Molecular Cell, Volume 39

Supplemental Information

E. coli SbcCD and RecA Control Chromosomal Rearrangement Induced by an Interrupted Palindrome

Elise Darmon, John K. Eykelenboom, Frédéric Lincker, Lucy H. Jones, Martin White, Ewa Okely, John K. Blackwood, and David R. Leach

Supplemental Experimental Procedures

DNA techniques

Procedures for DNA purification, agarose gel electrophoresis and transformation of competent *E. coli* cells were carried out as described by Sambrook *et al.* (Sambrook et al., 1989). Enzymes were from New England Biolabs, Roche Molecular Biochemicals or Promega Life Science. Reactions were carried out according to manufacturer's instructions.

The pTOFmhpREcoRI plasmid was used to introduce an EcoRI cleavage site into the *mhpR* gene. Two amplified fragments in the *mhpR* region were ligated, after PCR-mediated coupling, into the chromosomal integration and excision plasmid pTOF24. The upstream fragment of 463bp was amplified from *E. coli* MG1655 using primers 2DEcoRI-F1 and 2DEcoRI-R1. The downstream fragment of 430bp was amplified from *E. coli* MG1655 using primers 2DEcoRI-F2 and 2DEcoRI-R2. Notably, primers 2DEcoRI-R1 and 2DEcoRI-F2 permitted the introduction of a unique EcoRI restriction site at the centre of the PCR-mediated coupling of these two PCR fragments. This 865bp final PCR product was cloned between the PstI and SalI sites of plasmid pTOF24, resulting in the kanamycin sensitive pTOFmhpREcoRI plasmid.

The pDL2038 plasmid was used to introduce an 85bp palindrome into the lacZ gene. A 513bp fragment containing the 85bp palindrome was amplified by PCR, using primers pal-CF2 and pal-CR1 and the KOD polymerase (Novagen), from the bacteriophage λ containing del85 isolated by Pinder and collaborators (Pinder et al., 1998). The 85bp palindrome was excised by digestion with EcoRI and cloned into the MfeI restriction site of the chromosomal integration and excision plasmid pLacD1, resulting in the kanamycin sensitive pDL2038 plasmid. The presence of the palindrome in the plasmid was verified by PCR using primers lac-SF1 and seq-SR1.

The pTOF<cynXhomol> plasmid was used to remove the *tetO* array [240x*tetO*(Gm^R)] from the *cynX* gene. A fragment of 974bp was amplified by PCR from the *E. coli* chromosome using primers TetO-CF1 and TetO-CR2. This fragment was digested by PstI and NheI restriction enzymes and cloned between the PstI and XbaI sites of the chromosomal integration and excision plasmid pTOF24, resulting in the kanamycin sensitive pTOF<cynXhomol> plasmid.

The pTOFruvC plasmid was used to introduce an in-frame deletion of the *ruvC* gene. Two amplified fragments in the *ruvC* region were ligated, after PCR-mediated coupling, into the pTOF24 plasmid. The 429bp-upstream fragment and the 439bp-downstream fragment were amplified from *E. coli* MG1655 using primer pairs ruvC-KO-F1/ruvC-KO-R1 and ruvC-KO-F2/ruvC-KO-R2, respectively. The 844bp PCR-mediated coupling of these two fragments was cloned between the PstI and SalI sites of plasmid pTOF24, resulting in the kanamycin sensitive pTOFruvC plasmid.

The pTOFrecD plasmid was used to introduce an in-frame deletion of the *recD* gene. Two amplified fragments in the *recD* region were ligated, after PCR-mediated coupling, into the pTOF24 plasmid. The 458bp-upstream fragment and the 472bp-downstream fragment were amplified from *E. coli* MG1655 using primer pairs recD-KO-F1/recD-KO-R1 and recD-KO-

F2/recD-KO-R2, respectively. The 906bp PCR-mediated coupling of these two fragments was cloned between the PstI and SalI sites of plasmid pTOF24, resulting in the kanamycin sensitive pTOFrecD plasmid.

