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ABSTRACT

Rheumatoid arthritis (RA) is a representative autoimmune disease that is primarily 
characterized by persistent inflammation and progressive destruction of synovial joints. RA 
has a complex and heterogeneous pathophysiology, involving interactions among various 
immune and joint stromal cells and a diverse network of cytokines and intracellular signaling 
pathways. With improved understanding of RA, over the past decades, therapeutic strategies 
have become considerably advanced and now included targeted molecular therapies, such as 
tumor necrosis factor inhibitors, IL-6 blockers, B-cell depletion agents, as well as inhibitors 
of T-cell co-stimulation and Janus kinases. However, a considerable proportion of RA 
patients experience refractory disease and interrupted treatment owing to the associated 
risk of developing serious infections and cancers. In contrast, although IL-1β, IL-17A, and 
p38α play significant roles in RA pathogenesis, several drugs targeting these factors have 
not been approved because of their low efficacy and severe adverse effects. In this review, we 
provide an overview of the working mechanism, advantages, and limitations of the currently 
available targeted drugs for RA. Additionally, we suggest potential mechanistic causes for 
clinically approved and failed drugs. Thus, this review provides perspectives on approaches 
for basic and translational studies that hold promise for identifying future next-generation 
therapeutics for RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a common autoimmune disease that causes persistent 
inflammation, resulting in irreversible joint destruction, which ultimately leads to disability 
and mortality (1,2). Most evidence from immunological and bio-molecular studies points to 
an immune-mediated etiology associated with stromal tissue dysregulation, which together 
propagate chronic inflammation and joint damage in RA. Thus, RA is characterized by the 
complex process of disordered innate and adaptive immune responses, dysregulated cytokine 
and signal transduction networks, and disease-progressing semi-autonomous features of 
joint stromal synovial fibroblasts (3,4).
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Over the past three decades, a comprehensive understanding of RA pathogenesis, by virtue of 
basic and translational research, and the consequent clinical availability of targeted agents, 
has led to a step-change in RA treatment (5). Currently, two types of clinically successful 
targeted drugs for RA exist: i) injectable biologic disease-modifying anti-rheumatic drugs 
(bDMARDs), including TNF-α inhibitors, IL-6 blockers, B-cell depletion agents, and 
inhibitors of T-cell co-stimulation; (2) oral targeted synthetic DMARDs (tsDMARDs), 
including small molecules inhibiting the JAK pathway. Current therapies have led to 
substantial progress toward achieving disease remission and preventing joint deformity in 
patients with RA. Thus, RA is a notable example of successful immunologic and clinical 
attempts, based on tissue culture cells, animal models, and human translational studies, 
which have led to enormous therapeutic advances.

Despite this, at best, these drugs induce significant clinical improvement in less than two-
thirds of patients, most of whom will undergo a relapse of the disease after drug withdrawal 
(1,6). Furthermore, current RA drugs are not curative, nor do they reverse joint destruction. 
Additionally, current targeted therapies can result in a considerable burden of adverse events, 
including serious infection and malignancy, which is a consequence of drug cessation (7,8). 
In contrast, biologic agents blocking IL-1β, IL-17A, and small molecule inhibitors of p38α 
have exhibited disappointing therapeutic results and severe adverse effects in clinical trials, 
even though these targets have meaningful roles in RA pathogenesis. Collectively, these 
findings suggest that further basic and experimental research is required to explore additional 
therapeutic targets responsible for the complete resolution of inflammation while balancing 
efficacy and toxicity. An in-depth understanding and key lessons regarding successful and 
failed targeted agents may provide a novel effective direction for immunobiological research 
regarding feasible and desirable next-generation therapies for RA.

TNF-α
Identification of TNF-α
TNF-α is a potent chemoattractant and inflammatory cytokine that is primarily produced as a 
transmembrane protein that gets cleaved by a TNF-converting enzyme, leading to the release 
of soluble TNF-α (9). TNF-α is predominantly produced by monocyte-derived macrophages; 
however, it is also produced by other cell types, including endothelial cells, cardiac myocytes, 
adipose tissue, fibroblasts, and neurons (10,11). Recently, by combining single-cell 
sequencing and mass cytometry, B cells and T cells have also been identified as major sources 
of TNF-α in the synovium of patients with RA (12). TNF-α has two receptor isoforms, namely, 
TNF receptor 1 (TNFR1) and TNFR2. TNFR1 is expressed on most nucleated cells, whereas 
the expression of TNFR2 is limited to immune cells, such as T cells and myeloid cells, and 
may be associated with the regulatory function of TNF-α (10).

