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ABSTRACT
Background: Controversial findings have been reported in human and animal studies regarding the influence of n–6 (ω-6) to n–3 (ω-3) fatty acid
ratios on obesity and health. Two confounding factors may be related to interactions with other dietary lipid components or sex-specific differences
in fatty acid metabolism.
Objective: This study investigated main and interactive effects of total dietary lipid, ratio of n–6 to n–3 fatty acids, and sex on growth, adiposity,
and reproductive health in wild-type zebrafish.
Methods: Male and female zebrafish (3 wk old) were fed 9 diets consisting of 3 ratios of n–6 to n–3 fatty acids (1.4:1, 5:1, and 9.5:1) varied within
3 total lipid amounts (80, 110, and 140 g/kg) for 16 wk. Data were then collected on growth, body composition (determined by chemical carcass
analysis), and female reproductive success (n = 32 breeding events/diet over 4 wk). Main and interactive effects of dietary lipid and sex were
evaluated with regression methods. Significant differences within each dietary lipid component were relative to the intercept/reference group
(80 g/kg and 1.4:1 ratio).
Results: Dietary lipid and sex interacted in their effects on body weight (P = 0.015), total body length (P = 0.003), and total lipid mass (P = 0.029);
thus, these analyses were stratified by sex. Female spawning success decreased as dietary total lipid and fatty acid ratio increased (P = 0.030 and
P = 0.026, respectively). While total egg production was not associated with either dietary lipid component, females fed the 5:1 ratio produced
higher proportions of viable embryos compared with the 1.4:1 ratio [median (95% CI): 0.915 (0.863, 0.956) vs 0.819 (0.716, 0.876); P < 0.001].
Conclusions: Further characterization of dietary lipid requirements will help define healthy balances of dietary lipid, while the sex-specific
responses to dietary lipid identified in this study may partially explain sex disparities in the development of obesity and its comorbidities. Curr
Dev Nutr 2020;4:nzaa034.
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Introduction

Defining the effects of dietary lipid on adiposity and human health re-
mains a fundamental challenge. Conflicting results from studies eval-
uating the effects of diets with high lipid content on weight gain and
metabolism have led to multiple debates regarding the magnitude to
which dietary lipid contributes to obesity. Recent publications have
noted that different responses to dietary lipid may be attributed to vari-
ations in fatty acid composition profiles, suggesting that lipid quality

may be equally important as lipid quantity in the influence of obesity
development and metabolic syndrome (1–3). Individual fatty acids can
vary significantly in oxidation and deposition rates, which may, in turn,
influence outcomes in weight gain, adiposity, and health in both human
and animal models (1, 2, 4–6).

In mammals and fish, n–6 and n–3 fatty acids are crucial for nutri-
tional health, physiology, and reproduction (7). They are categorized as
essential and must be obtained through diet (8). Several studies have
proposed that imbalances in the ratio of n–6 to n–3 fatty acids can neg-
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atively impact health. Empirical and epidemiological data suggest that
an excess intake of n–6 fatty acids increases inflammation in metabolic
tissues (9–12); however, results from other studies indicate that arachi-
donic acid (ARA; 20:4n–6) also serves as a precursor for a group of po-
tent anti-inflammatory molecules. Significant associations of increased
dietary n–6 fatty acid content with both decreased inflammation and
increases in lean tissue mass have also been observed (13–15). In ad-
dition to metabolic health, fertility and reproductive performance have
also been linked to the ratio of n–6 to n–3 fatty acids in multiple species
(16–20). As previous research has demonstrated that n–6 and n–3 fatty
acid intake can significantly impact physiology and disease, a better un-
derstanding is needed regarding whether a specific ratio of n–6 to n–3
fatty acids is required for optimal health, and whether the responses of
these ratios on health are modified by the total amount of dietary fat
(21).

Sexual dimorphisms in the response to dietary manipulation must
also be considered for obesity-related outcomes. Males and females dif-
fer in terms of how and where body fat is stored, hormone secretion in
response to fat, and how the brain responds to signals that regulate body
fat (22, 23). While sex-specific responses to dietary manipulation have
been observed in multiple species, the influence of sex on the associa-
tion between obesity-related phenotypes and dietary lipid composition
has not been well defined (1, 24, 25). Therefore, when studying the im-
pacts of dietary lipid manipulation on obesity, any potential sexually
dimorphic responses should be considered (24).