The pTOFsbcB plasmid was used to introduce an in-frame deletion of the sbcB gene. Two amplified fragments in the sbcB region were ligated, after PCR-mediated coupling, into the pTOF24 plasmid. The 466bp-upstream fragment and the 438bp-downstream fragment were amplified from *E. coli* MG1655 using primer pairs sbcB-KO-F1/sbcB-KO-R1 and sbcB-KO-F2/sbcB-KO-R2, respectively. The 880bp PCR-mediated coupling of these two fragments was cloned between the PstI and SalI sites of plasmid pTOF24, resulting in the kanamycin sensitive pTOFsbcB plasmid.

The pTOFrecB plasmid was used to introduce an in-frame deletion of the *recB* gene. Two amplified fragments in the *recB* region were ligated, after PCR-mediated coupling, into the pTOF24 plasmid. The 446bp-upstream fragment and the 460bp-downstream fragment were amplified from *E. coli* MG1655 using primer pairs recB-KO-F1/recB-KO-R1 and recB-KO-F2/recB-KO-R2, respectively. The 882bp PCR-mediated coupling of these two fragments was cloned between the PstI and SalI sites of plasmid pTOF24, resulting in the kanamycin sensitive pTOFrecB plasmid.

The pYaiOIsceI plasmid was used to introduce an I-SceI cleavage site into the *yaiO* gene. Two amplified fragments in the *yaiO* region were ligated, after PCR-mediated coupling, into the pTOF24 plasmid. The 436bp-upstream fragment and the 402bp-downstream fragment were amplified from *E. coli* MG1655 using primer pairs yaiO1/yaiO2 and yaiO3/yaiO4, respectively. Notably, primers yaiO2 and yaiO3 added an I-SceI restriction site between the two fragments. The 820bp PCR-mediated coupling of these two fragments was cloned between

the PstI and SalI sites of plasmid pTOF24, resulting in the kanamycin sensitive pYaiOIsceI plasmid.

In order to introduce a mutation using a derivative of the pTOF24 or pLacD1 plasmid, the specific thermosensitive plasmid was introduced into the *E. coli* chromosome of the original strain with selection for chloramphenicol resistance. Then, an allele replacement by chromosomal integration and excision was carried out as described by Merlin and collaborators (Merlin et al., 2002). Correct insertion of the mutation was verified by PCR using external primers (or primers Ex-test-F and Ex-test-R for a palindrome). If applicable, the insertion of a restriction site was checked by restriction of the PCR product or deletions were verified by UV sensitivity test.

Specific mutations were transferred into the desired receiving strains using the P1 transduction technique with selection for the appropriate antibiotic resistance (Miller J.H., 1992). When applicable, the presence of the palindrome was verified by PCR using primers Ex-test-F and Ex-test-R. In order to do the P1 transduction into the MG1655 $lacZ\chi$ - $lacI^q$ lacZ::pal246 cynX::Gm^r $\Delta sbcDC$ mhpR(EcoRI) $\Delta recB$ (DL4116) strain, the pAM-RecBCD+ plasmid was transiently used to make this strain recombination proficient.

Fluorescence microscopy

Images were acquired at a resolution of 0.129μm per pixel using a Zeiss Axiovert 200 fluorescence microscope equipped with a Photometrics cool-SNAP HQ CCD camera. Stacks of optical section images of CFP and YFP fluorescence were collected and deconvolved using the Autovisualize + Autodeblur program (3D adaptative PSF (blind) deconvolution), then analysed and pseudocoloured using the MetaMorph 6-3r2 program (Molecular Devices).

Plasmids, bacterial strains, primers and media

Bacteria were grown at 37°C under agitation in either LB (1% Bactotryptone, 0.5% Bacto yeast extract, 0.5% NaCl and 2mM NaOH) or M9 medium (50mM Na₂HPO₄, 22mM KH₂PO₄, 8.5mM NaCl and 2mM NH₄Cl, supplemented with 0.02mM CaCl₂, 1mM MgSO₄). Antibiotics were used at the following concentrations: ampicillin (Amp), 100mg/l; chloramphenicol (Cm), 50mg/l; gentamicin (Gm), 10mg/l and kanamycin (Km), 50mg/l. IPTG was used at 0.28mM. Sucrose was used a 5%, glucose at 0.5% and arabinose at 0.2%.