Role of TNF-α in RA
TNF-α is a key cytokine that has multipotent and central roles in RA pathogenesis by activating 
joint resident synovial fibroblasts to release various cytokines and chemokines, while also 
recruiting pro-inflammatory immune cells, including macrophages, monocytes, lymphocytes, 
and neutrophils (10,11). TNF-α also promotes osteoclast differentiation and activity, while 
inhibiting osteoblast differentiation and function (13). Furthermore, TNF-α suppresses Foxp3 
production by Tregs and promotes the differentiation of Th1 and Th17 cells (14,15).

Indeed, several experimental animal studies have supported the crucial roles of TNF-α 
in RA. For instance, human TNF-overexpressing transgenic mice spontaneously develop 
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inflammatory arthritis characterized by joint inflammation and bone erosion, similar to the 
pathologic findings of human RA (16). Moreover, in collagen-induced arthritis (CIA) mice, 
another representative experimental model of RA, blockade of TNF-α efficiently attenuates 
joint inflammation and consequent destruction (17).

Targeting of TNF-α in RA
As TNF-α is a potent pro-inflammatory cytokine with a central role in RA pathophysiology, 
large-scale clinical trials have been conducted to develop several TNF-α inhibitors, including 
infliximab, which was first approved in 1999 (Fig. 1) (18). Infliximab is a chimeric monoclonal 
Ab comprising mouse heavy and light chain variable regions (Fab) combined with human 
heavy and light chain constant Fc regions (19). Infliximab binds to soluble and membrane-
attached TNF-α, effectively inhibiting its binding to TNFR. Subsequently, it blocks Ab and 
complement-dependent responses in cells expressing TNFR (20).

https://doi.org/10.4110/in.2022.22.e8
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Figure 1. Overview of inhibitors targeting cytokines and their specific receptors in RA treatment. Abatacept blocks 
CD80 and CD86 in the interface between APC and T cells. Inhibitors of TNF-α, such as infiliximab, etanercept, 
adalimumab, golimumab, and certolizumab, specifically bind TNF-α. Inhibitors of IL-6, such as tocilizumab and 
sarilumab, prevent IL-6 from binding to its receptor (IL-6Rα). Sirukumab, olokizumab, and clazakizumab are anti-
IL-6 monoclonal Abs that specifically bind IL-6. Secukinumab and ixekizumab are anti-IL-17A monoclonal Abs. 
ABT-122, COVA-322, and ABBV-257 are dual targeting Abs that block both IL-17A and TNF-α. Bimekizumab, ALX-
0761, and RG-7624 target the combination of IL-17A/IL-17F. Anankinra and canakinumab exhibit inhibitory effects 
by directly binding IL-β and IL-1β receptor 1 (IL-1βR1), respectively. The red lines indicate where the inhibitors 
block cytokines or their receptors.
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Etanercept, another TNF-α inhibitor, contains a human soluble TNFR2 conjugated to the Fc 
portion of human IgG1. Etanercept binds to soluble TNF-α and TNF-β, not membrane-attached 
TNF-α, thus interfering with TNF-α binding to its natural receptors on pathologic cells.

Adalimumab is a fully humanized anti-TNF-α monoclonal Ab that binds to both soluble and 
transmembrane TNF-α. Similarly, golimumab is a fully-humanized IgG1 kappa monoclonal 
Ab that binds to the soluble and transmembrane bioactive forms of TNF-α (21). Still further, 
certolizumab is a humanized TNF-α monoclonal Ab Fab fragment linked to polyethylene 
glycol (22); compared with other TNF-α inhibitors, certolizumab elicits minimal adverse 
effects. Moreover, considering that it removes the Fc portion required for active transport 
across the placenta, it is theoretically safer for use during pregnancy (23).

