hold for the alternative setting of 
detecting changes in SCR due to age-dependent risk fac-
tors, although this requires further investigation. Alter-
natively, the power to distinguish these models might 
require collecting such a large sample that brings several 
practical and theoretical challenges, as discussed in detail 
elsewhere [22]. Current models may be inappropriate in 
these settings and approaches that use antibody levels or 
different antigenic targets with shorter SRR would ulti-
mately be more useful.

The calculated sample sizes suggest potentially oppos-
ing conclusions for study design. On the one hand, small 
sample sizes might be sufficient to detect significant 
reductions in SCR with high power, but lead to relatively 
poor estimation precision of current SCR. In this sce-
nario, it is recommended to perform sample size calcu-
lations focusing on estimation precision rather than on 
power. Assuming the true change point known improves 
the estimates precision, which might be further improved 
by fixing the SRR at a reasonable value [22]. On the other 
hand, subtle reductions in SCR might only be detected by 
means of large sample sizes. The use of a large sample size 
brings theoretical and operational challenges but inevita-
bly leads to improved estimation precision and reduced 
estimation bias. Precision and bias are particularly 

important to be controlled in situations where there is no 
information on the timing of a change in transmission.

Conclusion
In summary, designing a study that aims to detect a 
reduction in transmission using SCR requires balanc-
ing the use of a given sampling strategy with the sample 
size warranting a given power and estimation precision. 
Ultimately the decision of choosing one or another sam-
ple size should be made on the basis of not only statis-
tical arguments, as discussed here, but also on possible 
sampling constraints that might influence data collection, 
such as ethics, available human and economic resources 
and/or presence of any time constraint. Simply augment-
ing the number of individuals sampled in the age groups 
around any perceived change point may be the most 
pragmatic solution. As malaria transmission decreases 
and multiple malariometrics are required to determine 
the effect of control programmes, optimizing sample 
size is crucial to avoid wasting valuable resources. Using 
optimal study designs is particularly important for coun-
tries on the brink of malaria elimination or eradication, 
such as the Hispaniola Island [39] or Sri Lanka [40]. This 
and other related issues are going to be investigated in a 
future study.

Abbreviations
AIC: Akaike’s information criterion; EIR: entomological inoculation rate; SP: 
seroprevalence; SCR: seroconversion rate; SRR: seroreversion rate; AMA1: apical 
membrane protein-1; MSP1: merozoite surface protein-1; PR: parasite rate.

Authors’ contributions
NS developed the sample size calculators and wrote the manuscript. CDP 
provided key insights on the statistical aspects of the study. CD designed 
the project and discussed the epidemiological implications of this work. All 
authors read and approved the manuscript.

Author details
1 London School of Hygiene and Tropical Medicine, Keppel Street, Lon-
don WC1E 7HT, UK. 2 Center of Statistics and Applications of University 
of Lisbon, Faculdade de Ciências da Universidade de Lisboa, Bloco C6‑Piso 4, 
1749‑1016 Lisbon, Portugal. 3 Instituto Superior Técnico, Universidade Técnica 
de Lisboa, Avenida Rovisco Pais, 1049‑001 Lisbonn, Portugal. 

Acknowledgements
NS and CD acknowledge funding from the Wellcome Trust (Grant number 
091924). NS and CDP were partially supported by Fundação para a Ciência 

Additional files

Additional file 1. Mathematical derivation of the reverse catalytic model 
assuming a change in transmission.

Additional file 2. Distribution of the change point estimates as 
described in Fig. 2 but using the percentage of +1/−1 year unit in relation 
to the true change point.

Additional file 3. Statistical power to detect a change in disease 
transmission as function of sample size considering the true change point 
unknown. See Fig. 3 for further details.

http://dx.doi.org/10.1186/s12936-015-1050-3
http://dx.doi.org/10.1186/s12936-015-1050-3
http://dx.doi.org/10.1186/s12936-015-1050-3


Page 14 of 14Sepúlveda et al. Malar J  (2015) 14:529 

e Tecnologia (Portugal) through the project Pest-OE/MAT/UI0006/2011. The 
authors would like to thank Jackie Cook for proofreading the paper.

Competing interests
The authors declare that they have no competing interests.

Received: 20 June 2015   Accepted: 12 December 2015

References
	1.	 Stresman G, Kobayashi T, Kamanga A, Thuma PE, Mharakurwa S, 

et al. Malaria research challenges in low prevalence settings. Malar J. 
2012;11:353.

