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Abstract: MgZnO bulk has attracted much attention as candidates for application in optoelectronic
devices in the blue and ultraviolet region. However, there has been no reported study regarding
two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement
effect. Here, using density functional theory calculations, we investigated the phase stability,
electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range
from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure
with various Mg concentrations. The phase segregation occurring in bulk systems has not been
observed in the monolayer due to size effect, which is advantageous for application. Moreover,
MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg
concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct
to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher
than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks.
Our results may provide guidance for designing the growth process and potential application of
MgZnO monolayer.
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1. Introduction

Two-dimensional (2D) materials present rather unique and exceptional properties due to the
restrictions of size in one dimension and emerging 2D confinement effects. Moreover, they are easier to
fabricate into complex structures than in 1D state. The discovery of 2D graphene has led to the intense
interest in other 2D materials with novel properties [1]. ZnO displays a direct and wide band gap, large
exciton binding energy, and strong piezoelectricity, and is widely applied in blue/UV light-emitting
diodes, photocatalysts, sensors, and so on [2–5]. As the allotrope of superior bulk ZnO, the 2D
ZnO sheet logically triggers the scientists’ interest [6–16]. The 2D ZnO sheet was firstly theoretically
predicted by Freeman, where Zn and O atoms are arranged in planar sheet like in the hexagonal
BN monolayer [6]. Experimentally, Tushce et al. were the first to synthesize two-monolayer-thick
ZnO(0001) films on Ag(111) substrate, which provided a direct evidence for the presence of planar
ZnO sheets [7]. Very recently, in situ observations of free-standing graphene-like ZnO monolayer has
been reported [9]. These provide a platform to design ZnO monolayer-based new functional devices.

Band gap modulation in ZnO monolayer is very important for designing its optoelectronic devices.
To date, however, there is few reported study regarding this aspect [16]. For ZnO bulk and thin films,
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previous studies indicate that modulation of band gap could be realized through the doping of a metal
element in ZnO. Among various dopants, Mg can be easily doped in ZnO for its similar radius and
electronic shell to Zn atom. Many properties of ZnO can be modulated by doping of Mg. For example,
Mg doping can increase the band gap, which is critical to the application in blue and ultraviolet
region [17]. Therefore, MgZnO is an important element for the realization of band gap engineering
to create barrier layers and quantum wells in ZnO-based optoelectronic devices. Recently, many
researchers devoted great efforts to the study of the fundamental physical properties of MgZnO
alloys [18–21]. Many theoretical studies and experimental researches on Mg-doped ZnO have achieved
a reasonable understanding of the action of doping on crystalline and structures, as well as their optical
and electronic properties [22,23]. Moreover, considerable effort has been devoted for the fabrication
and characterization of ZnO/MgZnO multiple quantum wells as well as superlattice [24] by molecular
beam expitaxy [25], metal-organic vapor-phase epitaxy [26], and pulsed laser deposition [27]. Up to
now, most of the existing research on MgZnO focused on bulk and thin films forms [28–36]. To the
best of our knowledge, there have not been any previous investigations on the MgZnO monolayer in
spite of its unique structure and properties different from their bulk counterpart. Moreover, it is worth
noting that in the case of bulk material, the phase segregation between ZnO and MgO was observed
for Mg concentration x > 0.36 due to the different crystal structures and large lattice mismatch between
ZnO and MgO [37]. Thus, the high Mg content single phase wurtzite MgZnO is difficult to be obtained.
ZnO bulk is wurtzite structure while 2D ZnO monolayer exhibits graphene-like structure. Since
dimensionality is a known factor deciding structure and properties of material, it is of fundamental
interest to investigate whether phase segregation can occur in these 2D materials and further to find
their phase stability phenomena, which may be different from those in bulk materials.

Therefore, the present study is dedicated to investigate the phase stability, electronic structure, and
optical properties of MgxZn1−xO (x = 0.0625, 0.125, 0.25, 0.5, 0.75, 1) monolayer with Mg concentration
x range from 0 to 1 by means of first principles calculation. Our results show that different from
bulk system, the phase segregation has not been observed in the monolayer due to size effect.
Moreover, MgZnO monolayer exhibits interesting tuning of the band gap and optical properties
with Mg concentration. Our results may provide guidance for designing the growth process and
potential application of MgZnO monolayer.