To address gaps in our knowledge regarding the impacts of dietary
lipid composition on obesity and metabolic health, many researchers
have turned to animal models to answer these questions. In recent
years, results from multiple studies have demonstrated that zebrafish
are a powerful model for diet-induced obesity in humans and also offer
multiple advantages over rodent models (26–31). Similar to humans,
zebrafish exhibit increased weight gain, adiposity, and serum triglyc-
erides (TGs) when fed a high-fat diet (HFD), as well as early evidence of
metabolic diseases (26, 30). In this study, we examined both the individ-
ual and combined effects of total dietary lipid and dietary ratios of n–6
to n–3 fatty acids on weight gain, body composition, and reproductive
success in juvenile male and female wild-type zebrafish. Results from
this study will further define dietary lipid requirements for zebrafish in
a research setting and translate this information to studies in human
nutrition and health.

Methods

Diet preparation
Nine chemically defined experimental diets were formulated and pro-
duced using purified and semipurified ingredients (Supplemental Ta-
ble 1). To ensure that all other macronutrients remained constant
among diets, experimental diets were formulated with a single, com-
mon base mix. Total dietary lipid amounts were adjusted with Alpha-
CelTM, a nonnutritive bulking agent (MP Biomedicals, LLC). Safflower
oil (food grade; MP Biomedicals, LLC) served as the primary source of
n–6 fatty acids, while menhaden fish oil (Virginia Prime® Gold Fish Oil;
Omega Protein, Inc.) supplied the primary source of n–3 fatty acids. The
amounts of each oil were adjusted to achieve the desired amount of total
lipid and n–6 to n–3 fatty acid ratio for each diet. Diet analysis for crude

fat and fatty acid composition was performed by Eurofins Scientific Lab-
oratories, Inc. (Supplemental Table 2). Crude fat was determined by
ethyl ether extraction, while fatty acid composition was determined by
GC according to the American Oil Chemists’ Society methods Ce 2–66
and Ce 1–62 (32, 33). Analyses were performed for the 4 diets consid-
ered the “extremes” as a cost-saving measure, and values for other diets
were interpolated.

The ingredients for the base mix were combined first using a
KitchenAid Professional 600 Series Orbital Mixer (Whirlpool, Inc.).
Next, the safflower and menhaden oils were added to each diet using a
Cuisinart Food Processor (Conair, Inc.). Diets were then extruded with
a KitchenAid Extruder (KPEXTA; Whirlpool, Inc.) fitted with the pasta-
maker attachment. Feed strands were air-dried on wire trays for 24 h and
then stored at 4◦C in air-tight storage bags until use. Prior to feeding,
diets were ground to a powder (250–500 μm, sieved).

Experimental protocols
This study was conducted using recommendations of the Guide for the
Care and Use of Laboratory Animals, NRC (34). All procedures abided
by standard requirements for husbandry and euthanasia (34, 35). Proto-
cols were reviewed and approved by the Institutional Animal Care and
Use Committee at the University of Alabama at Birmingham (UAB).

Zebrafish were housed in 4 re-circulating systems with mechanical,
chemical, and biological filtration and UV sterilization (Aquaneering,
Inc.) on a 14-h light/10-h dark schedule. Tanks were siphoned weekly
to remove uneaten food/debris, and flow rates were adjusted to pro-
vide a minimum of 2 water changes/h per tank. Sodium bicarbonate
was added to adjust pH to the desired level as needed. At minimum,
20% of conditioned system water was exchanged once weekly from each
system. Prior to being added to the re-circulating systems, municipal
tap water was filtered through a reverse osmosis unit (Kent Marine)
and conductivity was adjusted with synthetic sea salts (Instant Ocean).
Water-quality parameters (given in Table 1 and Supplemental Table 3)
were maintained at recommended levels (35) in all re-circulating sys-
tems throughout the experiment.

Zebrafish embryos (AB strain) were acquired from the Zebrafish Re-
search facility at UAB. Due to the large sample size required for the
study, zebrafish were divided into 4 cohorts and stocked once weekly
over a 4-wk period. Embryos were collected, maintained until 5 d post-
fertilization (dpf), and then polycultured with the rotifer Branchionus
plicatilis in 6-L static tanks (240 larvae/tank), as previously described
(36). Beginning at 11 dpf, each tank of fish was fed 25 mL of concen-
trated stage I Artemia nauplii (>500 nauplii per fish) 3 times daily. At
22 dpf, all fish were combined and 56 fish were randomly sampled to ob-
tain initial wet weights. The remaining fish were randomly distributed
into 2.8-L tanks at a density of 14 fish/tank (36 tanks/cohort, 144 tanks
total for the study). After stocking, tanks of fish were randomly assigned
to 1 of 9 diets (n = 16 tanks and 224 fish total per diet; within each
cohort, n = 4 tanks and 56 fish per diet) and haphazardly, but evenly,
distributed across rack positions on all 4 re-circulating systems. Each
system held 4 tanks/diet, or 36 tanks/total.