	2.	 Harris I, Sharrock WW, Bain LM, Gray K-A, Bobogare A, et al. A large 
proportion of asymptomatic Plasmodium infections with low and sub-
microscopic parasite densities in the low transmission setting of Temotu 
Province, Solomon Islands: challenges for malaria diagnostics in an 
elimination setting. Malar J. 2010;9:254.

	3.	 Mosha JF, Sturrock HJW, Greenhouse B, Greenwood B, Sutherland CJ, 
et al. Epidemiology of subpatent Plasmodium falciparum infection: 
implications for detection of hotspots with imperfect diagnostics. Malar J. 
2013;12:221.

	4.	 Vallejo AF, Chaparro PE, Benavides Y, Álvarez A, Quintero JP, et al. 
High prevalence of sub-microscopic infections in Colombia. Malar J. 
2015;14:201.

	5.	 Corran P, Coleman P, Riley E, Drakeley C. Serology: a robust indicator of 
malaria transmission intensity? Trends Parasitol. 2007;23:575–82.

	6.	 Bousema T, Youssef RM, Cook J, Cox J, Alegana VA, et al. Serologic markers 
for detecting malaria in areas of low endemicity, Somalia, 2008. Emerg 
Infect Dis. 2010;16:392–9.

	7.	 Cunha MG, Silva ES, Sepúlveda N, Costa SPT, Saboia TC, et al. Serologically 
defined variations in malaria endemicity in Pará state, Brazil. PLoS One. 
2014;9:e113357.

	8.	 Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, et al. 
Estimating medium- and long-term trends in malaria transmission by 
using serological markers of malaria exposure. Proc Natl Acad Sci USA. 
2005;102:5108–13.

	9.	 Bosomprah S. A mathematical model of seropositivity to malaria antigen, 
allowing seropositivity to be prolonged by exposure. Malar J. 2014;13:12.

	10.	 van den Hoogen LL, Griffin JT, Cook J, Sepúlveda N, Corran P, et al. Serol-
ogy describes a profile of declining malaria transmission in Farafenni, The 
Gambia. Malar J. 2015;14:416.

	11.	 Cook J, Kleinschmidt I, Schwabe C, Nseng G, Bousema T, et al. Serological 
markers suggest heterogeneity of effectiveness of malaria control inter-
ventions on Bioko Island, Equatorial Guinea. PLoS One. 2011;6:e25137.

	12.	 Cook J, Speybroeck N, Sochanta T, Somony H, Sokny M, et al. Sero-epi-
demiological evaluation of changes in Plasmodium falciparum and Plas-
modium vivax transmission patterns over the rainy season in Cambodia. 
Malar J. 2012;11:86.

	13.	 Sepúlveda N, Stresman G, White MT, Drakeley CJ. Current mathematical 
models for analyzing anti-malarial antibody data with an eye to malaria 
elimination and eradication. J Immunol Res. 2015;2015:738030.

	14.	 Hens N, Aerts M, Faes C, Shkedy Z, Leujeune O, et al. Seventy-five years 
of estimating the force of infection from current status data. Epidemiol 
Infect. 2010;138:802–12.

	15.	 Supargiyono S, Bretscher MT, Wijayanti MA, Sutanto I, Nugraheni D, et al. 
Seasonal changes in the antibody responses against Plasmodium falcipa-
rum merozoite surface antigens in areas of differing malaria endemicity 
in Indonesia. Malar J. 2013;12:444.

	16.	 Marques AC. Human migration and the spread of malaria in Brazil. Parasi-
tol Today. 1987;3:166–70.

	17.	 Bowman NM, Kawai V, Levy MZ, del Carpio JGC, Cabrera L, et al. Chagas 
disease transmission in periurban communities of Arequipa. Peru. Clin 
Infect Dis. 2008;46:1822–8.

	18.	 Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, et al. Using serological 
measures to monitor changes in malaria transmission in Vanuatu. Malar J. 
2010;9:169.

	19.	 Delgado S, Neyra RC, Machaca VRQ, Juarez JA, Chu LC, et al. A history of 
chagas disease transmission, control, and re-emergence in peri-rural La 
Joya, Peru. PLoS Negl Trop Dis. 2011;5:e970.

