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Abstract

Context

MicroRNA (miRNA) regulate post-transcriptionally the expression of osteogenesis and

angiogenesis associated genes and emerge as potential non-invasive biomarkers in vascu-

lar and bone diseases. Severe abdominal aortic calcification (AAC) is associated with higher

risk of cardiovascular event and of fragility fracture.

Objective

To identify miRNA linked to the aggravation of AAC and to incident osteoporotic fracture.

Design

Postmenopausal women (>50 years) with available serum at inclusion and data for each

outcome (Kauppila score and incident fracture) were selected from the OFELY prospective

cohort. We conducted a case-control study in 434 age-matched women, 50% with incident

osteoporotic fracture over 20 years of follow-up and a second study in 183 women to explore

AAC over 17 years.

Methods

Serum expression of three miRNA involved in vascular calcification and bone turnover regu-

lation (miRs-26a-5p,-34a-5p, and -223-5p) was quantified at baseline by TaqMan Advanced

miRNA technology and expressed by relative quantification. Outcomes were the association

of miRNA levels with (1) incident osteoporotic fractures during 20 years, (2) AAC aggrava-

tion during 17 years.

Results

MiRNA level was not associated with incident fractures (miR-26a-5p: 1.06 vs 0.99, p = 0.07;

miR-34a-5p: 1.15 vs 1.26, p = 0.35; miR-223a-5p: 1.01 vs 1.05, p = 0.32). 93 women had an

increase in Kauppila score over 17 years while 90 did not. None of the miRNAs was associ-

ated with an aggravation in AAC (miR-26a-5p: 1.09 vs 1.10, p = 0.95; miR-34a-5p: 0.78 vs

0.73, p = 0.90; miR-223-5p: 0.97 vs 0.78, p = 0.11).
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Conclusions

Circulating miR-26a-5p, -34a-5p and -223-5p are not significantly associated with incident

fracture and AAC aggravation.

Introduction

Although osteoporosis and cardiovascular disease are traditionally viewed as separate disease

entities, increased cardiovascular risk is significantly associated with the risk of fragility frac-

ture in hips and vertebrae [1–3]. Both conditions share an increase in prevalence with aging

and other risk factors such as menopause, smoking, alcohol consumption and low physical

activity [4,5].

Abdominal aortic calcification (AAC) is assessed by semi-quantitative score on spine radio-

graphs and spine scans obtained by Dual-Energy X-ray Absorptiometry (DXA). Severe AAC is

associated with a higher risk of major cardiovascular event [5–9]. The fine regulation of arterial

vessel calcification involves hormones, cytokines, calcium deposal, other bone remodeling fac-

tors, and the differentiation of vascular smooth muscle cells to osteoblast-like cells [6–10].

Severe AAC reflecting poor cardiovascular health status and disturbed blood flow in the vascu-

lar system is also associated with lower bone mineral density (BMD), faster bone loss and a

higher risk of major fragility fracture [11–14]. This fracture risk remains increased after adjust-

ment for BMD and other potential risk factors. Severe AAC is also related to increase in verte-

bral fracture in older men [15].

Biological factors such as bone morphogenetic proteins, osteoprotegerin, receptor activator

of nuclear factor κB ligand, parathyroid hormone, phosphate, oxidized lipids and vitamins D

and K are altered in both diseases [16]. A better knowledge of the mechanisms underlying the

association between AAC and fracture risk would lead to the identification of biological mark-

ers in individuals who are both at higher risk of cardiovascular event and osteoporotic

fracture.

MicroRNAs (miRNAs) are small endogenous regulatory RNAs that influence many physio-

logical and pathophysiological processes by acting as epigenetic key actors in the regulation of

gene expression [17]. Numerous studies have reported the miRNA-mediated regulation of

bone development and homeostasis through their activity in osteoblastogenesis and osteoclas-

togenesis [18,19]. Some specific miRNAs that are actors in bone micro-architecture and fragil-

ity are also involved in the pathogenesis of cardiovascular diseases, including angiogenesis and

the vascular calcification process [20–23]. Thus, miRNAs may regulate bone disease (osteopo-

rosis) and vascular calcification, two processes that share some pathogenetic mechanisms. Fur-

thermore, the level of circulating miRNAs in biofluids would reflect the alteration in the

patient tissues. In osteoporotic patients, miRNA level in serum has been associated to alter-

ations of bone metabolism, decreased bone mass and risk of fractures [24,25]. Circulating

miRNAs appear as promising non-invasive biomarkers [26]. In regard to their short length

and association with proteins and exosomes, miRNAs resist to RNAse digestion and to multi-

ple freeze-thaw cycles and present elevated stability in frozen samples across the years [27].

