
ORIGINAL RESEARCH
published: 09 January 2020

doi: 10.3389/fimmu.2019.02985

Frontiers in Immunology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 2985

Edited by:

Ignacio Melero,

University of Navarra, Spain

Reviewed by:

James Malcolm Heather,

Massachusetts General Hospital and

Harvard Medical School,

United States

Shlomit Reich-Zeliger,

Weizmann Institute of Science, Israel

*Correspondence:

Li Zhang

li.zhang@ucsf.edu

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 05 August 2019

Accepted: 05 December 2019

Published: 09 January 2020

Citation:

Looney TJ, Topacio-Hall D,

Lowman G, Conroy J, Morrison C,

Oh D, Fong L and Zhang L (2020) TCR

Convergence in Individuals Treated

With Immune Checkpoint Inhibition for

Cancer. Front. Immunol. 10:2985.

doi: 10.3389/fimmu.2019.02985

TCR Convergence in Individuals
Treated With Immune Checkpoint
Inhibition for Cancer
Timothy John Looney 1, Denise Topacio-Hall 1, Geoffrey Lowman 1, Jeffrey Conroy 2,3,

Carl Morrison 2,3, David Oh 4, Lawrence Fong 4 and Li Zhang 4*

1 Thermo Fisher Scientific, South San Francisco, CA, United States, 2OmniSeq Inc., Buffalo, NY, United States, 3 Roswell

Park Comprehensive Cancer Center, Buffalo, NY, United States, 4Division of Hematology and Oncology, Helen Diller Family

Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States

Tumor antigen-driven selection may expand T cells having T cell receptors (TCRs) of

shared antigen specificity but different amino acid or nucleotide sequence in a process

known as TCR convergence. Substitution sequencing errors introduced by TCRβ

(TCRB) repertoire sequencing may create artifacts resembling TCR convergence. Given

the anticipated differences in substitution error rates across different next-generation

sequencing platforms, the choice of platform could be consequential. To test this, we

performed TCRB sequencing on the same peripheral blood mononuclear cells (PBMC)

from individuals with cancer receiving anti-CTLA-4 or anti-PD-1 using an Illumina-based

approach (Sequenta) and an Ion Torrent-based approach (Oncomine TCRB-LR). While

both approaches found similar TCR diversity, clonality, and clonal overlap, we found

that Illumina-based sequencing resulted in higher TCR convergence than with the Ion

Torrent approach. To build upon this initial observation we conducted a systematic

comparison of Illumina-based TCRB sequencing assays, including those employing

molecular barcodes, with the Oncomine assay, revealing differences in the frequency of

convergent events, purportedly artifactual rearrangements, and sensitivity of detection.

Finally, we applied the Ion Torrent-based approach to evaluate clonality and convergence

in a cohort of individuals receiving anti-CTLA-4 blockade for cancer. We found that

clonality and convergence independently predicted response and could be combined

to improve the accuracy of a logistic regression classifier. These results demonstrate the

importance of the sequencing platform in assessing TCRB convergence.

Keywords: biomarker, immune repertoire analysis, T cell repertoire, checkpoint blockade immunotherapy,

convergence, AmpliSeqTM, antigen stimulation, Ion Torrent next-generation sequencing

INTRODUCTION

Checkpoint blockade immunotherapy (CPI) may elicit durable anti-tumor responses in a subset of
individuals with cancer. Identifying predictive biomarkers to guide treatment selection remains a
primary goal of immune-oncology translational research. Owing to limitations in the quantity and
quality of available tumor material, and its use in routine PD-L1 immunohistochemistry testing,
there is a pressing need to identify non-invasive biomarkers derived from peripheral blood. Within
this context tumormutation burden (TMB) has drawn attention as a potential predictive biomarker
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for response to CPI, under the premise that it may serve as
a surrogate for total neoantigen load and thus the sensitivity
of a tumor to immunotherapy. Originally measured from
tumor biopsy material, TMB measurements have now been
demonstrated from next generation sequencing of peripheral
blood cfDNA (1). Unfortunately, accumulating evidence suggests
the predictive value of this biomarker may be limited (2),
with recent analyses of TMB in mono- or combination CPI
for non-small cell lung cancer (NSCLC) indicating an overall
area under the receiver operator characteristic (ROC) curve
(AUC) of 0.60 and 0.68, respectively, for predicting durable
clinical benefit (3, 4), comparable to the accuracy of PD-
L1 IHC, while results of Checkmate 026, a study of first-
line Nivolumab for NSCLC, revealed no difference in overall
survival in subjects stratified by TMB (5). Importantly, TMB is
unable to identify immunogenic, CPI sensitive tumors having
neoantigens other than those derived from non-synonymous
mutations, as has been demonstrated by studies of TMB
in polyoma virus-associated Merkel cell carcinoma and renal
cell carcinomas (6).