Clinical success and limitations of targeting TNF-α in RA
As bDMARDs, the introduction of targeted therapy against TNF-α has markedly improved 
RA therapy and shifted the primary aim of treatment strategies from symptom control 
to achieving and maintaining RA remission. Although TNF-α inhibitors have achieved 
significant clinical success, several limitations have also arisen. First, the use of TNF-α 
inhibitors is associated with an increased risk of infection, especially tuberculosis (TB). 
TNF-α plays a vital role in the formation of granulomas, which are critical for protection of 
the host from TB. Thus, inhibition of TNF-α prevents granuloma formation and promotes 
the dissemination of TB infection (24). To overcome this issue, physicians can perform a 
latent TB detection test and administer prophylactic TB medication. Second, TNF-α inhibitor 
use is also associated with an increased potential risk of malignancy, such as lymphoma and 
non-melanoma skin cancer. Although a recent meta-analysis has shown that treatment with 
TNF-α inhibitors does not significantly increase the risk of developing malignancies, TNF-α 
exhibits selective cytotoxicity and can induce necrosis of tumor cells. Therefore, the risk 
of malignancy should be considered when prescribing prolonged use of TNF-α inhibitors 
(25,26). Third, a progressive decrease in TNF-α inhibitor efficiency has been reported. This is 
believed to be associated with development of anti-drug Abs (ADAs), the prevalence of which 
ranges from 5% to 20% in RA patients using TNF-α inhibitors (27). To circumvent this issue, 
TNF-α inhibitors are regularly administered in combination with methotrexate (MTX) to 
inhibit ADA production (28).

IL-6
Identification of IL-6
IL-6 was first discovered in 1986 as a secreted component that stimulates Ig production and 
is a multifunctional cytokine with a pivotal role in immunological control, hematopoiesis, 
and inflammation (29). Most immune cells and stromal cells produce IL-6, including 
macrophages, monocytes, T cells, B cells, osteoblasts, fibroblasts, and endothelial cells 
(30). The biological effects of IL-6 are mediated by a fully functional IL-6 receptor (IL-6R), 
which comprises two subunits: a type I cytokine receptor subunit, IL-6Rα (also called 
CD126), and a common signal-transducing-receptor subunit, gp130 (also called CD130) (31). 
Fully functional IL-6R (IL-6Rα/gp130) is primarily expressed in lymphocytes, myelocytes, 
megakaryocytes, and hepatocytes, whereas gp130 is expressed in a wide range of cells (31,32).

IL-6R exhibits three distinct signaling modes: classical signaling, trans-signaling, and trans-
presentation signaling. First, classical signaling is mediated by the membrane-bound IL-6Rα 
(mIL-6Rα) subunit and gp130. IL-6 binds to mIL-6R, leading to the homo-dimerization of 
gp130 and activation of an intracellular signal transduction pathway (32). Second, trans-
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signaling is induced by the soluble form of IL-6Rα (sIL-6Rα). IL-6 binds sIL-6Rα to form the 
IL-6-s-IL6Rα complex, which binds to, and activates signal transduction in cells expressing 
only gp130, such as synovial fibroblasts and endothelial cells (33). Third, trans-presentation 
involves secreted IL-6 binding to mIL-6Rα expressed on dendritic cells (DCs); this complex 
then interacts with gp130 on CD4 T cells. This type of contact is necessary for Th17 cell 
priming (34).

Role of IL-6 in RA
IL-6 has multifunctional roles in RA pathogenesis. In an animal experiment, IL-6 deficiency 
protects against CIA development, whereas neutralizing IL-6 with an Ab improves the CIA 
clinical score (35). Moreover, IL-6 and sIL-6Rα are expressed in the serum and synovial 
fluid of RA patients, the levels of which correlate with disease activity and joint damage 
(36,37). Specifically, recent single-cell transcriptomics revealed that IL-6 is produced by 
T cells, B cells, and synovial fibroblasts within the RA synovium (12). IL-6 promotes Th17 
differentiation, which is critical for inducing joint inflammation and destruction through the 
JAK/STAT pathway (38). Therefore, IL-6 production exacerbates an imbalance in Th17 cells 
and Tregs. Furthermore, IL-6 is essential for B-cell differentiation into memory B cells and 
plasma cells, via affinity maturation and class switching. These memory B cells and plasma 
cells then produce autoantibodies in the RA synovium (39). In addition, IL-6 upregulates 
osteoclastogenesis, which causes bone erosion in RA patients, and VEGF expression, which 
promotes angiogenesis, as well as the recruitment of inflammatory and immune cells into 
the joints (18,40).

Targeting of IL-6 in RA
IL-6 has been multi-directionally involved in the pathogenesis of RA and has become a target 
for RA therapeutics. Tocilizumab (TCZ) is a recombinant humanized anti-IL-6Rα monoclonal 
Ab approved for RA treatment (Fig. 1). TCZ inhibits the binding of IL-6 to mIL-6Rα and sIL-
6Rα, thereby preventing the IL-6-mediated inflammatory signaling cascade (41). Thus, TCZ 
suppresses disease activity and progressive bone erosion in RA patients (42).