Plasmids, bacterial strains and primers. Ts indicates that the plasmid has a temperature-sensitive origin of replication. $lacZ\chi$ - indicates that a chi sequence situated at 2230bp in the lacZ gene was removed. Restriction sites used for cloning are underlined and sequences required for the PCR-mediated coupling are indicated in bold letters.

Plasmids	Relevant properties	References or	
		construction	
pAM-recBCD+	pAM34 derivative plasmid containing the recBCD genes	Gift from	
	under the control of a constitutive promoter; IPTG, Amp ^R	Benedicte	
		Michel	
pDL2038	pLacD1 derivative containing an 85bp palindrome; Cmr, Ts,	This work	
	Suc ^s		
pDL2736	pTOF24 derivative containing two fused PCR fragments	(Eykelenboom	
	from the proA region, separated by an I-SceI restriction site,	et al., 2008)	
	in the place of the aph gene; Cm ^r , Ts, Suc ^s		
pDL2755	pTOF24 derivative containing two fused PCR fragments	(Eykelenboom	
	from the tsx region, separated by an I-SceI restriction site, in	et al., 2008)	
	the place of the aph gene; Cmr, Ts, Sucs		
pDL2774	pLacD1 derivative containing a 246bp palindrome; Cm ^r , Ts,	(Eykelenboom	
	Suc ^s	et al., 2008)	
pDL3196	lacI-cfp (cerulean) and tetR-yfp under a weak constitutive	(White et al.,	
	promoter (P _{ftsKi}); Amp ^R	2008)	

pLacD1	pTOF24 derivative containing two fused PCR fragments	(Zahra et al.,
	from the lacZ region, the L8 mutation and in which the BsaI,	2007)
	MfeI, and BbsI restriction sites were moved to the beginning	
	of the <i>lacZ</i> gene; Cm ^r , Ts, Suc ^s	
pTOF24	pSC101-based vector; repA(Ts) with a sacB gene conferring	(Merlin et al.,
	sucrose sensitivity and aph from pUC4K; Cmr, Kmr, Ts,	2002)
	Suc ^s	
pTOF <cynxhomol></cynxhomol>	pTOF24 derivative containing a PCR fragment from the	This work
	cynX region in the place of the aph gene; Cm ^r , Ts, Suc ^s	
pTOFmhpREcoRI	pTOF24 derivative containing two fused PCR fragments,	This work
	from the <i>mhpR</i> region, separated by an EcoRI restriction	
	site, in the place of the aph gene; Cmr, Ts, Sucs	
pTOFrecB	pTOF24 derivative containing two fused PCR fragments,	This work
	homologous to upstream and downstream regions of recB, in	
	the place of the aph gene; Cm ^r , Ts, Suc ^s	
pTOFrecD	pTOF24 derivative containing two fused PCR fragments,	This work
	homologous to upstream and downstream regions of recD,	
	in the place of the aph gene; Cm ^r , Ts, Suc ^s	
pTOFruvAB	pTOF24 derivative containing two fused PCR fragments,	(Eykelenboom
	homologous to upstream and downstream regions of the	et al., 2008)
	ruvAB operon, in the place of the aph gene; Cm ^r , Ts, Suc ^s	
pTOFruvC	pTOF24 derivative containing two fused PCR fragments,	This work
	homologous to upstream and downstream regions of ruvC,	
	in the place of the aph gene; Cm ^r , Ts, Suc ^s	
pTOFsbcB	pTOF24 derivative containing two fused PCR fragments,	This work
	homologous to upstream and downstream regions of sbcB, in	
	the place of the aph gene; Cm ^r , Ts, Suc ^s	
pTOFsbcDC	pTOF24 derivative containing two fused PCR fragments,	(Darmon et al.,
	homologous to upstream and downstream regions of $sbcDC$	2007)
	operon, in the place of the aph gene; Cm ^r , Ts, Suc ^s	
pYaiOIsceI	pTOF24 derivative containing two fused PCR fragments	This work
	from the yaiO region, separated by an I-SceI restriction site,	
	in the place of the aph gene; Cm ^r , Ts, Suc ^s	