Motivated by the shortcomings of existing non-invasive
biomarkers, here we evaluated the use of peripheral blood TCRB
repertoire sequencing as a source of predictive biomarkers for
response to CTLA-4 monotherapy for cancer. Previous TCR
sequencing studies have evaluated T cell clonal expansion as
a stand-alone predictive biomarker, with mixed results (7, 8).
One outstanding question is whether TCR sequencing may be
used for in silico identification of tumor antigen specific T cells,
given that the frequency of such cells could serve as a direct
measurement of tumor immunogenicity. Although there are no
known methods to predict the antigen specificity of a TCR from
nucleotide sequence, we hypothesized that the central role of
chronic antigen stimulation in the emergence of cancer would
provide a means to infer the presence of tumor antigen specific T
cells, given that sustained antigen-driven selection may give rise
to convergent T cell receptors having a shared antigen specificity
(i.e., identical amino acid sequence) but different nucleotide
sequences. Unlike biomarkers relying of the quantification of
tumor genetic alterations, TCR convergence: (1) may detect T
cell responses to tumor neoantigens beyond those arising from
non-synonymous mutations; (2) avoids probabilistic models
for prediction of immunogenicity; (3) is sequencing efficient,
typically requiring <2M reads per sample; and (4) may be
measured from the abundant genetic material within the buffy
coat fraction of centrifuged peripheral blood to enable liquid
biopsy applications.

Despite these advantages, efforts to evaluate TCR convergence
may be hampered by the sensitivity of this feature to substitution
sequencing errors, which may create artifacts resembling
convergent TCRs. To circumvent this issue, here we leveraged
the low substitution error rate of the Ion Torrent platform to
evaluate convergence as a predictive biomarker for response to
anti-CTLA-4 monotherapy in a set of 22 study subjects with
cancer. For context, we compared convergence values obtained
using this platform to those for the same samples interrogated
with Illumina-based TCRB repertoire sequencing. Finally, we
examined whether TCR convergence may be combined with

measurements of clonal expansion to improve prediction of
immunotherapy response.

MATERIALS AND METHODS

Peripheral Blood Samples
Eight peripheral blood leukocyte (PBL) samples were obtained
from longitudinal blood draws from three anti PD-1 treated
melanoma study subjects (donor 1: three samples; donor 2: three
samples; donor 3: two samples) at the University of California
San Francisco (UCSF). The average time between consecutive
blood draws was 4 weeks. Baseline (pre-treatment) PBL were
collected from 22 cancer study subjects treated with CTLA-4
monotherapy (Ipilimumab) at Roswell Park Cancer Research
Institute or UCSF. Samples were collected within 1 week of
administration of the first CTLA-4 dose. Response was evaluated
using RECIST criteria.

TCR Sequencing
For the Ion Torrent-based approach, RNA was extracted from
cryopreserved buffy coat straws using the Qiagen RNeasy Midi
Kit (Qiagen Cat. No. 75144). Extractions were performed over
multiple days at two different sites. Purified RNA samples were
quantified using Qubit RNA HS Assay Kit (Thermo Fisher
Scientific Cat. No. Q32852). The Agilent 2100 Bioanalyzer
and Agilent RNA 6000 Nano Kit were used to quantify and
evaluate RNA integrity. Twenty-five nanogram of total RNA
was reverse transcribed using SuperScript IV VILO Master
Mix (Thermo Fisher Scientific Cat. No. 11756050). For each
sample, 25 ng cDNA was amplified using the Oncomine TCR
Beta-LR Assay (Thermo Fisher Scientific Cat. No. A35386),
and protocol as described in the Oncomine TCR Beta Assay
User Guide MAN0017438 Revision A.0. Libraries were purified
with Agencourt AMPure XP beads (Beckman Coulter Cat. No.
A63880), washed with 70% ethanol, and eluted in 50 µL Low
TE buffer. Resulting library samples were diluted 1:100 and
quantified using the Ion Library Quantitation Kit (Thermo
Fisher Scientific Cat. No. 4468802), then diluted to 25 pM with
Low TE buffer. Equal volumes from 8 samples at a time were
pooled together for sequencing on one Ion 530 chip, followed
by analysis via Ion Reporter version 5.10. TCR sequencing with
the Illumina-based platform was performed by Sequenta as
described in Klinger et al. (9), the ImmunoSeq assay (Adaptive
Biotechnologies) or Archer Immunoverse HS TCRB assay, per
manufacturer instruction.