We conducted the study to clarify the link between cardiovascular risk and osteoporosis in

a well-characterized cohort of women and to find a common determinant to these two pathol-

ogies. Cardiovascular risk and osteoporosis are assessed by factors easy to use in clinical prac-

tice. The purpose of this study was to find out whether the levels of specific circulating

miRNAs might provide information on the cardiovascular risk, evaluated with CAA, and the

microRNA, bone and aortic calcification
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incidence of osteoporotic fracture in postmenopausal women over 20 years of follow-up.

Three miRNAs (miRs-26a-5p, 34a-5p, and 223-5p) have been selected for their previously

reported activity on both the cardiovascular and bone systems. Their potential association

with the progression of AAC and the risk of fractures has been investigated by analyzing

miRNA concentrations in the serum of patients from a nested case-control analysis of the pro-

spective OFELY cohort.

Material and methods

Study design and subjects

We conducted two studies in women from the OFELY cohort (Fig 1). The OFELY cohort (Os

des FEmmes de LYon) is an ongoing prospective study of the determinants of bone loss [28].

It included 31–89 year-old women, recruited between February 1992 and December 1993, and

randomly selected from the affiliates of a French health insurance company (Mutuelle Génér-

ale de l’Education Nationale) with an annual follow-up. Available blood samples at inclusion,

radiographic scores of AAC at inclusion and at year 17 and the knowledge of incident fractures

in the course of 20 years were selection criteria of these post-menopausal women.

To study the association between miRNA expression and incident osteoporotic fracture, we

conducted a case control analysis with 217 women with incident fragility fracture and 217 age-

matched women without incident fragility fracture over 20 years. To study the link between

miRNA expression and the progression of AAC, we conducted an analysis among the 183

women with available data of AAC over 17 years. Written informed consent was obtained

from each participant and the study was approved by the local ethics committee (Comité de

Protection des Personnes Sud-Est II).

Clinical parameters

Women completed a written health questionnaire at baseline, including medical history,

tobacco use, medication use, fall(s) in the course of the past 12 months, and occurrence of

radiologically confirmed low-trauma fractures [29]. Height and weight were measured and

body mass index (BMI) was calculated (kg/m2).

Moreover, bone mineral density (BMD) was measured by DXA with a QDR 2000 device

(Hologic, Waltham, MA, USA) at the lumbar spine and the total hip at baseline. The T-score

was calculated from the HOLOGIC France references values.

Blood sample collection and biochemical measurements

Blood samples were collected between 8:00 and 9:30 a.m. after an overnight fast. Serums were

aliquoted in 1mL tubes and then stored frozen at –80˚C until assayed. The macroscopical anal-

ysis at time of blood sampling assessed for serum quality with none of the serum affected by

haemolysis. Only two serums had fibrin at time of extraction. At inclusion time, a number of

parameters were measured in morning fasting blood samples including, Osteocalcin (ng/ml),

N-terminal propeptide of type I collagen (PINP) (ng/ml), Bone alkaline phosphatase (BAP)

(ng/ml), C-telopeptide of type I collagen (sCTX-I) (ng/ml), Calcium (mg/l), Phosphate (mg/l),

Creatinine (mg/l), globular filtration rate (GFR MDRD) (ml/min/1.73m2), 25-hydroxychole-

calciferol (25-OH Vitamin D) (ng/ml) and parathyroid hormone (PTH) (pg/ml). The bone

turnover markers (Osteocalcin (ng/ml), PINP (ng/ml) and sCTX-I (ng/ml)) were measured in

serum by automated tests (Elecsys N-MID osteocalcin, Elecsys PINP and Elecsys b-Crosslaps,

respectively; Roche Diagnosis, Meylan, France). BAP (ng/ml) was measured by Elisa (Metra

BAP EIA kit, Quidel Corporation, USA). Creatinine was measured, and GFR MDRD was

microRNA, bone and aortic calcification
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Fig 1. Study design.

https://doi.org/10.1371/journal.pone.0216947.g001
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calculated using a modified kinetic method and the Chronic Kidney Disease Epidemiology

Collaboration, respectively [30]. 25-OH Vitamin D (ng/ml) was assessed by radioimmunoas-

say (DiaSorin, Stillwater, USA) after acetonitrile extraction. PTH (pg/ml) was measured using

a human specific two-site immunochemiluminescence assay (ELECSYS, Roche, Indianapolis,

IN, USA). Calcium (mg/l) and Phosphate (mg/l) were measured by colorimetric assay.