E. coli		
BW27784	$lacI^q$ $rrnB3\Delta lacZ4787$ $hsdR514$ DE $(araBAD)567$	(Khlebnikov et
	$DE(rhaBAD)568 DE(araFGH) \Phi(\Delta araEp P_{CP18}-araE)$	al., 2001)
DB1318	recD1014 hsdR ₂ Zgq-202::Tn10 recA::cat	(Wertman et
		al., 1986)
DL1777	MG1655 lacZχ- lacI ^q	(Eykelenboom
		et al., 2008)
DL2006	BW27784 $lacZ\chi$ - $lacI^{q}$ P_{araBAD} - $sbcDC$ $lacZ$::pal246	(Eykelenboom
	cynX::Gm ^r	et al., 2008)
DL2151	MG1655 $lacZ\chi$ - $lacI^q \Delta sbcDC$	(Eykelenboom
		et al., 2008)
DL2792	BW27784 Paraban-sbcDC cynX::GmR tsx::I-SceIcs proA::I-	(Eykelenboom
	$\mathrm{SceI}_{\mathrm{cs}}$	et al., 2008)
DL2849	BW27784 P _{araBAD} -sbcDC cynX::GmR tsx::I-SceI _{cs} proA::I-	(Eykelenboom
	$SceI_{cs}$ $lacZ$::I- $SceI_{cs}$	et al., 2008)
DL2874	MG1655 lacZχ- lacI ^q lacZ::pal246 cynX::Gm ^r ΔsbcDC	(Eykelenboom
		et al., 2008)
DL2894	BW27784 $lacZ^+$ $lacZ\chi$ - $lacI^q$ $cynX$::[240x $tetO(Gm^R)$]	(White et al.,
	$araB$:: P_{araBAD} - I - $sceI$	2008)
DL2988	BW27784 $lacZ^+$ $lacZ\chi$ - $lacI^q$ $araB$:: P_{araBAD} - I - $sceI$	DL2894
		mutated using
		pTOF <cynxho< td=""></cynxho<>
		mol>
DL3279	BW27784 $lacZ^+$ $lacZχ$ - $\Delta lacI$ $mhpA$::χχχ $lacZY$::χχχ	(White et al.,
	$araB::P_{araBAD}$ -I-sceI $cynX::[240xtetO(Gm^{R})]$	2008)
	$mhpC::[240xlacO(Km^{R})]$	
DL3325	MG1655 $lacZ\chi$ - $lacI^q \Delta sbcDC mhpR(EcoRI)$	DL2151
		mutated using
		pTOFmhpREc
		oRI
DL3326	MG1655 lacZχ- lacI ^q lacZ::pal246 cynX::Gm ^r ΔsbcDC	DL2874
	mhpR(EcoRI)	mutated using

DL3395	MG1655 $lacZ$ χ- $lacI$ ^q $\Delta sbcDC$ $mhpR$ (EcoRI) $recA$::Cm	pTOFmhpREc oRI DL3325 mutated by P1 from DB1318
DL3396	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $ΔsbcDC$ $mhpR$ (EcoRI) $recA$::Cm	DL3326 mutated by P1
DL3752	MG1655 $lacZχ$ - $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR(EcoRI)$ $\Delta ruvAB$	from DB1318 DL3326 mutated using
DL3753	MG1655 $lacZ\chi$ - $lacI^q$ $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR(EcoRI)$ $\Delta ruvAB$ $recA$:: cat	pTOFruvAB DL3752 mutated by P1
DL3754	MG1655 $lacZχ$ - $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta ruvC$	from DB1318 DL3326 mutated using
DL3755	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta ruvC$ $recA$:: cat	pTOFruvC DL3754 mutated by P1
DL3804	MG1655 $lacZχ$ - $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta recG263$:: kan	from DB1318 DL3326 mutated by P1
DL3810	MG1655 $lacZ\chi$ - $lacI^q$ $lacZ$::pal246 $cynX$::Gm $\Delta sbcDC$ $mhpR(EcoRI)$ $\Delta recG263$:: $kan\ recA$:: cat	from N3793 DL3804 mutated by P1
DL3812	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta sbcB$	from DB1318 DL3326 mutated using
DL3827	MG1655 $lacZχ$ - $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta sbcB$ $recA$:: cat	pTOFsbcB DL3812 mutated by P1
DL3828	BW27784 $lacZ^+$ $lacZ_{\chi}$ - $lacI^q$ $araB$:: P_{araBAD} - I - $sceI$ $\Delta sbcDC$	from DB1318 DL2988