Sarilumab, another recombinant humanized anti-IL-6Rα monoclonal Ab, has also been 
approved by the Food and Drug Administration (FDA) for RA treatment. Sarilumab shows 
high efficacy in RA patients with moderate-to-severe activity who do not respond to 
conventional DMARDs (43). Meanwhile, several other biologics, including sirukumab, 
olokizumab, and clazakizumab, that target IL-6, not IL-6R, are currently undergoing clinical 
trials as RA therapeutics (Fig. 1) (44).

Clinical success and limitation of targeting IL-6 in RA
Although TCZ was developed after TNF inhibitors, which had already dominated the market, 
it has exhibited considerable success as a biologic. The tremendous success of IL-6 targeting 
agents for RA treatment may be due to several factors. First, the efficacy of TCZ supersedes 
that of adalimumab in RA patients (45). Second, TCZ monotherapy shows comparable 
clinical efficacy to the combined therapy of TCZ and MTX, whereas anti-TNF-α monotherapy 
demonstrates lower clinical efficacy than anti-TNF-α combined with MTX. This advantage 
of TCZ as a monotherapy is highly attractive as one-third of RA patients develop various 
adverse events to MTX, including nausea, vomiting, skin rash, or aggravation of hepatitis 
and complicated lung diseases. Third, TCZ has low immunogenicity and thus does not 
cause significant ADA production (46). The immunogenicity of ADAs can alter the drug’s 
pharmacokinetics, pharmacodynamics, or other biological activities, thereby impacting the 
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safety and efficacy in RA patients receiving biologics treatment (46). Finally, TCZ inhibits 
pathological IL-6 signaling, which is associated with C-reactive protein (CRP) production. 
Thus, TCZ rapidly decreases CRP levels. High CRP levels in RA patients are associated 
with severe disease activity, whereas a rapid decrease in CRP eventually improves clinical 
outcomes (47).

Despite the clinical success of IL-6 targeting therapy, several considerations must be made. 
IL-6-mediated signaling is also required to mount protective immune responses; therefore, 
blockade of IL-6 increases the risk of infections (48). Moreover, TCZ administration is 
associated with a significantly increased incidence rate of lower gastrointestinal perforations 
(GIP), such as diverticulitis, compared to other conventional synthetic DMARDs and 
bDMARDs, such as TNF-α inhibitors abatacept, and rituximab (48). Therefore, TCZ 
treatment should be prescribed with caution to RA patients so as to minimize these risks.

CD80/CD86, Co-stimulatory molecule
Identification and role of CD80/CD86 and CTLA-4
Immune synapses that are formed between Ag-presenting cells (APCs) and T cells are 
required to initiate immune cascades. T cells require three signals for effector functions and 
differentiation, namely, primary, secondary, and cytokine signaling. The primary signal 
comprises Ag recognition by TCRs. APCs express MHC class II molecules on their surface, 
which present Ags to the TCR on T cells. Secondary co-stimulation-mediated signaling then 
occurs with CD80/CD86, which is upregulated on the surface of APCs and binds to CD28 
on T cells. In fact, CD28 signaling acts synergistically with the TCR complex to activate the 
transcription factors NFAT, NF-κB, and AP-1. Activated T cells differentiate into various 
subsets, such as Th1, Th2, Th17, Tfh, and Treg, based on the cytokines in their surroundings 
(49). Meanwhile, CTLA-4 binds CD80/CD86 with a 100-fold higher affinity than CD28 and 
functions as an inhibitory signal. As such, CTLA4 is a powerful negative regulator of immune 
responses and is highly expressed on Tregs (50).

Targeting of CD80/CD86 in RA
As the APC-T-cell-B-cell immune cascade is implicated in the pathogenesis of RA, a new class 
of treatment was developed to inhibit co-stimulation by binding to CD80/CD86. Abatacept is 
a dimeric fusion protein made up of the CTLA-4 extracellular domain and an IgG Fc region 
(CTLA4-Ig) (51). As such, abatacept inhibits the co-stimulatory signal required for T-cell 
activation and the subsequent production of autoantibodies, which are direct drivers of disease 
activity (Fig. 1) (51). Furthermore, the Fc region of abatacept can bind CD16/CD32, known as 
FcγRIII and FcγRII, to reduce Fc-mediated processes, complement-dependent cytotoxicity, 
and Ab-dependent cellular cytotoxicity (50). Indeed, several clinical studies have reported 
that abatacept exhibits anti-inflammatory effects and radiographic improvement in the MTX-
refractory population. Meanwhile, combined abatacept and DMARD therapy also has valuable 
effects on disease activity in patients with an inadequate response to TNF-α inhibitors (52-54).