Fracture evaluation

Incident non-vertebral and clinical vertebral fragility fractures, all confirmed by radiographs

or surgical report were reported at every annual follow-up. For women who did not come to

the Clinic for their annual evaluation, a letter was sent annually to identify the occurrence of

any fracture. Only low trauma fractures (i.e., those occurring as a result of falls from standing

height or less) were taken into account in this analysis, and we excluded fractures of fingers,

toes, skull, and face. Vertebral fractures were also assessed in women aged 50 years and over at

the inclusion in the study confirmed on lateral X-ray films of thoracic and lumbar spine at

baseline and every 4 years, and after 19 years on DXA (Hologic Discovery, HOLOGIC Inc;

Bedford, MA) using Vertebral Fracture Assessment software (VFA). They were identified with

the semiquantitative method of Genant et al [31] by a trained physician (ESR).

Assessment of abdominal aortic calcification

AAC were measured on lateral spine radiographs using the Kauppila score. The Kauppila

score is a 24-point semi quantitative score, used to quantify the presence and severity of AAC.

Calcifications are scored (0 to 3 points) on the 8 segments of the aortic abdominal wall accord-

ing to their length, and these scores are summed to obtain a 24-point score [32].

The score was evaluated at inclusion and after 17 years of follow-up by a single reader

(MEP). Reproducibility was assessed using 30 radiographs and calculated using the intraclass

correlation coefficient (ICC). The intra-reader reproducibility was excellent (ICC = 0.968, IC

95% [0.935–0.984]). The inter-reader agreement was assessed, with a reader (PS) trained to

AAC for Kauppila scoring. It was also excellent (for the 1st scores ICC = 0.967, 95%CI: 0.933–

0.984 and for the 2nd scores ICC = 0.953, 95%CI 0.906–0.977).

A methodology of missing Kauppila score data was established. As AAC do not decalcify,

unavailable data were replaced by “0” if the Kauppila score at subsequent follow-up was 0.

Data were considered unavailable if the radiographs were missing or low quality. Radiographs

were considered of good quality if the X-ray projection was the one expected (lateral lumbar

spine radiograph), if the lower endplate of T12 and the superior endplate of S1 were viewable,

and if the distance in front of the anterior vertebral wall was sufficient. In the absence of AAC,

this distance was considered sufficient if the measure was at least of 2.5 cm from the middle of

the vertebral body, for an anteroposterior length of the vertebral body of 4 cm. In the presence

of AAC, radiographs were considered of low quality if the anterior vascular wall was not visible

in its entirety from L1 to L5.

An increase of>1 point in Kauppila score (Δ Kauppila >1) was retained to define AAC

aggravation over 17 years.

Quantification of circulating miRNAs

Preselection of miRNAs. To identify candidate miRNAs linked with increased risk of

AAC aggravation and incident osteoporotic fracture, a first miRNA selection was done by

computational prediction of their target genes using TargetScan and from experimentally vali-

dated target genes using MiRWalk database. From this, three miRNAs (miRs-26a-5p, 34a-5p,

and 223-5p) were selected based on their known regulatory functions in vascular calcification

microRNA, bone and aortic calcification
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and bone metabolism and on previously reported experimental animal research and clinical

trials (Table 1).

MiRNA quantification. Total RNA was extracted from 200μl serum with the miRCURY

Biofluids extraction kit of (Exiqon) according to manufacturer recommendations. Samples

were thawed on ice and centrifuged at 3,000g for 5 minutes. A lysis buffer solution containing

1μl of glycogen as RNA carrier and a synthetic spike-in control RNA (cel-miR-39-3p) as inter-

nal control was added to the serum. After cellular lysis and protein precipitation, supernatant

was placed on a silica micro-column and treated with rDNAse. RNA was eluted with 40 μl

RNAse/DNAse-free water (Invitrogen) and stored at -80˚C.

MiRNAs were quantified by TaqMan Advanced miRNA technology (Applied Biosystems,

ThermoFisher Scientific). The first analytical step consists of the universal reverse transcrip-

tion (RT) to prepare cDNA from 2μl of total RNA using a TaqMan Advanced miRNA cDNA

synthesis kit. Briefly, the kit uses 3’ poly-A tailing and 5’ ligation of an adaptor sequence for

each end extension of the mature miRNAs present in the sample, prior to RT. Universal RT

primers anneal to the universal sequences present on both the 5’ and 3’ extended ends of the

mature miRNAs. Quantification of miRNAs expressed at low copy number was improved by

14 cycles of cDNA amplification in a 2X TaqMan PreAmp master mix containing Megaplex

PreAmp primers.