DL3835	MG1655 $lacZ$ χ- $lacI^q$ $\Delta sbcDC$ $lacZ$::pal85	mutated using pTOFsbcDC DL2151 mutated using
DL3845	BW27784 $lacZ^+$ $lacZ\chi$ - $lacI^q$ $araB$:: P_{araBAD} - I - $sceI$ $\Delta sbcDC$ $yaiO$:: I - $SceI_{cs}$	pDL2038 DL3828 mutated using
DL3846	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal85	pYaiOIsceI DL1777
		mutated using pDL2038
DL3853	BW27784 $lacZ^{+}$ $lacZ\chi$ - $\Delta lacI$ $mhpA::\chi\chi\chi$ $lacZY::\chi\chi\chi$ $araB::P_{araBAD}$ - I - $sceI$ $cynX::[240xtetO(Gm^{R})]$	DL3279 mutated using pTOFsbcDC
DL3856	$mhpC$::[240x $lacO(Km^R)$] $\Delta sbcDC$ MG1655 $lacZ\chi$ - $lacI^q$ $\Delta sbcDC$ $lacZ$::pal85 $recA$::Cm	DL3835 mutated by P1
DL3857	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal85 $recA$::Cm	from DB1318 DL3846 mutated by P1 from DB1318
DL3860	BW27784 $lacZ^+$ $lacZ\chi$ - $lacI^q$ $araB$::P _{araBAD} -I-sceI $\Delta sbcDC$ $yaiO$::I-SceI _{cs} $lacZ$::pal246 $cynX$::Gm ^r	DL3845 mutated by P1
DL3867	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta recD$	mutated using
DL3870	BW27784 $lacZ^+$ $lacZ\chi lacI^q$ $araB::P_{araBAD}-I-sceI$ $\Delta sbcDC$ $yaiO::I-SceI_{cs}$ $lacZ::pal246$ $cynX::Gm^r$ $recA::Cm$	pTOFrecD DL3860 mutated by P1 from DB1318
DL3876	MG1655 $lacZ\chi$ - $lacI^q$ $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR(EcoRI)$ $\Delta recD$ $recA$:: cat	DL3867 mutated by P1 from DB1318
DL4116	MG1655 $lacZχ$ - $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$ $mhpR$ (EcoRI) $\Delta recB$	DL3326 mutated using pTOFrecB