During the 16-wk feeding trial (initiated at 23 dpf), each tank of fish
was fed a daily ration of ∼5–7% of body weight, with half the ration fed
at ∼0900 h and the other half at ∼1700 h. Fish weights from each diet
were monitored weekly to maintain this ration throughout the feeding
trial. Using Excel’s RANDBETWEEN function, 25% of fish tanks from
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TABLE 1 Experimental water quality conditions for each recirculating system1

Recirculating system
Parameter Target range 1 2 3 4

pH 6.80–8.50 7.45 ± 0.01 7.40 ± 0.01 7.39 ± 0.01 7.40 ± 0.01
Conductivity, mS/cm 1.40–1.50 1.42 ± 0.01 1.50 ± 0.01 1.52 ± 0.01 1.49 ± 0.01
Salinity, ppt 0.60–0.70 0.69 ± 0.003 0.70 ± 0.003 0.70 ± 0.004 0.70 ± 0.003
Temperature,◦C 27–28 27.4 ± 0.02 27.2 ± 0.02 27.2 ± 0.02 27.9 ± 0.03
TAN, mg/L ∼ 0 0.01 ± 0.01 0.03 ± 0.03 0.01 ± 0.01 0.01 ± 0.01
Nitrite, mg/L ∼ 0 0.19 ± 0.08 0.33 ± 0.09 0.36 ± 0.07 0.22 ± 0.08
Nitrate, mg/L < 200 101 ± 1.25 100 ± 0 100 ± 0 100 ± 0
Alkalinity, mg/L CaCO3 50–150 50–52 50–52 50–52 50–52
1Values are mean ± SEM obtained over the course of the experiment. mS, milliSiemens; ppt, parts per thousand; TAN, total ammonia nitrogen.

each diet were randomly selected each week to be weighed as a group.
The daily ration was adjusted weekly from the average group wet weight
calculated for each diet. Rations were measured with a powder measure
(Lee Precision, Inc.) calibrated to dispense the ration for each diet. To
minimize cross-contamination, each dietary lipid amount had its own
powder measure.

Experiment termination.
At the termination of the feeding trial, fish were 4.5 mo of age. Sex and
terminal measures of body mass (BM) and total body length (TBL; mea-
sured from tip of the snout to tip of the top of the caudal fin) were deter-
mined individually for all fish in the study as previously described (36).
After recording this information, fish were randomized to evaluation
of body composition, reproductive success, or additional outcomes not
discussed in the current paper. Zebrafish randomized to reproductive
success were returned to the re-circulating system. Fish assigned to all
other outcomes were killed by rapid submersion in ice water for a min-
imum of 10 min (after which time cessation of all opercular movement
was observed) and then stored at −20◦C until analysis.

Body-composition assessment.
Twelve males and 12 females from each diet (3 males and 3 females per
cohort) were analyzed for body composition (assessed gravimetrically
as total body lipid and TG mass). Female zebrafish were ovariectomized
prior to analysis. After removal from −20◦C storage, total body lipid was
extracted from whole-fish samples with chloroform and methanol (37)
using a protocol modified for zebrafish that has been described else-
where (38). TG mass was determined from each total lipid sample by
solid-phase extraction with chloroform and methanol (39).

Evaluation of reproductive performance.
From each diet, 40 females (n = 10/tank, 1 tank/cohort) were reserved
for evaluation of reproductive success over a 4-wk breeding period.
During the breeding period, females were maintained under the same
feeding regime and husbandry conditions as described for the feeding
trial. As we were primarily interested in the effects of dietary lipid com-
position on egg production and embryo quality, experimental males
were not used in our evaluation of reproductive performance. Instead,
randomly selected females from each diet were paired with Artemia-
fed broodstock males (AB strain and 4–6 mo of age) from the Aquatic
Animal Resource Core at UAB. Each breeding pair represented 1 breed-
ing event, with n = 32 breeding events evaluated per diet. Protocols for

breeding and embryo assessment have been described elsewhere (36).
Females evaluated for reproduction were killed at the end of the breed-
ing period as previously described.

Spawning success rate was defined as the proportion of successful
breeding events (eggs released) to total breeding events. Total egg pro-
duction represented the number of eggs produced from each individual
clutch (breeding event). Embryo viability was determined from success-
ful breeding events as the proportion of viable embryos to total eggs.
Embryos exhibiting a stage of development consistent with the pharyn-
gula period at 24–30 h postfertilization (hpf) were considered viable
(40).