The qPCR amplification was performed on 1:10 dilution of cDNA obtained by miR-Amp

reaction on 5 μl of the RT reaction, using the 2X Fast Advanced Master Mix and the 20X Taq-

Man Advanced miRNA Assays. These TaqMan Advanced miRNA assays (Table 2) contain

pre-formulated primers and TaqMan MGB (minor groove binder) probes that allow the

recording of fluorescence signal in the PCR reaction. The MicroAmp Fast Optical 96-Well

Reaction Plates (ThermoFisher) were designed for the quantification in duplicate of seven

miRNAs on the QuantStudio 7 flex (Applied Biosystems) according to the manufacturer’s

Table 1. Potential activity of candidate microRNAs in bone-related disease and aortic calcification.

MiRs Target gene�

(nucleotide site in

3’UTR)

Regulatory function In vitro and animal study Clinical relevance Ref

miR-

26a-5p

-CTGF
(38–44 ; 7 merA1)

-BMP/SMAD1 (46–53 ;

8mer) (103–109 ;

7merA1)

# in vascular diseases angiogenesis,

myocardial infarct size and improve heart

function

# osteoclastic differentiation

# in rat cardiac hypertrophy

# vascular smooth muscle cell

calcification

# calcification related-genes

(BMP2, SMAD1,2, ALP)

# in aortic valve calcification and stenosis [33–

37]

miR-

34a-5p

-PPP1R10
(822–828 ; 7–8 mer)

-TGIF2
(90–97 ; 8 mer)

-JAG1
(1302–1308 ; 7–8 mer)

"Age-induced cardiac cell death

#Osteoclastogenesis

#osteoblast differentiation

" cardiac dysfunction after

myocardial infarction

# bone resorption, bone mass

# in vivo bone formation of

human stromal stem cells.

Antagomir therapeutic improves aging

cardiac dysfunctions and stimulates

osteoblast differentiation

Attenuates osteoporosis

# Therapeutic strategy for enhancing bone

formation

[38–

41]

miR-

223

-SCARB1
(575–582 ; 8 mer)

-FCGR1A
(141–147 ; 7–8 mer)

-NFIA
(811–818 ; 8 mer)

#HDL-cholesterol uptake, biosynthesis,

cholesterol efflux

#proliferation and " apoptosis in vascular

wall

" Inorganic Phosphate-induced-

osteoclastogenesis and osteoclast

differentiation

"HDL-cholesterol, hepatic and

total plasma cholesterol in KD

mice

" in serum and atherosclerotic

vascular walls

#atherosclerotic lesions in mice

#levels in serum, blood cells of

chimeric-KD-mice

Modulate the balance osteoblast-

like/ osteoclast-like

Biomarker for altered cholesterol

homeostasis

"levels in serum from Kawasaki disease

# in serum from patients with chronic

kidney disease

Treatment to reverse vascular calcification

without altering bone structure in

CKD-MBD

Provide new therapeutic target for

atherogenesis

[42–

47]

�: The target genes are indicated with the nucleotide position of the seed region in the 3’-UTR (according to Target Scan). " # are for up- and -down regulation

respectively.

https://doi.org/10.1371/journal.pone.0216947.t001
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protocol. The CT (threshold cycle value) was recorded as the cycle number at which the fluo-

rescence generated within a reaction crosses the fluorescence threshold, a fluorescent signal

significantly above the ROX fluorescence background recorded in each sample [48].

The miRNA level was expressed by relative quantification according the following formula:

Relative quantification = 2–ΔΔCT, with ΔCT = (CT miRNA–CT mean of the 3 endogenous con-

trols) and ΔΔCT = (ΔCT of the miRNA –ΔCT mean of the miRNA through all samples). Data

were normalized with the mean of expression level of three endogenous miRNAs: hsa-miR-

191-5p, hsa-miR-222-3p and hsa-miR-361-5p, that are known to be ubiquitously expressed

and without reported impact on cardiovascular diseases or bone. The exogenous spike cel-

miR-39-3p was used as a qPCR quality control (Table 2).

Statistics. The baseline characteristics of the women are presented as mean ± SD for con-

tinuous variables and proportion of patients (%) for categorical variables. Chi-squared tests

and Wilcoxon tests were used to compare women with and without incident fracture. In order

to identify the association between miRNAs and the risk of incident fracture or the aggravation

in Kauppila score, we performed a logistic regression using quartiles of relative quantification

for each miRNA.

All results are expressed in median [interval interquartile] or mean +/- SD. All statistical

analyses were performed using Stata 12 (StataCorp LP, College Station, Texas, USA).