Clinical success and limitation of targeting CD80/CD86 in RA
The clinical success of abatacept is likely due to two major factors. First, inhibition of the 
upstream immune synapse, including the APC-T-cell-B-cell axis, by abatacept can minimize 
compensatory pathway activity by inhibiting various downstream cytokines. In this way, 
abatacept also reduces autoantibody production (55). Second, abatacept administration is 
associated with a lower incidence of serious infections in patients with RA, compared to 
other biologics. The reason is hypothesized that the CD28 and CD80/CD86 interaction, a 
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therapeutic target for abatacept, is higher in activated T cells than in naive T cells. Hence, 
with the ever increasing number of elderly patients being diagnosed with RA, abatacept is 
an appropriate treatment option as infection is an important consideration when selecting 
drugs for elderly patients (56).

Despite these advantages, select considerations must be made when administering 
abatacept. Some clinicians may be hesitant to choose abatacept for RA patients, as it is 
slower to reduce disease activity compared to that with other biologics (57). Moreover, 
abatacept can cross the placenta and therefore should be discontinued at least three months 
before preparing for pregnancy (58).

IL-17A
Identification of IL-17A
IL-17A was the first member of the IL-17 cytokine family to be identified and defined. This 
family now includes IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F (59). IL-17A binds to 
IL-17RA and induces recruitment of IL-17RC to form a heterodimeric receptor complex (60). 
IL-17A plays a pivotal role in host defense against extracellular bacterial and fungal infections 
through neutrophil migration at the infection site (61).

Role of IL-17A in RA
The importance of IL-17A in the pathogenesis of RA was determined by identifying the 
increased production of IL-17A in the synovial tissue of RA patients (62,63). IL-17A exhibits 
diverse functions in RA, including NF-κB activation and IL-6 production in synovial 
fibroblasts, augmentation of osteoclastogenesis, as well as enhanced recruitment and 
activation of neutrophils, macrophages, and B cells (64,65). In the CIA model, administration 
of IL-17A in joints promotes arthritis with symptoms similar to those observed in RA patients 
(66). In contrast, inflammatory arthritis is significantly suppressed in IL-17- or IL-17R-
deficient mice. Similarly, administration of IL-17A neutralizing Ab reduces the development 
and progression of arthritis (67,68). Furthermore, the discovery of Th17 cells, an IL-17A-
producing specific CD4 T-cell subset, reinforced the pathogenic roles of IL-17 in RA (69).

Limited clinical success of targeting IL-17 in RA
In a phase I clinical trial, secukinumab and ixekizumab, which are fully human monoclonal 
IL-17A Abs, showed positive clinical responses (Fig. 1) (70,71). However, secukinumab has 
not successfully improved clinical outcomes in two phase II trials conducted in RA patients 
(72,73). In fact, secukinumab exhibited lower efficacy than abatacept in a phase III clinical 
trial (74,75). Thus, despite the promising data from experimental models and phase II clinical 
trials, the clinical efficacy of IL-17A inhibitors in RA has proven insufficient.

Several potential mechanistic causes may account for the limited clinical success exhibited 
by targeting IL-17 in RA. First, IL-17A inhibition alone is insufficient to disrupt the 
inflammatory cascade. IL-17A functions synergistically with other inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6; thus, neutralization of only IL-17A does not inhibit the 
pro-inflammatory effects of TNF-α, IL-1β, IL-6 or initiation of chronic inflammatory cascades 
(76). Nevertheless, IL-17A and IL-17F can synergize with TNF-α; thus, administration of dual 
neutralizing Abs, such as ABT-122, COVA-322, and ABBV-257 (target the combination of IL-
17A and TNF-α) or bimekizumab, ALX-0761, and RG-7624 (target IL-17A/IL-17F), may prove 
more effective than administration of IL-17A mono-blocking Abs (Fig. 1). Second, IL-17A 
may have meaningful roles only in the early phase of RA, not in the established phase. We 
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previously observed an increased abundance of Th17 cells during early, or before, disease 
onset compared to the disease progression phase. Moreover, IL-17A positive Th17 cells 
convert the IFN-γ positive CD4 T cells in the CIA mice (unpublished data). Accordingly, it 
may be interesting that IL-17A blockade may serve as an effective preventive strategy for pre-
RA patients, before arthritis onset. Third, in RA patients, IL-17A expression is heterogeneous, 
with not all patients having high IL-17A levels or Th17 cell populations (77). Fourth, IL-17A 
inhibitors do not only block pathologic Th17 but also regulatory Th17. In patients with RA, 
IL-10-producing regulatory Th17 cells express IL-17 receptors; thus, IL-17A inhibitors may also 
affect IL-10-producing non-pathological Th17 cells (78).