Sequencing of 30 Reference TCRB
Rearrangements
Thirty TCRB rearrangements presented in Sandberg et al.
(10) were cloned into plasmids via GeneArt. Plasmids were
pooled at 0.1 fg each prior to sequencing via the Oncomine
and ImmunoSeq assays at either low (survey) or high (deep)
depth. To minimize differences owing to library preparation,
the same PCR replicate structure was used for both assays.
For survey and deep level, two or six Oncomine libraries were
separately prepared and sequenced to ∼1M reads depth, then
bioinformatically combined for analysis, consistent with the PCR
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replicate structure employed by the ImmunoSeq assay. The
ImmunoSeq assay was run per manufacturer instruction by a
contract research organization.

Sorting and TCR Sequencing of Peripheral
Blood T Cells
1E3, 1E4, or 1E5 CD3+ T cells from a healthy donor were
sorted into CTSTM OpTmizerTM (Thermo Fisher Scientific Cat.
No. A1048501) serum free cell culture media and stimulated with
CTSTM anti-CD3/CD28 Dynabeads (Thermo Fisher Scientific
Cat. No. 40203D) for 4 days prior to extraction of total
RNA. The entirety of the extracted RNA was used for library
preparation, followed by sequencing to saturation, as determined
by downsampling analysis via Ion Reporter, version 5.12.

Calculation of TCR Convergence and
Clonality
TCR convergence was calculated as the aggregate frequency of
clones (here defined as unique TCRB nucleotide sequences)
sharing a variable gene (excluding allele information) and
CDR3AA sequence with at least one other identified clone.
For the Oncomine TCRB-LR assay, TCR convergence is pre-
calculated from the set of identified clones and provided as
a standard output. TCR convergence values in Illumina-based
sequencing data were calculated with a custom R script [https://
github.com/mlizhangx/TCR-3D] in an identical manner to that
for the TCRB-LR assay. Shannon diversity was calculated using
the set of clone frequencies (p) as indicated below:

−

N∑

i = 1

pi log2 (pi)

while the normalized Shannon entropy (i.e., evenness) was
calculated by dividing the Shannon diversity by log2(N), where
N is the total number of detected clones. Clonality was defined as
1− normalized Shannon entropy (11).

Comparison of Repertoire Features Across
Sequenta and Oncomine TCRB-LR
Datasets
The proportion of overlapping clones between two timepoints
within the same subject was evaluated by Jaccard index.
Spearman correlation coefficient (“cor.test” in R “stats” library)
was used to compare each repertoire feature across Sequenta
and Oncomine TCRB-LR Datasets. Statistical significance was
declared based on p < 0.05. No multiple testing adjustment was
carried out.

Analysis of Clonality and Convergence
Values in ImmunoSeq Data
TCR convergence and clonality values were calculated by
analysis of publicly available clonotype files derived from
Emerson et al. (12) (N = 666) using the information in
the “amino_acid” and “v_gene” columns and a method
identical to that applied to the Sequenta and Oncomine
TCRB-LR datasets. In instances where the “v_gene” value
was reported as “unresolved,” the v_gene was assigned to

the value in the “v_family” column. The analysis excluded
rearrangements having a “productive_frequency” column
value of “null.”