Results

Clinical characteristics

In the first study, we have selected the 217 women who had incident fragility fracture over 20

years of follow-up and age-matched them with a random sample of non fractured women (63

[57–72] years old). Fractured women were significantly thinner than controls (body

weight = 59.2 [52.8–64.4] vs 60.6 [54.6–67.6] kg, p = 0.04; and BMI = 23.2 [21.3–25.5] vs 24.2

[22–27.2] kg/cm2, p = 0.006) (Table 3).

In the second study, 183 women were included to examine the link between the aggravation

in AAC and the miRNA expression, 93 with and 90 without an aggravation in Kauppila score

during the 17 years of follow-up (respectively 58 [55–61] and 55 [53–58] years old, respec-

tively). Weight and BMI were not significantly different between both groups (Table 4).

Associations between miRNA expression and incident fracture

Levels of miR-26a-5p, miR-34a-5p and miR-223-5p in patient serum were not significantly dif-

ferent between women with or without incident fracture (Table 3).

Table 2. Identification of the candidate microRNAs, of the three endogenous normalizer microRNA used and of the spike quality control of the analysis.

miR Base ID NCBI Accession Number TaqMan Advanced miRNA Assay (ID) Sequence of the mature miRNA

5’————————— 3’

hsa-miR-26a-5p MIMAT0000082 477995_mir UUCAAGUAAUCCAGGAUAGGCU

hsa-miR-223-5p MIMAT0004570 477984_mir CGUGUAUUUGACAAGCUGAGUU

hsa-miR-34a-5p MIMAT0000255 rno481304_mir UGGCAGUGUCUUAGCUGGUUGU

hsa-miR-191-5p MIMAT0000440 477952_mir CAACGGAAUCCCAAAAGCAGCUG

hsa-miR-222-3p MIMAT0000279 477982_mir AGCUACAUCUGGCUACUGGGU

hsa-miR-361-5p MI0000760 481127_mir UUAUCAGAAUCUCCAGGGGUAC

cel-miR-39-3p MI0000010 478293_mir UCACCGGGUGUAAAUCAGCUUG

All the nomenclature is according to miRBase V21 and the TaqMan Advanced miRNA Assays are from Applied Biosystems.

https://doi.org/10.1371/journal.pone.0216947.t002
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The increase in one quartile of miRNA quantification was not associated with the risk of inci-

dent fracture, with or without adjustment for BMI and Total Hip BMD (adjusted OR (95%CI) for

miR-26a-5p: 1.18 (0.99–1.41); miR-34a-5p: 0.88 (0.73–1.05); miR-223-5p: 0.98 (0.82–1.17)).

Associations between miRNA expression and aggravation of AAC

The Kauppila score increased from 0 [0–0] to 2 [0–5] over17 years.

Women with AAC aggravation were significantly older, by about 3 years (p<0.0001). MiR-

26a-5p, miR-34a-5p and miR-223-3p were not significantly linked to the aggravation in AAC

(Table 4). The increase in one quartile of miRNA quantification was not associated with AAC

aggravation, with or without adjustment for age and Kauppila score at baseline (adjusted OR (95%

CI) for miR-26a-5p: 0.93(0.69–1.27); miR-34a-5p: 0.97 (0.71–1.34); miR-223-5p: 1.13(0.81–1.57)).

Discussion

This analysis from the OFELY cohort showed that the serum concentrations of three micro-

RNAs involved both in the regulation of bone turnover and vascular calcification were not sig-

nificantly associated with incident fractures and progression of AAC.

Table 3. Baseline demographic and biological characteristics of cases (with incident fracture) versus controls (without incident fracture), and miRNA quantifica-

tion (median [interval interquartile]).