IL-1β
Identification of IL-1β
The IL-1 family comprises 11 members, including IL-1α, IL-1β, IL-18, IL-33, IL-37, IL-38, 
IL-36α, IL-36β, IL-36γ, IL-1 receptor antagonist (IL-1Ra), and IL-36 receptor antagonist (IL-
36Ra). Among them, IL-1β is the most frequently studied cytokine in several inflammatory 
diseases, including RA, gout, systemic-onset juvenile idiopathic arthritis, adult-onset Still’s 
disease, and osteoarthritis (79). IL-1β exhibits pro-inflammatory activities by binding to IL-
1R1, forming a heterotrimeric complex with co-receptor IL-1R3 and triggering recruitment of 
MYD88 and the subsequent kinase cascade (80).

Role of IL-1β in RA
Several animal studies have found that intra-articular injection, or increased expression of 
IL-1β, mediates infiltration of leukocytes and subsequent degradation of cartilage, resulting 
in a severe and aggressive arthritis phenotype, including human RA (81-83). Similarly, 
the presence of IL-1β, and its relevance in arthritis progression, has also been clearly 
demonstrated in RA patients (12,84). Based on this cumulative evidence, the primary role of 
IL-1 in RA pathogenesis is believed to involve innate, rather than acquired, immune responses 
(79). That is, the IL-1β produced by macrophages and monocytes promotes joint destruction 
by induction of osteoclastogenesis and cartilage degradation (80,85).

Limited clinical success of targeting IL-1β in RA
Anakinra (recombinant IL-1 receptor antagonist) and canakinumab (anti-IL-1β Ab) have been 
evaluated for their therapeutic efficacy in RA (Fig. 1) and have demonstrated responses that 
are less potent than those of anti-TNF agents (86,87). In fact, combined therapy of anakinra 
and methotrexate or etanercept also failed to offer any clinical advantages, yet increased 
the risk of associated infection (88). Moreover, administration of anakinra also reportedly 
causes erythema, itchiness, and discomfort at the injection site in some patients. Indeed, 
adverse injection site reactions were the most notable event resulting in the premature 
withdrawal of subjects from various clinical trials (89,90). These limited clinical responses 
and associated adverse events have prompted doubts regarding whether targeting IL-1β in 
RA is an effective strategy. Specifically, the short half-life (4–6 hours) and inconvenience of 
daily administration make anakinra a less favored choice for patients and clinicians in RA 
treatment (91).

p38
Identification of p38
MAPKs consist of 3 major families: ERK, JNK, and p38. ERK and JNK are important for 
cellular proliferation and differentiation and extracellular matrix regulation (92,93). p38 
exists in four isoforms (α, β, γ, and δ) that are widely expressed in not only various immune 
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cells but also stromal cells (94). p38 is activated by various pro-inflammatory cytokines, 
including IL-1β, IL-6, and TNF-α (95) and is mediated by two upstream kinases, MAPK 
kinase 3 (MKK3) and MAPK kinase 6 (MKK6). In turn, phosphorylated p38 triggers signaling 
cascades associated with the expression of various pro-inflammatory molecules (Fig. 2) (96). 
As such, p38 MAPK has attracted attention as a potential target for autoimmune diseases.

Role of p38 in RA
The roles of p38 were first recognized in the investigation of LPS-stimulated monocytes, 
in which p38 was found to be associated with the synthesis of pro-inflammatory cytokines 
(97). Among the four p38 isoforms, α is thought to be the most important in mediating 
inflammation, with several studies supporting a pathogenic function of p38α in arthritis. 
Early in vitro studies demonstrated that the production of IL-1, IL-6, and TNF, key mediators 
of RA, is regulated by p38α (97-99). Meanwhile, deficiency of major upstream kinases of 
p38α, MKK3 or MKK6, ameliorates arthritis severity and cartilage destruction in K/BxN 
serum-transferred mice (100,101). Moreover, in CIA mice, deficiency of MAPKAP kinase 2 
(MK2), the p38α substrate, also contributes to reduced production of IL-1 and TNF as well as 
arthritis severity (102). p38α is also, reportedly, associated with collagen- or TNF-α-driven 
arthritis (103). Meanwhile in RA patients, p38α and γ predominate the synovium in the 
synovial tissue, in particular within the lining layer and vessels (94). Taken together, these 
evidences suggest a critical role for p38α and its signaling cascades in RA pathogenesis.