Modeling TCR Convergence Values in
ImmunoSeq Data
We attempted to model the likelihood that a given clone would
be identified as a member of a convergent group. The model
took into account: (1) the CDR3 length of each clone, obtained
by taking the length of sequence in the “amino_acid” column
of the clonotype table and eliminating anchor residues; (2) the
probability that a random single base CDR3NT substitution
within a productive rearrangement would be synonymous,
estimated to be ∼1 in 4 based on the codon table; (3) the
number of reads per clone, taken from the “reads” column
of the clonotype table; and (4) the substitution sequencing
error rate per base. This is a simple model that does not
take into account motif-specific error hotspots, codon usage
biases within the CDR3, nor does it account for residual PCR-
derived substitution errors. Hence it should be considered a
rough approximation to be used for exploratory purposes. We
tested the model using substitution error rates ranging from
∼1E-2–1E-5 errors per base, using estimates from literature as
a starting point. A Spearman correlation was used to assess
model fit. Python code used for model exploration is found
on (https://github.com/mlizhangx).

Sensitivity Analysis of Oncomine TCRB
and Archer Immunoverse HS TCR Beta
Libraries
Total RNA from ∼5M PBMCs was divided into two pools
and spiked with Jurkat total RNA at 1:10E5 or 1:10E6 mass
ratio. The RNA pools were then used for library preparation
via the Oncomine TCRB-LR Assay, the Oncomine TCRB-SR
assay (utilizing framework 3 and joining gene primers and
a similar AmpliSeq-based library preparation method), or the
Archer Immunoverse HS TCR beta assay, using from 25 to
300 ng RNA as input for library preparation. Two libraries
were prepared for each input condition and each assay. This
procedure was then repeated using PBMC RNA from a second
donor. Oncomine TCRB-LR assay libraries were sequenced to
a target of 2M reads depth using the S5 530 chip, while the
Oncomine TCRB-SR assay libraries were sequenced to >20M
reads each using the S5 550 chip. Archer Immunoverse HS
TCR beta libraries were sequenced to a target of >20M reads
each using the Illumina MiSeq. For comparison between Archer
Immunoverse HS TCR beta and Oncomine TCRB-LR assays,
Immunoverse HS TCR beta data was downsampled to an
equivalent read depth (∼2M reads per library) prior to analysis
via the Immunoverse HS TCR beta software (Archer Analysis).
For comparisons between the Oncomine TCRB-SR and the
Archer Immunoverse HS TCR beta, the entirety of the reads was
used for analysis. TCR convergence values were obtained directly
from the Ion Reporter analyzer for the Oncomine assays, or, for
the Archer Immunoverse HS TCR beta assay, calculated using
a custom script in an identical manner. All library preparations
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and analyses were performed independently by a contract
research organization.

Logistic Regression-Based Prediction of
Response and Model Scoring
A logistic regression model with the clinical response status
as the binary outcome and TCR convergence and clonality
as the predictors was trained using the function “train” from
the R “caret” library with the following parameters: method
= “glm” and family = “binomial.” Model scores represent
the response probability values obtained by applying the caret
function “predict,” with the trained model and the sample
clonality and convergence values as inputs. Model performance
was evaluated using the function “roc” from the R “pROC”
library. Area under the receiver operator characteristic (ROC)
curve (AUC) was calculated using the function “auc” from the
same R library. The same functions were used to evaluate the
performance of TCR convergence and clonality as stand-alone
biomarkers. Cross-validation was performed by training the
logistic regression classifier using the trainControl feature of the
caret package with the parameters: method = “lgocv,” number
= 2,000, p = 0.75, classProbs = True, and savePredictions
= “final.” Models were separately trained using both TCR
convergence and clonality as the predictors, or either feature
alone. The optimal score threshold for distinguishing responders
from non-responders, and the sensitivity, specificity, and positive
predictive value at the optimal threshold, were obtained using
the “coords” function from the pROC library with best.
method = “youdens” and ret = c(“threshold,” “specificity,”
“sensitivity,” “ppv”).

RESULTS

Cross-Platform Analysis of Repertoire
Features
We assessed 8 samples from anti-PD1 treated melanoma
subjects using a commercial Illumina-based TCRB sequencing
assay (Sequenta; now part of Adaptive Biotechnologies; service
discontinued) and the Ion Torrent based Oncomine TCRB-LR
assay. For each sequenced library, we evaluated the number
of clones detected, Shannon diversity index, clonality (i.e., 1–
normalized Shannon entropy) and the frequency of convergent
TCRs (section Materials and Methods). Within each subject
from the same sequencing platform, clonal overlap between the
samples from any two time points for the same subject was
calculated by Jaccard index.We foundmeasurements of Shannon
diversity index, clonality, and clonal overlap to be significantly
correlated between the two platforms (Figures 1A–C, Pearson’s
correlation = 0.88; p = 0.007). We also note a trend toward
higher clonality values in the Oncomine dataset (p = 0.04,
Wilcoxon signed sum test, Supplemental Figure 1A), potentially
due to the differences in the number of clones detected across
the assays.