Statistical analysis
Sample sizes for growth and body composition parameters are given
in Table 2. Lengths for 16 male and 27 female zebrafish were unable to be
measured from photographs. Measures of total lipid mass (TLM) were
missing from 9 samples (6 males and 3 females) due to loss in storage,
while TG mass was unable to be measured in 26 samples (10 males and
16 females) due to malfunction of sample-processing equipment.

All data analyses were performed with R Statistical Software (R Core
Team, 2016, version 3.4.2) and were 2-tailed, with P < 0.05 consid-
ered statistically significant. Figures were produced with the “ggplot2,”
“ggpubr,” and “metR” packages in R (41–43). All analyses evaluated
main and interactive effects of total dietary lipid and ratio of n–6 to n–
3 fatty acids. Diet-by-sex interactions were analyzed when applicable,
and when significant, analyses for these outcomes were stratified by sex.
All models controlled for cohort as either a random effect (growth out-
comes) or fixed effect (body composition and reproduction outcomes).
Unless otherwise indicated, outcomes calculated as percentages were
log-transformed prior to analysis. For categorical variables (both dietary
lipid components and week), differences were analyzed relative to the
reference group (intercept).

Differences in BM and length were evaluated with linear mixed-
effects regression analysis [“lme4” and “lmerTest” packages in R (44,
45)]. Analyses of both outcomes controlled for tank as a random ef-
fect. Body-composition differences were assessed with additive effects
regression analysis [“gamlss” package in R (46)], with the most parsi-
monious model selected for each outcome.

Differences in total egg production were evaluated with a zero-
inflated negative binomial regression model (46, 47), while embryo
viability was assessed with a zero-inflated B regression analysis (46).
The zero-inflated B regression model used the parameters μ (location)
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TABLE 2 Sample sizes of male and female zebrafish evaluated for outcomes in growth and body composition, by dietary lipid
component and individual diets1

Wet body mass, n Total body length, n Total lipid mass, n TG mass, n
M F M F M F M F

TDL (g/kg)
80 239 370 234 353 35 36 32 28
110 238 369 232 363 32 33 32 33
140 222 356 217 352 35 36 28 28

RFA
1.4:1 206 396 197 385 34 35 27 28
4:1 261 345 257 341 34 36 34 36
9.5:1 232 354 229 342 35 34 31 30

Individual diet
80 g/kg TDL

1.4:1 69 126 66 119 12 12 9 9
5:1 92 117 91 116 11 12 11 12
9.5:1 78 127 77 118 12 12 12 12

110 g/kg TDL
1.4:1 70 138 66 137 10 11 10 11
5:1 89 120 87 118 12 12 12 12
9.5:1 79 111 79 108 10 10 10 10

140 g/kg TDL
1.4:1 67 132 65 129 12 12 8 8
5:1 80 108 79 107 11 12 11 12
9.5:1 75 116 73 116 12 12 9 8

1RFA, dietary ratio of n–6 to n–3 fatty acids; TDL, total dietary lipid; TG, triglyceride.

and ε (scale) to compare expected proportions of viable embryos to the
reference group. The zero-inflated components used logistic regression
to compare probability of a successful spawn with the reference group.
Models for reproduction outcomes also controlled for week as a fixed
effect.

Results

Survivorship surpassed 95% for all diets (data not shown), which was
comparable to what has been observed in other zebrafish nutrition stud-
ies (14, 36). All diets promoted growth and weight gain over the course
of the study, with no apparent limitations in palatability observed.

Both wet BM (Figure 1 and Supplemental Table 4) and TBL were
significantly higher in female zebrafish (BM: males = 331 ± 3.94 mg
and females = 509 ± 5.65 mg; TBL: males = 32.6 ± 0.120 mm
and females = 34.8 ± 0.123 mm; P < 0.001 for both outcomes).
Sex-by-diet interactions were observed for both outcomes (BM: P-
interaction = 0.015; TBL, P-interaction = 0.003). In males, BM was
negatively associated with total dietary lipid and ratio of n–6 to n–3
fatty acids; additionally, these dietary lipid components significantly in-
teracted in their effects on BM. Female BM was not significantly associ-
ated with either dietary lipid component, although a trend for a negative
association with total dietary lipid was observed (P-trend = 0.060). In
both sexes, total dietary lipid was negatively associated with TBL and a
significant interaction with the ratio of n–6 to n–3 fatty acids was ob-
served (males, P-interaction = 0.003; females, P-interaction = 0.020)
(Supplemental Table 4).