DL4136	MG1655 $lacZ\chi$ - $lacI^q$ $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$	DL4116
	$mhpR(EcoRI) \Delta recB \ recA::cat$	mutated by P1
		from DB1318
DL4200	BW27784 $lacZ^+$ $lacZχ$ $\Delta lacI$ $mhpA::χχχ$ $lacZY::χχχ$	DL3853
	$araB::P_{araBAD}-I-sceI$ $cynX::[240xtetO(Gm^R)]$	mutated using
	$mhpC$::[240xlacO(Km ^R)] $\Delta sbcDC$ yaiO::I-SceI _{cs}	pYaiOIsceI
DL4204	BW27784 $lacZ^+$ $lacZχ$ - $\Delta lacI$ $mhpA::χχχ$ $lacZY::χχχ$	DL4200
	$araB::P_{araBAD}$ -I-sceI $cynX::[240xtetO(Gm^R)]$	mutated by P1
	$mhpC$::[240x $lacO(Km^R)$] $\Delta sbcDC$ $yaiO$::I-SceI _{cs} $recA$:: cat	from DB1318
DL4205	BW27784 lacZχ- Δ lacI mhp A ::χχχ lacZY::χχχ ara B :: P_{araBAD} -	DL4200
	$\textit{I-sceI} \textit{cynX}::[240xtetO(Gm^R)] \textit{mhpC}::[240xlacO(Km^R)]$	mutated using
	ΔsbcDC yaiO::I-SceI _{cs} lacZ::pal246	pDL2774
DL4206	BW27784 lacZ χ - ΔlacI mhpA:: $\chi\chi\chi$ lacZY:: $\chi\chi\chi$ araB:: P_{araBAD} -	DL4205
	$\textit{I-sceI} \textit{cynX}::[240xtetO(Gm^R)] \textit{mhpC}::[240xlacO(Km^R)]$	mutated by P1
	ΔsbcDC yaiO::I-SceI _{cs} lacZ::pal246 recA::cat	from DB1318
DL4421	MG1655 $lacZ\chi$ - $lacI^q$ $\Delta sbcDC$ $mhpR(EcoRI)$ $tsx::I-SceI_{cs}$	DL3325
		mutated using
		pDL2755
DL4422	MG1655 $lacZ$ χ- $lacI$ ^q $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$	DL3326
	mhpR(EcoRI) tsx::I-SceI _{cs}	mutated using
		pDL2755
DL4461	MG1655 $lacZ\chi$ - $lacI^q$ $\Delta sbcDC$ $mhpR(EcoRI)$ $tsx::I-SceI_{cs}$	DL4421
	$proA$::I-SceI $_{cs}$	mutated using
		pDL2736
DL4466	MG1655 $lacZ\chi$ - $lacI^q$ $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$	DL4422
	mhpR(EcoRI) tsx::I-SceI _{cs} proA::I-SceI _{cs}	mutated using
		pDL2736
DL4480	MG1655 $lacZ\chi$ - $lacI^{q}$ $\Delta sbcDC$ $mhpR(EcoRI)$ $tsx::I-SceI_{cs}$	DL4461
	proA::I-SceI _{cs} recA::cat	mutated by P1
		from DB1318
DL4481	MG1655 $lacZ\chi$ - $lacI^q$ $lacZ$::pal246 $cynX$::Gm ^r $\Delta sbcDC$	DL4466
	mhpR(EcoRI) tsx::I-SceI _{cs} proA::I-SceI _{cs} recA::cat	mutated by P1
		from DB1318

MG1655	$F^-\lambda^- ilvG^- rfb$ -50 rph -1	(Blattner et al., 1997)
N3793	AB1157 $\Delta recG263::kan$	(Mahdi et al.,
		1996)
Primers	5′-3′	<u> </u>
2DEcoRI-F1	AAAAA <u>GTCGAC</u> AAACAAGCAGCGCACATTC	This work
2DEcoRI-R1	ATCGGAGGGGAATTCATTTTGTCCGAGTCGTGAGG	This work
2DEcoRI-F2	GGACAAAATGAATTCCCCTCCGATGATAGTTTTCG	This work
2DEcoR1-R2	AAAAA <u>CTGCAG</u> CTGTCCGTAACCCTCTTTGC	This work
DigLacZF	CTGGCGTAATAGCGAAGAGG	This work
DigLacZR	CATGACCTGACCATGCAGAG	This work
DigLacIF	GAAAACGCGGGAAAAAGTG	This work
DigLacIR	GCATTAATGAATCGGCCAAC	This work
Ex-Test-F	TTATGCTTCCGGCTCGTATG	(Eykelenboom
		et al., 2008)
Ex-Test-R	GGCGATTAAGTTGGGTAACG	(Eykelenboom
		et al., 2008)
lac-SF1	AGTGGGATACGATACCG	This work
pal-CF2	ATACCCAGATTGCGAACACC	This work
pal-CR1	ACAACCTGACCCAGCAAAAG	This work
recB-KO-F1	AAAAA <u>CTGCAG</u> TACAAGGCGTTTTTCCCAAC	This work
recB-KO-R1	ATCCATCAGGGC GCGCAAAGGATCTAGTGTCTCG	This work
recB-KO-F2	GATCCTTTGCGCGCCCTGATGGATGAGATGTTTG	This work
recB-KO-R2	AAAAA <u>GTCGAC</u> CAATGGCATGATTCACTTCG	This work
recD-KO-F1	AAAAA <u>CTGCAG</u> GTTAATCCGCCAGTTTGACC	This work
recD-KO-R1	CAATTACGTTTATTTCATTACGCCTCCTCCAG	This work
recD-KO-F2	GGCGTAATGAAATAAACGTAATTGCCGGATGC	This work
recD-KO-R2	AAAAA <u>GTCGAC</u> GGAGCAGCAAGGTATTCTGG	This work
ruvC-KO-F1	AAAAA <u>CTGCAG</u> ATGGTTCCGTTGCCTATCTG	This work
ruvC-KO-R1	TCGCATTCTGACTAATAGCCATCACGCGTCTC	This work
ruvC-KO-F2	TGATGGCTATTAGTCAGAATGCGATGCAGATG	This work
ruvC-KO-R2	AAAAA <u>GTCGAC</u> GGCTGACAGAACGACAAAAAC	This work
sbcB-KO-F1	AAAAA <u>CTGCAG</u> AACCCGTCATCAGCTTTGTC	This work