Assessment of TCR Convergence
Antigen-driven responses should result in the expansion of
multiple T cell clones that recognize a given antigen. TCR

convergence is defined as the aggregate frequency of clones
sharing a variable gene (excluding allele information) and
CDR3AA sequence with at least one other identified clone.
An example of a convergent TCR group identified in an
individual with melanoma is presented in Figure 2A. For
the Oncomine TCRB-LR assay, TCR convergence is pre-
calculated from the set of clones reported by the Ion
Reporter software and provided as a standard output. We
hypothesized that the choice of sequencing platform would
be consequential for the measurement of TCR convergence
given that substitution sequencing errors may mimic TCR
repertoire diversity deriving fromN-additions and exonucleotide
chewback within the V-D and D-J junctions of the CDR3. We
found that convergence measurements were not significantly
correlated (Figure 2B, Spearman correlation = 0.33; p = 0.43),
with eight of eight Illumina-based Sequenta libraries showing
higher TCR convergence compared to the corresponding Ion
Torrent libraries (p = 0.002, Wilcoxon signed rank test,
Supplemental Table 1, Sheet 2).

Assessment of TCR Convergence in
ImmunoSeq Data
The elevated convergence values observed in the Sequenta data
could reflect aspects of the Sequenta library preparation and
analysis protocol, rather than platform-specific sequencing
errors. To assess the generalizability of this result we next
evaluated convergence values in a large public dataset (12) (N =

666) produced by the Illumina-based ImmunoSeq assay, which
employs a distinct library preparation and analysis protocol.
Strikingly, while the clonality values for these samples were
within the range of those observed in Oncomine or Sequenta
derived libraries (Supplemental Figure 1A), the convergence
values were significantly higher (Supplemental Figure 1B). To
better understand this result we assessed the relationship between
the clonality and convergence values of each ImmunoSeq
sample. Surprisingly, TCR clonality and convergence
were highly correlated (Spearman cor = 0.89, p < 2E-26,
Supplemental Figure 1C) in the ImmunoSeq dataset, but
far less so in Oncomine data (Spearman cor = −0.33, p =

0.09, Supplemental Figure 1D). Hypothetically, the strong
correlation between TCR convergence and clonality could
reflect the fact that samples having higher clonality tend to
have higher frequency clones that are sequenced many times.
In the context of a non-negligible substitution sequencing
error rate, such highly sequenced clones may spawn artifacts

that lead to false convergent events. To test this possibility
we asked whether the observed ImmunoSeq convergence
values could be recapitulated by a model taking into account

the sequencing depth per clone, and the likelihood that a

substitution error would give rise to a synonymous mutation

within the CDR3 of each clone (section Materials and Methods).
We tested the model over a range of potentially plausible
residual substitution error rates. We found that the model
closely fit the observed convergence values (Spearman cor
= 0.85 at a residual substitution error rate of 8.5E-3 errors
per base, Supplemental Figure 2, black dots), supporting
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FIGURE 1 | Comparative analysis of repertoire features in samples analyzed via Ion Torrent and Illumina-based assays. Eight peripheral blood leukocyte (PBL)

samples derived from three donors were analyzed using the Oncomine TCRB-LR assay (Ion Torrent, X-axis) or Sequenta TCRB assay (Illumina, Y-axis). Pearson’s

correlation coefficient was used to measure the consistency of two platforms with respect to (A) clone diversity (Shannon entropy), (B) clonality (normalized Shannon

entropy), and (C) clonal overlap. Blue dashes indicate position of identity line.

FIGURE 2 | Assessment of TCR convergence. (A) Example of a convergent TCR group detected in the peripheral blood of an individual with melanoma. This group

consists of three TCRβ clones that are identical in TCRβ amino acid space but have distinct CDR3 NT junctions owing to differences in non-templated bases at the

V-D-J junction. Blue indicates bases contributed by the variable gene while yellow indicates bases contributed by the joining gene. Red arrows indicate positions

where clones differ. Substitution sequencing errors and PCR errors can create artifacts that resemble convergent TCRs. (B) TCR convergence, calculated as the

aggregate frequency of clones sharing an amino acid sequence with at least one other clone. Blue dashes indicate position of identity line.

the potential existence of substitution sequencing errors in
this dataset.