Body composition
Diet and sex significantly interacted in their effects on TLM (P-
interaction = 0.029). TLM was negatively associated with the ratio
of n–6 to n–3 fatty acids in male zebrafish and positively associated

with total dietary lipid in female zebrafish (Figure 1 and Supplemental
Table 5). A significant total dietary lipid by ratio of n–6 to n–3 fatty acids
was also observed in females. Similar to TLM, TG mass in males was in-
versely associated with the ratio of n–6 to n–3 fatty acids (Table 3 and
Supplemental Table 6). In contrast to TLM, TG mass in females was
not significantly associated with either dietary lipid component, and no
evidence of a significant total dietary lipid by ratio of n–6 to n–3 fatty
acid interaction was observed in either sex (males, P-interaction = 0.15;
females, P-interaction = 0.06).

Reproduction
Both total dietary lipid and ratio of n–6 to n–3 fatty acids significantly
predicted spawning probability (Table 4). In contrast, egg production
was not significantly associated with either dietary lipid component,
while embryo viability was only significantly associated with the ratio of
n–6 to n–3 fatty acids (Figure 2 and Supplemental Table 7). Females
fed diets with an n–6 to n–3 ratio of 5:1 produced the highest proportion
of viable embryos. An interaction between the 5:1 ratio of n–6:n–3 ratio
and 80 g/kg of total dietary lipid was also observed, as females fed this
diet produced the highest proportion of viable embryos (Supplemental
Table 8).

It was also noted that breeding trial week was significantly associated
with egg production and spawning success. Compared with week 1, egg
production was higher in weeks 3 and 4 (P < 0.001; data not shown),
while spawning success increased in weeks 2, 3, and 4 (Table 4).

Discussion

Our results demonstrate that both total dietary lipid and ratio of n–6
to n–3 fatty acids significantly impact growth, body composition, and
reproductive success. We report interactions of these 2 dietary compo-
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FIGURE 1 Main and interactive effects of TDL and RFA on terminal body mass and body composition in male and female zebrafish.
Contour plots: (A) male body mass; (B) female body mass; (C) male total lipid mass; and (D) female total lipid mass. Table values represent
parameter estimates from regression analysis. ∗,∗∗Significant change from reference group (80 g/kg TDL or 1.4/1 RFA): ∗P < 0.05, ∗∗P
< 0.01. NS, P > 0.05. adj., adjusted; RFA, ratio of n–6 to n–3 fatty acids; TDL, total dietary lipid.

nents for multiple outcomes. Additionally, our findings reveal sexual
dimorphisms in response to dietary lipid intake, emphasizing the
need to include the influence of sex in evaluations of future nutrition
studies.

Both increasing total dietary lipid and ratio of n–6 to n–3 fatty acids
were independently associated with reduced terminal BM in male, but
not female, zebrafish. In males, the negative association of dietary n–6
fatty acids with BM conflicts with results from previous studies, which
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TABLE 3 Terminal triglyceride mass content of male and
female zebrafish by dietary lipid component1

Percentage of dry body mass
Male Female

Total dietary lipid (g/kg)
80 (reference) 9.92 ± 0.625 9.87 ± 0.856
110 11.2 ± 0.869 12.11 ± 0.876
140 9.87 ± 0.608 11.7 ± 0.741

Dietary ratio of n–6 to n–3 fatty acids
1.4:1 (reference) 11.9 ± 0.804 12.3 ± 0.971
5:1 10.8 ± 0.660 11.5 ± 0.852
9.5:1 8.51 ± 0.596∗∗ 9.75 ± 0.645

1Values are percentage mean ± SEM and represent measures obtained at termi-
nation of the 16-wk feeding trial. Differences were evaluated with additive effects
regression and analyzed separately in males and females. ∗∗Different from the ref-
erence group (P < 0.01) within each dietary lipid component. NS, P > 0.05.

found either positive or no associations between these variables (14, 48,
49). One potential explanation is that only 1 amount of total dietary
lipid was utilized for the diets in previous studies, while results from the
current study reflect a different effect for the ratio of n–6 to n–3 fatty
acids when evaluated across multiple dietary lipid amounts. The neg-
ative association between BM and total dietary lipid in male zebrafish
also conflicted with previous studies in adult zebrafish (26, 27, 29, 50).
However, a similar negative association between growth performance
and amount of total dietary lipid was also observed in juvenile turbot,
halibut, and Sengalese sole, indicating that life stage may significantly
influence the response to dietary lipid (51–53).