sbcB-KO-R1	CCGCGTACTGCCATTGTTGCTTACCGTCATTCATC	This work
sbcB-KO-F2	GTAAGCAACAATGGCAGTACGCGGAAGAGATTG	This work
sbcB-KO-R2	AAAAA <u>GTCGAC</u> GCTGGATTGGCCTTGTATTT	This work
seq-SR1	GTGCTGCAAGGCATTAAGT	This work
TetO-CF1	AAAAA <u>GCTAGC</u> AAATATCTGCCGACCAAACC	(White et al.,
		2008)
TetO-CR2	AAAAA <u>CTGCAG</u> CCCAGACCTAACCCACACAC	(White et al.,
		2008)
yaiO1	AAAAA <u>CTGCAG</u> CGAATTATTTCCCCGAACAC	This work
yaiO2	ATTACCCTGTTATCCCTA TTATCCGCAAAGGCAAT	This work
	ACC	
yaiO3	TAGGGATAACAGGGTAAT TACGCCGGTCTTTGCCC	This work
	G	
yaiO4	AAAAA <u>GTCGAC</u> TCAGTCAGCGGTTGAATACG	This work

Table S1: Quantification of chromosomal rearrangements following induction of DSBs (related to Figure 6). Percentage of cells for each combination of YFP/CFP foci per cell. Cells containing other combination of foci than the ones indicated in this table were not found in the studied population. Three independent experiments (Exp. 1, Exp. 2 and Exp. 3) were performed to study a total of 1,300 cells by strain. The means of these experiments are indicated followed by 95% confidence intervals (Mean \pm 95%) and p-values calculated by two-sample t-test (using Minitab). p-values \leq 0.05 were deemed to be statistically significant (indicated in bold) and could not be calculated when the three experiments performed on one strain had 0% of the tested YFP/CFP combination (nd). The strains used for the analysis were the *sbcDC recA* mutant containing the arabinose inducible I-SceI system, the I-SceI restriction site 15kb away from *lacZ* on the origin-distal side and the *tetO* and *lacO* arrays surrounding *lacZ* (DL4204) carrying the plasmid pDL3196 (No pal) and the *sbcDC recA* mutant containing the arabinose inducible I-SceI system, the I-SceI restriction site 15kb away from the 246bp palindrome on the origin-distal side and the *tetO* and *lacO* arrays surrounding the palindrome (DL4206) carrying the plasmid pDL3196 (Pal246).

Table S1.