Limited clinical success of targeting of p38 MAPK in RA
After demonstrating the therapeutic effect of p38 inhibitors in animal models of RA 
(104,105), numerous p38 inhibitors, including VX-745 (106), pamapimod (107,108), 
doramapimod (BRIB 796) (109), talmapimod (SCIO-469) (110), VX-702 (111), and ARRY-
371797 (NCT00729209), were evaluated in clinical trials for RA treatment (Fig. 2). However, 
no significant improvement was reported disease severity or outcome. These disappointing 
clinical results have raised questions regarding the potential associated causes of the failure.

https://doi.org/10.4110/in.2022.22.e8
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Figure 2. Overview of small molecule inhibitors targeting the p38 MAPK pathway and JAK/STAT pathway in RA treatment. Each cytokine receptor recruits and 
activates a specific combination in MAPK and JAK/STAT cascades. Tofacitinib is a pan-JAK inhibitor, selective for JAK3 and JAK1 with minor activity for JAK2 and 
TYK2. Baricitinib is selective for JAK1 and JAK2 and less selective for JAK3 and TYK2.
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First, one of the major limitations of p38 inhibitors is their low efficacy and poor safety 
profile. Together with their limited efficacy in RA treatment, p38 inhibitors are associated 
with high rates of hepatotoxicity—talmapimod (110), pamapimod (107), and doramapimod 
(112), which is the primary cause of patient withdrawal from the clinical trials. Meanwhile, 
infection, skin disorders, and dizziness are also commonly reported adverse effects of p38 
MAPK inhibitors (107,110).

Second, it is unclear whether the α isoform of p38 is the most effective target for RA 
treatment. Although p38α is the best characterized isoform, and its pathological role has 
been well demonstrated in vitro (97-99) and in vivo (100-103), recent data suggest an anti-
inflammatory effect of p38α. For instance, IL-10 production in macrophages requires 
p38α regulation (113). Indeed, evidence also exists regarding the importance of other p38 
isoforms, namely, β and γ. In particular, it has been suggested that p38β regulates the 
synthesis of endothelial chemokines and exhibits pro-inflammatory effects (114). Meanwhile, 
phosphorylated p38γ is also highly expressed in the RA synovium, suggesting a correlation 
between this isoform and RA pathogenesis (94).

Third, the compensatory effect on other kinases caused by blocking downstream p38 must 
also be considered (115). MKK3, MKK6, and TAK1, which regulate p38 upstream, can be 
activated by p38 inhibition, leading to the regulation of NF-κB or redirecting signaling 
cascades (100,116). This suggests that targeting these upstream kinases of p38 may be an 
attractive alternative for RA treatment.

JAK/STAT PATHWAY

Identification of JAK/STAT
The JAK/STAT pathway comprises intracellular tyrosine kinases (TYKs) that have a pivotal 
role in the signaling pathways associated with immune responses. When cytokines, growth 
factors, chemokines, and colony-stimulating factors bind to their cognate receptors, 
receptors dimerize (Fig. 2) causing cross-phosphorylation by JAK (117). Phosphorylation of 
receptor-associated tyrosine residues offers docking sites for STAT proteins. Phosphorylated 
STAT forms a dimer, translocate to the nucleus, and regulates gene expression (117). Humans 
have 4 different JAKs: JAK1, JAK2, JAK3, TYK2, and 7 STATs, including STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, and STAT6 (118).

Role and targeting of JAK/STAT in RA
Cytokines, such as IFN-γ, IL-6, IL-12, IL-17A, and GM-CSF play a crucial role in RA. These 
cytokines regulate gene expression via the JAK/STAT pathway in immune cells as well 
as synovial fibroblasts (117). Hence, the JAK/STAT pathway is strongly involved in RA 
pathophysiology and is a target of RA treatment. The essential cytokines impacted by the 
JAK/STAT pathway include the interferon family, IL-2, IL-4, IL-6, IL-7, IL 10, IL-12, IL-23, 
GM-CSF, G-CSF, erythropoietin (EPO), thrombopoietin (TPO), leptin, and growth hormone 
(Fig. 2). JAKs and STATs combine to generate complex multimers that affect the immune 
system and hematopoiesis in a variety of biochemical and physiological ways (119). In fact, 
JAK deficiencies, or genetic gain of functions of other JAKs, can cause several diseases. 
Specifically, genetic mutations in JAK1 can lead to lymphoid malignancy, while genetic 
mutations in JAK2 can lead to myeloproliferative disease (120). JAK3 congenital deficiency 
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is strongly associated with severe combined immunodeficiency (SCID), whereas STAT3 
congenital deficiency is linked with hyper-IgE syndrome (120).