Variations in nutrient requirements, utilization, and partitioning
among life stages may influence these differential responses. It has been
suggested that diets composed of 32% protein are sufficient to meet the
growth requirements of older zebrafish, but for juveniles, the require-
ment is higher (40%, or 14 mg ·g BM−1 · d−1 for maximal growth) (54).
While the diets in our study were isonitrogenous, the protein-to-energy
balance differed, which can significantly impact efficiency of protein re-
tention. Previous research has suggested that there is an optimal ratio for
zebrafish (51, 54, 55). Fish consuming the lowest amount of dietary lipid
had the highest growth performance, suggesting that these diets pro-

moted the best feed conversion and protein efficiency ratios. Alterna-
tively, an excess of energy intake and a diet with an improper protein-to-
energy balance may decrease protein gain and retention with deleterious
effects on growth performance, which would provide an explanation for
declining growth as dietary lipid amounts increased in the present study
(54). Juvenile zebrafish consuming diets with a higher lipid content may
not have been able to consume enough protein to meet requirements,
and consequently were smaller than those fed the low-lipid-content di-
ets. Results from our study and previous studies indicate that both life
stage and nutrient ratios should be carefully considered when designing
translational nutrition studies in zebrafish.

Sexual dimorphisms in lipid metabolism and adipose tissue depo-
sition have been observed in both mammals and fish, and are believed
to be primarily regulated by sex hormones (1, 23, 56). Estrogens pro-
mote the allocation of body fat to subcutaneous depots in females,
while testosterone shifts body fat to abdominal and visceral depots in
males. Estrogens have also been observed to protect against weight
gain and increases in adiposity by increasing energy expenditure rates
in humans and mice (4, 50, 56–58). These differences in body fat de-
position and metabolism can potentially contribute to variations be-
tween men and women in the processing and allocation of dietary lipid
(59, 60).

In our study, the ratio of n–6 to n–3 fatty acids was only associ-
ated with total lipid mass in male zebrafish. Consistent with our results,
sex-specific responses to dietary fatty acid composition have also been
described in humans. Dietary fatty acid content has been observed to
have a larger effect on the postprandial lipemia response in men com-
pared with women (57, 59). As visceral fat is associated with an in-
creased risk of cardiovascular disease and metabolic dysfunction in
humans and zebrafish (26, 61, 62), the higher sensitivity to metabolic
disturbances in response to alterations in dietary fatty acid content
could be influenced by the larger proportion of visceral fat in males.
While dietary fatty acid content was not observed to significantly affect
body composition in these short-term studies, another study reported a
positive association between visceral adiposity and the postprandial TG
response in both men and women (60). Therefore, it could be speculated
that, in longer-term studies, acute variations in the postprandial TG re-

TABLE 4 Spawning success of female zebrafish by dietary lipid component and week1

Successful/total
breeding events

Proportion
successful

Estimate2

(SE) P

Total dietary lipid (g/kg)
80 (reference) 72/96 0.75
110 67/96 0.70 − 0.22 (0.33) 0.51
140 57/96 0.59 − 0.70 (0.32) 0.030

Dietary ratio of n–6 to n–3 fatty acids
1.4:1 (reference) 75/96 0.78
5:1 61/96 0.64 − 0.69 (0.33) 0.038
9.5:1 60/96 0.63 − 0.74 (0.33) 0.026

Week
1 (reference) 39/72 0.54
2 51/72 0.71 0.82 (0.36) 0.024
3 50/72 0.69 0.68 (0.36) 0.06
4 53/72 0.74 0.97 (0.37) 0.009

1Assessed over a 4-wk breeding period following termination of the 16-wk feeding trial. Successful events = female released eggs; n = 32 total breeding events per diet.
2Estimates are from the logistic component of zero-inflated negative binomial regression analysis and represent probability of a successful spawn relative to the reference
group within each predictor variable. Significant P values (P < 0.05) represent differences from the reference group.
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FIGURE 2 Effects of total dietary lipid and ratio of n–6 to n–3
fatty acids on reproductive success in female zebrafish. (A, C)
Boxplots for total egg production. (B, D) Boxplots for embryo
viability (ratio of viable eggs/total eggs produced). Data are from
successful breeding events and represent counts from individual
events. Boxes represent the IQR of values (bottom, lower
quartile/25th percentile; center bar, median value/50th percentile;
top, upper quartile/75th percentile). Upper/lower whiskers signify
values within 1.5 IQR of the upper/lower quartiles. Outliers (closed
circles) and mean values (diamond markers) are also shown on
plots. Differences from the reference group within each dietary
lipid component were evaluated with zero-inflated regression
analysis. ∗∗∗Different from 1.4:1 ratio, P < 0.001. NS, P > 0.05.

sponse to dietary manipulation could translate to changes in adiposity
over time (60).