Cross-Platform Analysis Using Reference
Rearrangements
The above finding provided indirect evidence that TCR
convergence values are elevated in ImmunoSeq data compared
to the Oncomine and Sequenta data, potentially due to
artifacts arising from PCR or sequencing errors. To directly
address this question we sought to compare the two assays
using the same sample. To aid in the interpretation of

results, we created a set of reference plasmids representing
the TCRB sequences from 30 common T cell lines that
were used to validate the BIOMED-2 TCRB primer set
(10). Plasmids were pooled at 0.1 fg per plasmid followed
by library preparation and sequencing via the Oncomine

or ImmunoSeq assays. Sequencing was performed at both

survey and deep sequencing depths (section Materials and
Methods). In this experiment, we expect each assay to
report 30 rearrangements, while unresolved sequencing or

PCR derived artifacts will lead to the reporting of more

than 30 rearrangements. While both assays identified all
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30 rearrangements, the ImmunoSeq assay reported a greater
number of productive rearrangements than the Oncomine assay
at both the low (54 vs. 30) and high (84 vs. 31) sequencing
depths (Supplemental Table 2).

Analysis of Sorted, Counted T Cells
Sequencing of rearrangements cloned into plasmids suggested
that the Oncomine assay may report few artifactual
rearrangements. However, it is unclear the extent to which
this result may reflect performance of the assay with samples
containing diverse T cell populations. To address this question
we prepared and sequenced Oncomine libraries derived from
10E3, 10E4, and 10E5 sorted CD3+ peripheral blood T cells
from a healthy donor having a polyclonal T cell repertoire,
using the entirety of the RNA for library preparation, and
sequencing the libraries to exhaustion (section Materials
and Methods). In this experiment, although the sequence of
each rearrangement is not known, the maximum number
of unique rearrangements is bounded by the number of
sorted T cells. We found that the number of clones detected
closely matched expectation, consistent with the Oncomine
assay having a high sensitivity but also a low frequency of
artifacts (Supplemental Figure 3).

Comparison to an Illumina-Based Assay
Employing Molecular Barcodes
One question is whether molecular barcode based methods
may mitigate the effect of PCR or sequencing derived
errors. Molecular barcode-based methods have been shown
to improve the detection of single nucleotide variants (13),
but potentially at the expense of lower template molecule
capture efficiency compared to standard PCR. For example,
recent evaluations of molecular barcode-based TCRB repertoire
sequencing protocols indicated a capture efficiency of ∼1–
3 TCRB cDNA transcripts per T cell (14, 15), compared to
∼10 transcripts per cell for a nanoliter dPCR-based approach
(15) having a capture efficiency comparable to conventional
microliter-volume PCR (16). To further explore this issue,
we compared the Oncomine TCRB assay to the Archer
Immunoverse HS TCR beta assay, a molecular barcode based,
RNA-compatible assay for the Illumina platform. Total RNA
from a peripheral blood donor was divided into two pools,
spiked with Jurkat RNA separately at 10E-5 and 10E-6 frequency,
then used to prepare libraries via the Oncomine TCRB-LR
assay, the Oncomine TCRB-SR assay (FFPE-compatible; see
section Materials and Methods), or the Archer Immunoverse
HS TCR beta assay. Compared to the Oncomine assays, the
Archer Immunoverse HS TCR beta assay identified fewer clones
and showed lower sensitivity than the Oncomine assays over
a range of input amounts (Supplemental Tables 3A,B,D,E).
Specifically, the assay was unable to detect the Jurkat spike-
in clone at 10E-5 and 10E-6 from 300 ng input, while
the Oncomine assays identified the clone in all replicates
at this input level and could detect the Jurkat clone at
10E-5 in all 25 ng libraries. By contrast, convergent TCR
frequency values were not significantly different across the
two assays (p = 0.29 and p = 0.13, for Oncomine TCRB-LR

TABLE 1 | Cancer type and summary repertoire features for 22 individuals

receiving CTLA-4 monotherapy.