	20.	 Martin DL, Bid R, Sandi F, Goodhew EB, Massae PA, et al. Serology for 
trachoma surveillance after cessation of mass drug administration. PLoS 
Negl Trop Dis. 2015;9:e0003555.

	21.	 Wong J, Hamel MJ, Drakeley CJ, Kariuki S, Shi YP, et al. Serological markers 
for monitoring historical changes in malaria transmission intensity in a 
highly endemic region of Western Kenya, 1994-2009. Malar J. 2014;13:451.

	22.	 Sepúlveda N, Drakeley C. Sample size determination for estimating 
antibody seroconversion rate under stable malaria transmission intensity. 
Malar J. 2015;14:141.

	23.	 Enevold A, Alifrangis M, Sanchez JJ, Carneiro I, Roper C, et al. Associations 
between alpha+-thalassemia and Plasmodium falciparum malarial infec-
tion in northeastern Tanzania. J Infect Dis. 2007;196:451–9.

	24.	 Sepúlveda N, Manjurano A, Drakeley C, Clark TG. On the performance of 
multiple imputation based on chained equations in tackling missing data 
of the African α3.7-globin deletion in a malaria association study. Ann 
Hum Genet. 2014;78:277–89.

	25.	 Williams BG, Dye C. Maximum likelihood for parasitologists. Parasitol 
Today. 1994;10:489–93.

	26.	 Sepúlveda N, Paulino CD, Carneiro J. Estimation of T-cell repertoire 
diversity and clonal size distribution by Poisson abundance models. J 
Immunol Methods. 2010;353:124–37.

	27.	 Burnham KP, Anderson DR. Multimodel inference—Understanding AIC 
and BIC in model selection. Sociol Methods Res. 2004;33:261–304.

	28.	 Casella G, Berger RL. Statistical inference. 2nd ed. Pacific Grove: Duxbury; 
2002.

	29.	 Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, et al. A new 
world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 
2011;10:378.

	30.	 Kinyanjui SM, Conway DJ, Lanar DE, Marsh K. IgG antibody responses to 
Plasmodium falciparum merozoite antigens in Kenyan children have a 
short half-life. Malar J. 2007;6:82.

	31.	 Akpogheneta OJ, Duah NO, Tetteh KKA, Dunyo S, Lanar DE, et al. Duration 
of naturally acquired antibody responses to blood-stage Plasmodium 
falciparum is age dependent and antigen specific. Infect Immun. 
2008;76:1748–55.

	32.	 Oliveira-Ferreira J, Lacerda MVG, Brasil P, Ladislau JLB, Tauil PL, et al. 
Malaria in Brazil: an overview. Malar J. 2010;9:115.

	33.	 Quenouille MH. Notes on bias in estimation. Biometrika. 1956;43:353–60.
	34.	 Efron B, Tibshirani RJ. An introduction to the bootstrap. 1st ed. New York: 

Chapman & Hall; 1993.
	35.	 Broman KW. Mapping quantitative trait loci in the case of a spike in the 

phenotype distribution. Genetics. 2003;163:1169–75.
	36.	 Xu S, Atchley WR. Mapping quantitative trait loci for complex binary 

diseases using line crosses. Genetics. 1996;143:1417–24.
	37.	 Brögger RC, Mathews HM, Storey J, Ashkar TS, Brögger S, et al. Changing 

patterns in the humoral immune response to malaria before, during, and 
after the application of control measures: a longitudinal study in the West 
African savanna. Bull World Health Organ. 1978;56:579–600.

	38.	 Molyneux L, Gramiccia G. The Garki Project. Research on the epidemiol-
ogy and control of malaria in the Sudan savanna of West Africa. World 
Health Organization 1980, pp. 311.

	39.	 Herrera S, Ochoa-Orozco SA, González IJ, Peinado L, Quinones ML, et al. 
Prospects for malaria elimination in Mesoamerica and Hispaniola. PLoS 
Negl Trop Dis. 2015;9:e0003700.

	40.	 Karunaweera ND, Galappaththy GN, Wirth DF. On the road to eliminate 
malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge 
and research needs. Malar J. 2014;13:59.


	Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Reverse catalytic models for seropositivity data
	Model parameterization, estimation and comparison
	Simulation study and sample size calculations

	Results
	Estimation bias when the true change point is assumed to be known and unknown
	Sample size determination
	Estimation bias and precision associated with a given sample size calculation

	Discussion
	Conclusion
	Authors’ contributions
	References