Conversely, a significant association between total dietary lipid and
TLM was only observed in female zebrafish in our study. In mice, previ-
ous studies have demonstrated that males consuming an HFD are more
susceptible to metabolic dysregulation, inflammation, and glucose in-
tolerance (63–65). It could be speculated that this increased sensitivity
in males could result in a stronger drive to adjust feed intake relative to
energy density of the diet, and explain why total dietary lipid was posi-
tively associated with TLM only in females (56).

In vertebrates, TGs are predominantly associated with fat mass stor-
age, with main storage sites including visceral, intramuscular, and sub-
cutaneous depots (28). Analogous to total body lipid, body TG mass
in males was significantly associated with the ratio of n–6 to n–3 fatty
acids. In contrast, body TG mass in females was not influenced by ei-
ther dietary lipid component. We are unsure as to why no significant
effects of diet were observed for TG mass in females, indicating that
additional investigations are needed to further explore these outcomes.
It is also unclear whether the amounts of stored TG mass observed in

our study represent positive or negative effects on health. To answer this
question, healthy levels of adiposity will need to be defined for male
and female zebrafish by evaluating additional markers for health and
fitness.

Reproductive performance is influenced by both dietary lipid quan-
tity and quality in fish and mammals (17, 66–69). In our study, the to-
tal amount of dietary lipid was significantly associated with spawning
rate, but not total egg production or embryo viability. Spawning rate was
observed to be lower in females consuming higher amounts of dietary
lipid. This observation conflicts with studies in channel catfish and the
snakehead murrel, where spawning rate and dietary lipid amount were
positively associated (70, 71). However, the diets of catfish and murrels
differ from zebrafish, resulting in diverse requirements for total dietary
lipid intake. Zebrafish are a predominantly low-trophic-level species
with a lower requirement, and consequently tolerance, for total dietary
lipid intake (72). This lower tolerance may translate to a reduced ability
to effectively utilize large amounts of dietary lipid for energy, resulting
in increased ectopic fat storage (71–73). Previous research in mice has
demonstrated that ectopic fat deposition in ovaries and other tissues re-
sulting from diet-induced obesity initiates a cascade of lipid-induced
programmed cell death known as lipotoxicity (74, 75). Consequently,
female mice fed HFDs exhibit impaired oocyte release and fecundity.
Analogous to mammals, zebrafish express markers associated with lipo-
toxicity in response to HFDs; therefore, higher amounts of dietary lipid
could negatively impact spawning success in female zebrafish through
a similar mechanism (26, 76). The total dietary lipid amounts selected
for this study were presumed to be within a healthy range, which may
provide an explanation for why neither total egg production nor em-
bryo viability were affected. If diets with total lipid amounts outside this
range were included in the study, larger differences in reproductive suc-
cess among diets may have been observed (72).

It has been well established that mechanisms affecting egg release are
influenced by dietary n–6 and n–3 fatty acid intake (67, 77, 78). These
fatty acids regulate and serve as precursors to a group of physiologically
active lipid compounds known as eicosanoids. ARA is a precursor for
proinflammatory series-2 prostaglandins [prostaglandin E2 (PGE2) and
prostaglandin F2α (PGF2a)], while EPA (20:5n–3) and DHA (22:6n–3)
are precursors for the less inflammatory series-3 prostaglandins (PGE3)
(77, 79). Ovaries have a high capacity to generate these prostaglandins,
which affect gonadal steroidogenesis and ovulation in both mammals
and fish (77, 80, 81). The negative association between spawning rate
and ratio of n–6 to n–3 fatty acids observed in our study is supported
by previous studies that evaluated ovulation and egg release in humans
and animal models (6, 66, 67, 73, 78, 79). While production of PGF2a

is necessary for ovulation and spawning behavior in mammals and fish,
administration of PGE2 has been shown to inhibit ovulation (78, 82).
Increasing dietary intake of n–3 fatty acids may enhance ova release by
reducing production of PGE2, potentially through reduced ARA avail-
ability and elevated PGE3 synthesis (79).

Similar to total dietary lipid, the ratio of n–6 to n–3 fatty acids was
not associated with total egg production. However, the significant asso-
ciation between embryo viability and dietary ratio of n–6 to n–3 fatty
acids observed in our study reflects a hormetic dose–response relation.
While the proportions of viable embryos produced by females fed diets
with 1.4:1 and 9.5:1 ratios were similar (76% and 75%, respectively), em-
bryo viability was significantly higher for the 5:1 ratio (87%). Hormetic
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relations have been described in variable intakes of other macronutri-
ents or micronutrients and are believed to occur through a phenomenon
known as “Bertrand’s rule” (83–85). With Bertrand’s rule, an increase in
the intake of a specific nutrient is associated with increasing health ben-
efits until reaching an optimal intake; beyond this optimal intake, fur-
ther increases in intake may lead to adverse health consequences (83,
84). In zebrafish, the 5:1 ratio may represent an optimal intake ratio
of n–6 to n–3 fatty acids for embryo viability, whereas the 1.4:1 and
9.5:1 ratios may represent imbalances in the ratio of n–6 to n–3 fatty
acids.