2. Calculational Methods

First-principles calculations are based on the density functional theory and the plane wave method
as implemented in the CASTEP code [38]. The interaction between ions and electron is described
by ultrasoft pseudopotentials [39]. The cutoff energy for the plane wave basis set is set to 400 eV.
The Monkhorst-Pack grid of 4 × 4 × 1 is adopted for the brillouin zone integration. The calculations are
carried out with spin-polarization and each system is fully relaxed. In all calculations, the convergence
criteria for changes in energy, maximum force, and maximum displacement are 1.0 × 10−5 eV/atom,
0.03 eV/Å and 0.001 Å, respectively. The MgZnO monolayer systems are modeled using a periodic
boundary condition applied in two directions by the supercell method. Along the direction
perpendicular to the MgZnO monolayer, 15 Å of vacuum is included to avoid interaction of periodic
images. The models of 4 × 4 supercell for ZnO monolayer with one or two Zn atoms replaced by
Mg atoms correspond to 6.25 and 12.5 at % of Mg in MgZnO monolayer, respectively. The models of
2 × 2 supercell for ZnO monolayer with one to four Zn atoms replaced by Mg atoms correspond to 25,
50, 75, and 100 at % of Mg in MgZnO monolayer, respectively. Standard DFT calculation generally
underestimates the energy gap of ZnO system. In our previous study [16], we used the DFT+U method
to overcome the band-gap problem, in which the Hubbard parameter of U is added to both Zn 3d and
O 2p orbits (Ud,Zn = 10 eV and Up,O = 7 eV). The calculated band gap of 3.36 eV for ZnO bulk is in
good agreement with experimental results [2]. Therefore, taking the same U parameters, the electronic
structure and optical property of MgZnO monolayer have been calculated in this work.
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3. Results and Discussion

3.1. The Pristine ZnO Monolayer

To investigate the properties of MgZnO monolayer, the structural and electronic properties
of pristine ZnO monolayer are necessary to be calculated. Starting from a structure cut from the
ZnO wutrztie crystal and terminated with the (0001) polar surface, atomic relaxations from the DFT
calculations indicate that ZnO monolayer stabilizes in a hexagonal BN structure, as shown in Figure 1a.
Unlike fourfold coordinate Zn and O atoms in the bulk wurtzite structure, each atom in the monolayer
is three-fold coordinated, consistent with earlier theoretical predication. The calculated Zn-O bond
length in monolayer ZnO is 1.91 Å, which is lower than the corresponding bond length in bulk
ZnO of 2.01 Å. Regarding of electronic structure, the calculated band structure and density of states
of ZnO monolayer are shown in Figure 1b,c, respectively. The band structure indicates that the
pristine ZnO monolayer is a nonmagnetic semiconductor and retains the direct band gap characteristic
of their wurtzite bulk. Our DFT+U calculations give a band gap of 4.08 eV, which is more close
to the experimental value of 4.50 eV than those obtained in previous DFT calculations [10,40,41].
The improvement for the prediction of band gap of ZnO monolayer in present work than previous
studies is attributed to that U values are included for both Zn 3d and O 2p orbits. Moreover, it should
be pointed out that the band gap of pristine ZnO monolayer is enlarged with respect to the bulk ZnO
band gap (3.37 eV). This phenomenon is confirmed due to quantum confinement effects from both
theoretical and experimental aspects [42,43]. Moreover, from density of states (DOS) of pristine ZnO
monolayer shown in Figure 1c, it can be seen that the valence bands near the Fermi level are dominated
by O 2p states and the conduction bands are mainly ascribed to the states of O 2p and Zn 4s states.
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Figure 1. The structural and electronic properties of pristine ZnO monolayer: (a) relaxed structure; 
(b) band structure; (c) DOS. 