JAK inhibitors are small molecules and the newest class of tsDMARDs for RA treatment. 
Tofacitinib was the first targeted synthetic, reversible, and non-selective JAK inhibitor 
that was FDA approved for the treatment of RA. The structure of tofacitinib and most JAK 
inhibitors, mimics ATP and competitively binds to the ATP-binding site in the TYK domain 
(119). Tofacitinib is a pan-JAK inhibitor that has a high degree of selectivity for JAK3 and 
JAK1; however, it exhibits minimal activity for JAK2 and TYK2 (119). The phase III trial of 
tofacitinib demonstrated a significantly higher clinical response and limited joint damage 
progression in patients administered tofacitinib compared to MTX monotherapy (121). 
Meanwhile, administration of tofacitinib with MTX exhibited similar efficacy to adalimumab 
with MTX (122).

Baricitinib is more selective for JAK2 and JAK1 compared to JAK3 and TYK2. Baricitinib also 
successfully passed four phase III clinical trials during the approval process. In the RA-BEGIN 
trial, baricitinib monotherapy exhibited superior efficacy compared to MTX monotherapy 
(123). Meanwhile, in the RA-BEAM trial, baricitinib demonstrated superior clinical efficiency 
and reduced radiographic progression compared to adalimumab (124).

Upadacitinib is a second-generation JAK inhibitor with increased selectivity for JAK1 
over JAK2, JAK3, and TYK2 (125). In all five pivotal clinical trials, upadacitinib showed 
significantly higher rates of remission and low disease activity compared to the placebo, 
methotrexate, or adalimumab (126).

Clinical success of targeting JAK/STAT in RA
JAK inhibitors are a rapidly-growing therapy option for RA therapy. There are several 
potential reasons for this success. First, they provide a targeted oral medication with efficacy 
comparable to that of TNF inhibitors (122,124). In particular, their oral formulations make 
them a convenient and appealing treatment option for patients with RA. Second, JAK 
inhibitors block upstream signal transduction, unlike the p38 MAPK inhibitor, which is 
a small molecule with high associated clinical failure (119). Moreover, it is stable against 
the activation of compensatory pathways, which can occur when downstream signaling is 
blocked. Third, JAK inhibitors modulate dysregulated metabolism by inducing oxidative 
phosphorylation while reducing glycolysis, thus offering opportunities for restoring synovial 
homeostasis by direct targeting of aggressive RA synovial fibroblasts (127). Finally, the 
essential cytokines for RA pathophysiology operate through various JAK/STAT pathways; 
thus, JAK inhibitors simultaneously interfere with signaling pathways across multiple 
cytokine axes.

However, several adverse events can occur by inhibition of multiple JAK/STAT pathways. The 
representative risk is hematopoietic toxicity, which is presumed to be caused by JAK2 inhibition.

CONCLUSION

In this review, we identified that selection of the proper therapeutic target is crucial for the 
clinical success of targeted drugs in RA, such as cytokines with multipotent and pleiotropic 
activity and kinases in upstream immune synapse or upstream signal transduction 
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pathways (Table 1). Moreover, the success of targeted drugs may be the result of several 
potential factors, including convenience of treatment, balancing efficacy and safety, and 
cost. Additionally, as we have suggested regarding JAK inhibitors, direct suppression of 
aggressive synovial fibroblasts may also contribute to the success of RA drugs. In particular, 
the immunopathologic contribution of tumor-like synovial fibroblasts to arthritis relapse 
following discontinuation of drugs appears highly significant in RA; the stromal origin 
of these cells may render them resistant to current immune-targeted therapies. Thus, 
we predict that combining an immune-targeted agent with a synovial fibroblast-directed 
therapy might increase the rate of RA remission without increasing the risk of infection 
and cancer development. Collectively, the integration of proper targets based on lessons 
learned from clinically approved or failed drugs, as well as tandem targeting of pathologically 
relevant immune and stromal cell subsets, is critical to designing effective RA therapies. 
This approach may facilitate new research directions to achieve curative measures without 
additional side effects and recurrences for RA patients.
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