Cases (n = 217) Controls (n = 217) P values

Age (years) 63 [57–72] 63 [57–72] 0.93

Weight (kg) 59.2[52.8–64.4] 60.6 [54.6–67.6] 0.04

Height (cm) 158 [154–162] 158 [154–162] 0.50

BMI (kg/m2) 23.2 [21.3–25.5] 24.2 [22–27.2] 0.006

Total Hip T-score -1.7 [-2.3- -1.0] -1.16 [-2.0- -0.3] <0.0001

Lumbar Spine T-score -1.9 [-2.6- -1.1] -1.0 [-1.8- -0.3] <0.0001

Smokers, n(%) 17 (8) 14 (6) 0.58

Fallers in the past year, n(%) 75 (35) 88(41) 0.20

Prior Fx, n(%) 32(15) 44(20) 0.13

Osteoporosis treatments, n(%)a 36(17) 39(18) 0.70

Comorbidity, n(%)b 50(23) 42(19) 0.35

Cardiovascular diseases, n(%) 45(21) 39(18) 0.47

Osteocalcin (ng/ml) 12.7 [10.2–16.2] 12.1 [10.0–15.6] 0.29

PINP (ng/ml) 45.7 [34.6–60.5] 45.1[33.0–64.1] 0.88

Bone BAP (ng/ml) 11.8 [9.4–14.7] 12.2 [9.6–15.0] 0.33

sCTX-I (ng/ml) 0.51 [0.3–0.6] 0.46 [0.3–0.7] 0.27

Calcium (mg/l) 93 [91–95] 93 [91–95] 0.20

Phosphate (mg/l) 34 [32–37] 34 [32–37] 0.28

Creatinine (mg/l) 9.4 [8.5–10.2] 9.3 [8.7–10.3] 0.78

GFR (MDRD) (ml/min/1.73m2) 63.9 [58.2–71.9] 64.2 [58.0–71.1] 0.82

25-OH Vitamin D (ng/ml) 32 [23–41] 34.5 [23.5–45.5] 0.24

PTH (pg/ml) 31.6 [23.1–39.3] 29.8 [24.2–39.8] 0.84

miRNA (Relative quantification)

miR-26a-5p 1.06 [0.85–1.27] 0.99 [0.85–1.17] 0.07

miR-34a-5p 1.15 [0.53–1.87] 1.26 [0.60–2.07] 0.35

miR-223-5p 1.01 [0.68–1.43] 1 .05 [0.72–1.56] 0.32

a hormonal replacement therapy
b Diabetes mellitus, thyroid or parathyroid disorders, renal insufficiency, rheumatoid arthritis, gastric or intestinal surgery, malignancy and stroke

https://doi.org/10.1371/journal.pone.0216947.t003
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Studies from our group [3,15,49] and others [11–14,50] have previously demonstrated the

association of AAC with bone fragility, two processes that share common pathogenetic mecha-

nisms in men and women from various populations, especially in the elderly [51,52]. More

specifically, in postmenopausal women, the aggravation in AAC score is linked to the increase

in bone resorption in particular when BMD is inversely linked to AAC score [5,12,13]. The

connection of AAC with poor bone status, higher risk of fracture and bone loss has been con-

sistently reported in cohorts after adjustment for numerous shared risk factors, mainly age,

lifestyle, co-morbidity, hormones, vitamin D status and medications that influence both

pathologies [53]. For example, severe AACs are linked to a greater prevalence of vertebral frac-

ture after adjustment for age and BMI, and a greater number of vertebral fractures has been

shown in older men, after adjustment for BMD and other variables [15].

Epigenetic factors interfere with the “calcic paradox”, a common determinant of AAC and

bone fragility where cardiac valves calcify and bone decalcifies. At the transcriptomic level, the

calcification of the aortic media is regulated by calcium deposal, inorganic phosphate and

bone-related factors. In this study we looked for epigenetic factor as a single assessment of

Table 4. Baseline demographic and biological characteristics of 183 women with versus without an aggravation in Kauppila score during 17 years of follow-up

(median [interval interquartile]) and miRNA quantification (median [interval interquartile]).

Aggravation in Kauppila score (n = 93) No aggravation in Kauppila score (n = 90) P value