	YFP	CFP	Exp. 1	Exp. 2	Exp. 3	Mean ± 95%	p-value
No pal Pal246	0	0	27 17.59	41.55 22.22	41.67 27.9	36.74 ± 20.95 22.57 ± 12.82	0.089
No pal Pal246	0	1 1	0.87 0.87	0.44 0.22	0 0.36	0.44 ± 1.08 0.48 ± 0.85	0.893
No pal Pal246	0	2 2	0 0.35	0	0 0.36	0 ± 0 0.23 ± 0.51	nd
No pal Pal246	1 1	0	0.87 6.62	0.67 6.89	0.36 6.88	0.63 ± 0.63 6.8 ± 0.38	0
No pal Pal246	1 1	1 1	24.04 21.25	29.33 20.44	23.91 21.74	25.76 ± 7.68 21.15 ± 1.62	0.127
No pal Pal246	1 1	2 2	0.52	0.67 1.33	0.72 0.72	0.64 ± 0.26 0.69 ± 1.66	0.913
No pal Pal246	2 2	0	0 2.44	0.67 4	0 2.17	0.22 ± 0.96 2.87 ± 2.45	0.049
No pal Pal246	2 2	1 1	1.57 4.88	0.44 7.56	1.81 6.16	1.27 ± 1.81 6.2 ± 3.33	0.011
No pal Pal246	2 2	2 2	41.46 43.03	24.22 32.89	28.26 30.07	31.31 ± 22.4 35.33 ± 16.93	0.582
No pal Pal246	2 2	4 4	0 0	0.22	0	0.07 ± 0.32 0 ± 0	nd
No pal Pal246	3	1 1	0 0.17	0 0.67	0 0.36	0 ± 0 0.4 ± 0.61	nd
No pal Pal246	3	2 2	0 0.35	0.67 0.67	1.09 1.09	0.58 ± 1.36 0.7 ± 0.92	0.781
No pal Pal246	3	3 3	2.79 0.87	0.67 2.22	0.36 1.81	1.27 ± 3.28 1.63 ± 1.72	0.702
No pal Pal246	4 4	2 2	0.17 0.17	0	0 0.36	0.06 ± 0.25 0.18 ± 0.45	0.387
No pal Pal246	4 4	3 3	0	0	0.36	0.12 ± 0.52	nd
No pal Pal246	4 4	4 4	0.7 1.4	0.44 0.89	0.14	0.86 ± 1.3 0.76 ± 1.75	0.852

Supplemental References

Blattner, F.R., Plunkett, G.3., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F. et al. (1997). The complete genome sequence of *Escherichia coli* K-12. Science. 277, 1453-1474.

Darmon, E., Lopez-Vernaza, M.A., Helness, A.C., Borking, A., Wilson, E., Thacker, Z., Wardrope, L., and Leach, D.R. (2007). SbcCD regulation and localization in *Escherichia coli*. J.Bacteriol. *189*, 6686-6694.

Khlebnikov, A., Datsenko, K.A., Skaug, T., Wanner, B.L., and Keasling, J.D. (2001). Homogeneous expression of the P(BAD) promoter in *Escherichia coli* by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology. *147*, 3241-3247.

Mahdi, A.A., Sharples, G.J., Mandal, T.N., and Lloyd, R.G. (1996). Holliday junction resolvases encoded by homologous *rusA* genes in *Escherichia coli* K-12 and phage 82. J.Mol.Biol. 257, 561-573.

Merlin, C., McAteer, S., and Masters, M. (2002). Tools for characterization of *Escherichia coli* genes of unknown function. J.Bacteriol. *184*, 4573-4581.

Miller J.H. (1992). A short course in bacterial genetics (New York: Cold Spring Harbor Laboratory Press).

Pinder, D.J., Blake, C.E., Lindsey, J.C., and Leach, D.R. (1998). Replication strand preference for deletions associated with DNA palindromes. Mol.Microbiol. 28, 719-727.

Wertman, K.F., Wyman, A.R., and Botstein, D. (1986). Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene. *49*, 253-262.

Zahra, R., Blackwood, J.K., Sales, J., and Leach, D.R. (2007). Proofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in *Escherichia coli*. Genetics. *176*, 27-41.