Figure 1. The structural and electronic properties of pristine ZnO monolayer: (a) relaxed structure;
(b) band structure; (c) DOS.
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3.2. Phase Stability of MgZnO Monolayer

It is generally regarded that in the case of MgZnO bulk material, the phase segregation between
ZnO and MgO was observed for Mg concentration x > 0.36 due to the different crystal structures and
large lattice mismatch. This phase segregation significantly limits the application of MgZnO material.
Considering that dimensionality is a known factor deciding structure and properties of material,
it is of fundamental interest to investigate if phase segregation can occur in 2D MgZnO monolayer.
In order to find their phase stability phenomena, the formation energies (∆E) of MgZnO monolayer
with various Mg concentrations are calculated, as shown in Table 1. The formation energy is defined as
follows: ∆E(x) = E(MgxZn1−xO) − {x E(MgO) + (1 − x) E(ZnO)}, where E(MgxZn1−xO), E(MgO), and
E(ZnO) are the total energies per supercell of the relaxed monolayer, respectively [44,45]. The negative
formation energy means the formation of the monolayer is thermodynamically favorable from the
constituents at their stable bulk structures. In terms of all Mg concentration, their formation energies
are negative. So we concluded from the formation energies calculations that MgZnO monolayer
can possibly be synthesized by the experimental methods, and this MgZnO monolayer should be
thermodynamically stable against the phase separation in the corresponding bulk material. For the
bulk system, pure ZnO bulk prefers the wurtzite crystal structure, while MgO bulk adopts the cubic
rocksalt structure. Therefore, in the case of MgZnO bulk material, the phase segregation between ZnO
and MgO was observed due to the different crystal structures and large lattice mismatch. In contrast
to bulk system, our formation energies calculations show that MgZnO monolayer including both
ZnO and MgO monolayer can keep hexagonal BN structure (graphene-like structure). Indeed, our
calculations show that the formation energy of MgO monolayer is far more favorable than other
cases. Moreover, the phase stability of MgO monolayer has been verified by other investigations
as well [46,47]. Both our studies and previous investigations demonstrate that ZnO monolayer and
MgO monolayer exhibit the same hexagonal BN structure. We inferred that this is the internal reason
why the phase segregation did not occur in the monolayer. These results demonstrate that 2D ZnO
materials exhibit significantly different phase stability phenomena compared to their bulk counterparts
and would be useful for designing the growth process and application of MgZnO monolayer.

Table 1. The structural parameters and formation energies for MgZnO monolayer.

Composition
Bond Length (nm) Bond Angle (◦) ∆E (eV)

dZn-O dMg-O θO-Zn-O θO-Mg-O

0 at % Mg 0.1910 — 120 — 0
6.25 at % Mg 0.1906 0.1897 119.37 120 −2.7302
12.5 at % Mg 0.1910 0.1906 117.79 118.63 −5.4635
25 at % Mg 0.1911 0.1902 119.37 119.91 −0.6607
50 at % Mg 0.1925 0.1899 119.061 119.19 −1.4450
75 at % Mg 0.1912 0.1912 — 119.59 −2.3109
100 at % Mg — 0.1881 — 120 0

Furthermore, the structural parameters for MgZnO monolayer with various Mg concentrations
after the structural optimizations have been listed in Table 1. The relaxed structures of MgZnO
monolayer are shown in Figure 2. It can be seen that the calculated bond lengths between Mg atoms
and the nearest-neighbor O atoms are slightly smaller than that of the Zn-O bond length. The calculated
Mg-O bond length different from the Zn-O bond length is due to the different ionic radius between Zn
and Mg atoms. The O-Mg-O bond angle is approximately 119◦. Considering the O-Zn-O bond angle is
120◦ in the pristine ZnO monolayer, it can be known that Mg doping distorts the bond angle slightly.
The above results show that all the lattice structure MgZnO monolayer with different Mg concentration
after geometric optimization still keeps graphene-like structure as that of pristine ZnO monolayer.
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3.3. Electronic Structure of MgZnO Monolayer