The dietary ratio of n–6 to n–3 fatty acids may have also in-
fluenced embryo viability through spawning interactions. In teleosts,
prostaglandins also act as pheromones to induce male spawning behav-
ior and fertilization (86). The effects of dietary n–6 and n–3 fatty acids
on prostaglandin production and release in females could influence sig-
naling mechanisms for sperm release, ultimately affecting whether eggs
are fertilized. In addition to their effects on female fish, another study
found that ARA and EPA also modulate steroidogenesis in goldfish
testis (87). However, caution should be exercised in extrapolating re-
sults from these previous studies to effects of dietary n–6 and n–3 fatty
acids on production and release of prostaglandins and steroidogenesis
in males or females, as influences of diet were not considered in either of
these previous studies. Rather, findings from these studies merit further
investigation.

A second factor that may have impacted embryo viability in our
study is the effect of dietary long-chain (LC) PUFAs on oocyte devel-
opment and quality (69). In both mammals and fish, the fatty acid com-
position of the ovaries is significantly influenced by maternal dietary
LC-PUFA intake and is known to influence egg quality (17, 88). In par-
ticular, both n–6 and n–3 fatty acids are required for normal oocyte de-
velopment, and an optimal ratio would improve both egg morphology
and hatching rates (48, 77). In marine species, higher egg quality was
positively associated with increased ARA and DHA/EPA content (89).
However, optimal intakes of dietary n–6 fatty acids and ARA:EPA ra-
tios are likely to be species dependent and influenced by the geography
and ecosystem of the species’ food sources (90). This may explain the
discrepancy between our results and those from previous studies in ma-
rine species. Whether the higher proportion of viable embryos observed
from females fed the 5:1 ratio in our study is attributed to spawning be-
havior, egg quality, or a combination of both is a topic that should be
explored in future studies.

Strengths of our study reside in the use of chemically defined diets
with purified ingredients, the administration of daily rations during the
feeding trial, and the evaluation of sex-specific responses to dietary lipid
composition on obesity-related phenotypes. The duration of the feed-
ing trial allowed us to examine the long-term effects of dietary lipid on
our outcomes of interest. However, our study also had some intrinsic
limitations. We had a female-biased sex ratio of zebrafish in our study
sample, which may lead to aggressive interactions and the production of
dominant individuals that control access to food resources (91). These
behaviors could potentially influence our outcomes evaluated, and in
future studies may be attenuated with an even distribution of males and
females in each tank (91, 92). The time period of our study included the
juvenile life stage of the zebrafish. Inclusion of this life stage may have
potentially confounded effects of the diets on weight gain, as nutrient
requirements and energy allocation differ from the adult life stage (72,

93). Thus, adult zebrafish may be a better choice for translational ap-
plications relating to diet-induced obesity in future studies. Given that
vitamin E content is significantly associated with gonad development,
fertility, and larval survival rate in fish (77), an additional limitation is
that we did not control for variations in vitamin E content between the
safflower and menhaden oils. Finally, a major challenge in all zebrafish
nutritional studies is accurate measurement of feed intake due to the
potential leaching of nutrients in the water (94). While we attempted
to address this issue with administration of a daily ration, the develop-
ment of direct methods for measuring feed intake in zebrafish should
continue to be explored (94).

In summary, while requirements for total intake of dietary lipid and
ratio of n–6 to n–3 fatty acids in both human and animal diets need to
be defined, our results demonstrate that the balance of macronutrients
may be as important as their individual intake. Dietary lipid quality and
quantity exhibited independent and interactive effects on weight gain
and reproductive success, suggesting that maximum benefits from their
intake may be reached only when they are in the appropriate propor-
tions (14). Optimal intakes of dietary lipid may also vary by sex. Our
observations for body composition suggest that processes mediating
the partitioning and utilization of dietary lipid are sexually dimorphic.
Identification of sex-specific physiologic responses to dietary manipu-
lation could lead to improved treatment and prevention strategies for
obesity. Findings from this study and other studies continue to validate
the zebrafish as a high-throughput model to identify underlying mecha-
nisms that contribute to the development of diet-induced obesity, which
will ultimately contribute to the development of sex-specific therapies
(24).
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