Age (years) 58 [55–61] 55 [53–58] <0.0001

Weight (kg) 56.8 [51.4–63.6] 56.6 [52.2–60.6] 0.79

Height (cm) 158 [156–162] 160 [156–163] 0.23

BMI (kg/m2) 22.5 [20.9–24.9] 22.3 [20.9–23.7] 0.36

Total Hip Tscore -1.2 [-1.9- -0.5] -1.1 [-1.6- -0.4] 0.47

Lumbar Spine Tscore -1.5 [-2.4- -1.1] -1.5 [-2.1- -0.2] 0.27

Smokers, n(%) 8(9) 3(3) 0.13

Fallers in the past year, n(%) 25(27) 21 (23) 0.58

Prior Fracture, n(%) 2(2) 1(1) 0.58

Osteoporosis treatments, n(%)a 26(28) 33(37) 0.21

Comorbidityb, n(%) 20(19) 22(23) 0.77

Cardiovascular diseases, n(%) 9(10) 5(6) 0.29

Initial Kauppila score >0, n(%) 36 (39) 6(7) <0.0001

Osteocalcin (ng/ml) 11.8 [10.1–14.8] 12.6 [9.5–15.8] 0.41

PINP (ng/ml) 46.4 [35.9–57.3] 46.7[35.6–62.4] 0.49

Bone AP (ng/ml) 11.8 [8.7–13.9] 11.7 [10.0–14.4] 0.53

sCTX-I (ng/ml) 0.51 [0.3–0.7] 0.52 [0.3–0.6] 0.78

Calcium (mg/l) 93 [91–95] 93 [91–95] 0.28

Phosphate (mg/l) 35 [32–37] 33 [31–37] 0.25

Creatinine (mg/l) 9.2 [8.5–10.1] 9.3 [8.6–9.8] 0.57

GFR (MDRD) (ml/min/1.73m2) 66.7 [59.5–72.5] 66.8 [61.3–72.6] 0.36

25-OH Vitamin D (ng/ml) 38 [28–47] 38 [29–45] 0.81

PTH (pg/ml) 28.1 [23.1–37.8] 28.6 [22.7–35.4] 0.65

miRNA (Relative quantification)

miR-26a-5p 1.09 [0.94–1.28] 1.10 [0.89–1.30] 0.95

miR-34a-5p 0.78 [0,46–1.21] 0.73 [0.38–1.50] 0.90

miR-223-5p 0.97 [0.69–1.22] 0.78 [0.56–1.22] 0.11

a hormonal replacement therapy
bDiabetes mellitus, thyroid or parathyroid disorders, renal insufficiency, rheumatoid arthritis, gastric or intestinal surgery, malignancy and stroke

https://doi.org/10.1371/journal.pone.0216947.t004
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AAC and fracture risk that could identify patients for prevention and treatment of cardiovas-

cular and bone disorders. Therefore, we have designed the study to assess the risk factors that

are shared by both conditions. Two groups of patients have been selected in the well-character-

ized OFELY cohort: a sizeable control sample of women differing significantly only for inci-

dent fracture and a second group of women with available data to explore AAC over 17 years

of follow-up. Secondly, we used miRNA level in serum as an easily accessible epigenetic

marker to assess the dysregulation of gene expression in both diseases.

Aberrant miRNA signaling alters bone homeostasis and contributes to the progression of

bone disorders. Among these, miR-26a-5p, 34a-5p, 125b-5p, 145-5p, 146a-5p, 221-5p and 223-

5p regulate the transformation of smooth muscle to vascular cells and participate to calcifica-

tion by interacting with osteoblasts and osteoclasts [22,23,33,34]. Therefore, based on their

mRNA targets, known regulatory function and clinical relevance, we have selected miR-34a-

5p, miR-26a-5p and miR-223-5p as common potential biomarkers of these diseases.

MiR-26a-5p is known to alter pathological angiogenesis by targeting BMP/SMAD 1 signal-

ing (bone morphogenic protein/SMAD1) [35] and impaired angiogenesis in diabetic dermal

wound healing [36]. Administration of miR-26a-5p inhibitor to mice increases SMAD1

expression, induces angiogenesis, reduces myocardial infarct size, and improves heart function

[37]. Aortic stenosis decreased miR-26a-5p expression in patients undergoing aortic valve

replacement compared to those with aortic insufficiency, suggesting a decrease in valvular aor-

tic calcification. Although the impact of miR-26a-5p on bone itself is poorly reported, CTGF

expression and BMP/SMAD1 pathway are involved in osteoclastic differentiation and these

pathways also impact on osteoblastogenesis [19,35]. In vitro, miR-26a-5p inhibited vascular

smooth muscle cell calcification by regulating the expression of CTGF, OPG, RANKL and

ALP [34]. MiR-34 family has been consistently reported to interfere with cellular regulation of

bone homeostasis. Mir-34a decreased osteoclastic differentiation by targeting several pathways

including NFATc1 or Tgif2 [38]. Transgenic mice overexpressing miR-34a had a lower bone

resorption and higher bone mass while miR-34a knock out in mice showed higher bone

resorption and reduced bone mass. Other studies, in triple knock-out mice for miR-34a, b and

c confirmed that the loss of function of miR-34 induces higher bone resorption [39]. The over-

expression of miR-34a inhibited osteoblastic differentiation of human stromal stem cells, and

conversely, in vivo bone formation was increased in case of miR-34a deficient human stromal

stem cells [40], with JAG-1, a ligand for Notch 1 as a potential target of miR-34. By inhibiting

osteoblast differentiation and in vivo bone formation, miR-34a is a major actor of the calcic

paradox. However, on the cardiac site, age is a crucial determinant of miR-34a activity since

cardiac expression of miR-34a increases with age in mice. MiR-34a deficient mice had lower

age-induced apoptosis of cardiomyocytes and a better cardiac function [41] and miR-34a inhi-

bition was linked to lower cell death and fibrosis after acute myocardial infarction, with

improvement of myocardial function recovery. One of the pathways suggested is PNUTS (pro-

tein phosphatase 1 (PP1) nuclear targeting subunit) also known as PPP1R10, with a reduction

of telomere shortening and age-associated DNA damage responses [41]. In our study we

found abundant levels of the miR-223 mature forms in serum, of the initially described miR-