Figure 3 shows the band structure of MgZnO monolayer with various Mg concentrations. It is
found that the valence band maximum in MgZnO monolayer is always at the Fermi level and it has no
obvious shift with Mg doping. However, the bottom of the conduction band shifts to a higher energy
side with increasing Mg concentration. The bottom of the conduction band mainly consists of Zn 4s
states. When the Mg concentration increases, the Zn 4s states at the bottom of conduction band become
weaker, resulting in the shift of conduction band and band gap widening. We summarize the results
for band gap versus Mg concentration for MgZnO monolayer, as shown in Figure 4. Overall, there is a
monotonous increase of band gaps with increasing Mg concentration, which is similar to the previous
study of MgZnO bulk. Particularly, a direct to indirect band gap transition is observed for MgZnO
monolayer when Mg concentration is higher than 75 at %. In the case of Mg concentration lower than
75 at %, MgZnO monolayer remains a direct band gap semiconductor with both the top of valence band
and the bottom of the conduction band located the G point, which is similar to that of pristine ZnO
monolayer. However, when Mg concentration is higher than 75 at %, the band structure of MgZnO
monolayer transforms to indirect band with the valence band maximum (VBM) and the conduction
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band minimum (CBM) located at K and G symmetry points, respectively. This study for MgZnO
monolayer has provided a simple route to systems in which band gap engineering from a direct to and
indirect band gap semiconductors is possible. Moreover, it is well known that the energy levels close
to the Fermi level generally play main roles in the electrical and optical properties of materials, so we
focus the VBM and CBM. As shown in Figure 3, with increasing Mg concentration, the shape of the
bottom conduction band gradually becomes more parabolic (or spherical) with increasing Mg content
and the width of the top valence band is narrowed gradually. The shape of bottom conduction band is
usually related to the effective mass of electrons. The change of bottom conduction band shape would
affect the effective mass of electrons. So the electrical properties of MgZnO monolayer may be tuned
by Mg concentration.

Materials 2016, 9, 877 6 of 12 

 

band gap engineering from a direct to and indirect band gap semiconductors is possible. Moreover, 
it is well known that the energy levels close to the Fermi level generally play main roles in the 
electrical and optical properties of materials, so we focus the VBM and CBM. As shown in Figure 3, 
with increasing Mg concentration, the shape of the bottom conduction band gradually becomes 
more parabolic (or spherical) with increasing Mg content and the width of the top valence band is 
narrowed gradually. The shape of bottom conduction band is usually related to the effective mass of 
electrons. The change of bottom conduction band shape would affect the effective mass of electrons. 
So the electrical properties of MgZnO monolayer may be tuned by Mg concentration. 

-4

-2

0

2

4

6

8

Spin downSpin up

E
ne

rg
y 

(e
V

)

G K M G

(a)

 

K M G

 

-4

-2

0

2

4

6

8

Spin up

E
ne

rg
y 

(e
V

)

 

Spin down
(b)

G K M G K M G

 

-4

-2

0

2

4

6

8

E
ne

rg
y 

(e
V

)

 

(C)
Spin downSpin up

 

 

G K M G K M G

 

 

    

-4

-2

0

2

4

6

8

Spin downSpin up

E
ne

rg
y 

(e
V

)

 

G K M G

(d)

 

K M G

 

-4

-2

0

2

4

6

8

Spin downSpin up

E
ne

rg
y 

(e
V

)

 

 

G K M G K M G

(e)

-4

-2

0

2

4

6

8

 

 

M G K

(f)
Spin downSpin up

E
ne

rg
y 

(e
V)

 G K M G 

 
Figure 3. The band structures of MgxZn1−xO monolayer (a) x = 0.0625; (b) x = 0.125; (c) x = 0.25;  
(d) x = 0.5; (e) x = 0.75; (f) x = 1. 
Figure 3. The band structures of MgxZn1−xO monolayer (a) x = 0.0625; (b) x = 0.125; (c) x = 0.25;
(d) x = 0.5; (e) x = 0.75; (f) x = 1.
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Figure 4. The band gap of MgZnO monolayer versus Mg concentration.

The density of states (DOS) is an important part of the electronic property of semiconductor
materials. Furthermore, the total DOS (TDOS) and partial DOS (PDOS) of MgZnO monolayer are
presented in the Figure 5. It can be seen that the total DOS of MgZnO monolayer is similar to those of
pristine ZnO monolayer. The valence bands come mainly from the O 2p and Zn 3d states, whereas
the conduction bands originating from the Zn 4s and Mg 2p states. It is worth noting that Mg 2p
states are higher than that of Zn 4s states in energy position. With increasing Mg concentration, the
CBM determined by Zn 4s and Mg 2p states shifts to high energy range obviously while the VBM
determined by O 2p states nearly remains unchanged. This is the main reason for the increase of the
band gap in the MgZnO monolayer with increasing Mg concentration. Moreover, the Zn 3d states
decreased slightly with increasing Mg concentration in the MgZnO monolayer. It is well known that
the Mg has no occupied d orbit, thus Mg incorporation decrease the hybridization between the Zn 3d
and O 2p states. Moreover, it is found that the O 2p and Zn 3d states become increasingly localized
with a narrower band width with increasing Mg concentrations. The enhanced localization in the O 2p
and Zn 3d states indicates more ionic character in MgZnO monolayer, which also benefits the increase
of the band gap.
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3.4. Optical Properties of MgZnO Monolayer

In general, the optical properties of semiconductor are closely related to their electronic structures
and are of great importance to its application. Thus, we investigate the optical properties of MgZnO
monolayer. The imaginary part ε2 (ω) of the dielectric function can be calculated from the momentum
matrix elements between the occupied and unoccupied wave functions and the real part ε1 (ω) of the
dielectric function can be evaluated from the imaginary part by the Kramer-Kronig relationship [48].
The absorption coefficient can then be obtained from ε1 (ω) and ε2 (ω). It is known that the imaginary
part ε2 (ω) of the dielectric function is very important for any materials, thus for MgZnO monolayer
are presented in Figure 6. It can be seen that there are three main peaks in for MgZnO monolayer
with different Mg concentrations. In the case of pristine ZnO monolayer, the first peak at 4 eV should
mainly be caused by the transition between O 2p states in the highest valence band and Zn 4s states in
the lowest conduction band, which is related to the direct band gap. The second peak at 8 eV can be
due to the transition between the Zn 3d and O 2p states. The weak peak at 14 eV is mainly derived
from the transition between the Zn 3d and O 2s states. The main effect of Mg doping lies in that the
first peak due to the optical transition between the Zn 4s and O 2p states obviously shifts toward
the high energy side with increasing Mg concentration, indicating that the band gap is increasing.
Moreover, the strength of the first peak obviously decreases with the increase of Mg concentration.
This is due to that the increase of Mg concentration corresponds to decrease of Zn 4s states, resulting in
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the decrease of transition between the VBM and CBM. Furthermore, we have calculated the absorption
coefficient of pristine ZnO monolayer and MgZnO monolayer, as shown in Figure 7. The changes of
line shapes, energy positions, and strengths of the peaks of absorption spectrums with the increasing
Mg concentration are similar to those of the imaginary part of the dielectric function. Particularly,
it is worth noting that compared to pristine ZnO monolayer, the optical absorption edge of MgZnO
monolayer has a clear blue-shift to a shorter wavelength region with increasing Mg concentration,
which may have potential application for designing ultraviolet optoelectronic devices. The blue-shift
of the absorption edge could be ascribed to the increase of band gap induced by Mg incorporation.
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4. Conclusions

In conclusion, we report for the first time the first-principles investigations of phase stability,
electronic structure, and optical properties of MgZnO monolayer. It is found that the phase segregation
occurred in bulk system has not been observed in the monolayer due to size effect. MgZnO monolayer
keeps the graphene-like structure with various Mg concentrations. Interestingly, MgZnO monolayer
exhibits interesting tuning of electronic structure and optical properties with Mg concentration.
The band gap increases with increasing Mg concentration. Particularly, a direct to indirect band
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gap transition is observed for ZnMgO monolayer when Mg concentration is higher than 75 at %.
Furthermore, we also found that Mg doping leads to a blue shift of the optical absorption peaks.
These results may provide guidance for the potential application of MgZnO monolayer in ultraviolet
optoelectronic devices at nanoscale.
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