223� (-3p) and of its hairpin counterpart, miR-223-5p. This high miRNA expression would

improve the specificity and reproducibility of their measurement in serum. This increased the

potential of miR-223, that has been associated to inflammation, atherogenesis, vascular calcifi-

cation, cardiovascular and bone disease, to be a biomarker in these pathologies [33,42,43]. The

genetic ablation of miR-223 in mice increased HDL-cholesterol and plasma total cholesterol

by coordinating transcriptional control of several genes in lipoprotein and cholesterol metabo-

lism [44]. MiR-223 expressed in bone marrow-derived blood cells is secreted in serum and

enters the endothelial and vascular smooth muscle cells to act as an endocrine genetic signal in
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vascular injury. It may provide a novel mechanism for vascular complication in Kawasaki dis-

ease [45]. Although the role of miR-223 in osteoclastogenesis is controversial, its expression is

affected during osteoclastogenesis [46]. Inorganic phosphate decreased the miR-223 level and

osteoclastogenesis by affecting the expression of NFIA and RhoB in human osteoclasts and cal-

cifying vascular smooth muscle cells. In chronic kidney disease, miR-223 increased in serum

patients, reflecting changes of bone and calcification pathways [47].

Circulating mir-26a-5p, miR-34a-5p and miR-223-5p were not significantly different

between women with or without incident fracture. A difference in the clinical characteristics

of our cohort might explain the discrepancy between these results and previous studies

[3,25,54,55]. Here, the study was designed to include 434 age-matched women with and with-

out fractures during the 20 years of follow-up and to eliminate the confounding factors that

may not be related to the miRNA influence in the two pathologies. The level of serum miRNA

is associated with aging in a wide range of physiological processes and diseases including sar-

copenia [55]. In our first study, cases and controls do not differ by parameters such as bone

markers, calcium, phosphate, PTH and 25-OH vitamin D. The two groups differed signifi-

cantly in BMI and weight but the associations were the same after BMI-adjustment. We

hypothesize that biomarker studies associating circulating miRNA levels to bone fragility and

fractures that are reported in smaller sample sizes of patients did not exclude some of these

confounding factors.

Circulating miR-26a-5p, miR-34a-5p and miR-223-5p were not significantly linked to AAC

aggravation over 17 years and age-adjusted OR was not significant either. None of these miR-

NAs was associated to the aggravation of Kauppila score in comparable size samples of women

that experienced similar comorbidity, cardiovascular disease and prior fractures. The weakness

of our study may rely on the evaluation of AAC with standard radiographs, as radiographs are

less sensitive than other methods like computed tomography (CT) that may detect smaller cal-

cifications. Using quantitative CT, AAC may be evaluated with the Agatston score that relies

on the calcic density of the vascular wall, giving a more precise evaluation than standard radio-

graphs. This method, however, delivers more radiation, is more expensive and more difficult

to use in daily practice. We have also reported that the severity of AAC is positively associated

with vertebral fracture in older men [15]. Prospective studies confirm the association between

baseline AAC severity and prospectively assessed fracture risk in both sexes [3]. In the present

study, women presented low Kauppila scores, and a mild aggravation on 17 years of follow-up.

Women included here might not be a representative sample to study the association of cardio-

vascular events with fracture. We have also to consider that the serum concentration of these

three miRNAs might not adequately reflect miRNA-induced epigenetic regulation taking

place at cellular level in bone and vascular wall [55]. Although serum utilization is suitable for

clinical research, miRNA secreted by cells and tissue microenvironment induce changes in

miRNA profiling that are confined to extracellular vesicles such as exosomes and lipoproteins,

when released into the blood stream [55,56]. Subtle modification within the bulk of miRNAs

might be difficult to assess from an analytical point of view, limiting use in clinical settings.

In conclusion, serum concentrations of three selected miRNAs, miR-26a-5p, -34-5p and

-223-5p were not associated with incident fractures nor with AAC aggravation in a large sam-

ple of women from the OFELY cohort. These miRNAs are unlikely to become biomarkers of

clinical use.
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