Category Subdefinition Responder Non-responder

Cancer type Prostate 2 4

Melanoma 7 6

Adenocarcinoma 2 0

Not indicated 0 1

Total 11 11

Repertoire

features

Clones

detected

32,916

(5,168–56,231)

30,015

(5,894–58,222)

TCR

convergence

0.022

(0.006–0.092)

0.008

(0.002–0.019)

Clonality 0.24

(0.055–0.376)

0.133

(0.055–0.327)

Summary repertoire features and sample annotations for cohort. Each individual was

profiled via the Oncomine TCRB-LR Assay at a single baseline timepoint using 25 ng

of cDNA derived from PBL total RNA. Repertoire feature values indicate the average and

range for responders and non-responders.

vs. Immunoverse HS TCR beta and Oncomine TCRB-SR vs.
Immunoverse HS TCR beta, respectively, by Wilcoxon signed
rank test; Supplemental Tables 3C,F).

Association With Response to CTLA-4
Monotherapy
Having thoroughly evaluated the technical aspects of the
Oncomine TCRB-LR assay, we next applied the assay to
evaluate TCR convergence as a predictive biomarker for
response to CTLA-4 blockade in a cohort of 22 individuals
with RECIST graded response annotations (11 responders, 11
non-responders) representing three major cancer types: clear
cell adenocarcinoma (two responders, zero non-responder),
melanoma (seven responders, six non-responders) and prostate
cancer (two responders, four non-responders). Response was
defined as stable disease, partial response, or complete response
following immunotherapy. Cancer annotations and repertoire
features for this cohort are presented in Table 1, while
detailed repertoire metrics for all samples are presented in
Supplemental Table 1, Sheet 1. We found TCR convergence
to be elevated in those who had an objective response to
immunotherapy (p= 0.033, Wilcoxon sum rank test, Figure 3A)
and could discriminate responders from non-responders with an
AUC of 0.77. Given previous reports on the potential biomarker
value of T cell clonal expansion, we next asked whether
TCR clonality values differed between responders and non-
responders. We observed a trend toward higher clonality in those
who responded to immunotherapy (p = 0.055, Wilcoxon sum
rank test, Figure 3B; AUC = 0.74). Given that clonal expansion
and TCR convergence measure independent repertoire features,
we trained a logistic regression classifier using TCR convergence
and clonality as the twomodel features to test whether theymight
be combined to improve the prediction of response (section
Materials and Methods). We found that the combination of
convergence and clonality improved the prediction of response
(Wilcoxon sum rank test p = 0.001, model response probability
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FIGURE 3 | Association between clinical outcomes and TCR convergence. (A) TCR convergence and (B) clonality for responders (N = 11) and non-responders

(N = 11) to CTLA-4 blockade for cancer. TCR clonality is calculated as 1—the normalized Shannon entropy of clone frequencies. Convergent TCR frequency was

calculated as described in methods. All cancer types were included in the analysis. (C) Response probability scores from a logistic regression classifier trained using

TCR clonality and convergence as features to predict response to immunotherapy. Score indicates likelihood that a sample is a responder. (D) Receiver operator

characteristic curves derived from leave-group-out cross validation analysis of models using clonality, convergence, or the combination of clonality and convergence

to predict immunotherapy response. ROC curves represent the average model performance following 2,000 random train-test splits, where 75% of the dataset was

used to train the model followed by testing on the remaining 25%. The combination of TCR clonality and convergence shows better performance (AUC = 0.89) than

models using TCR convergence and clonality alone (AUC of 0.70 and 0.65, respectively).

score for responders vs. non-responders; Figure 3C, AUC =

0.89). Finally, to evaluate model robustness, we performed
repeated leave-group-out cross validation of the two feature
models, and compared performance to the models using TCR
convergence or clonality as a sole predictor of response. We
found the two-feature model to outperform those using a single
feature, achieving a specificity of 0.82, sensitivity of 0.71, and
positive predictive value of 0.80 at the optimal threshold score,
as determined by Youden’s J (Figure 3D and section Materials
and Methods).

DISCUSSION

The majority of TCRB sequencing data published to date
has been generated using the Illumina platform, which
has inherent substitution sequencing errors (17). Platforms
having a lower substitution error rate could produce more
suitable data. In this study, we compared TCRB repertoire
data produced by the Ion Torrent Oncomine TCRB-LR and
SR assays to data produced by three Illumina-based assays.
Previous studies have evaluated the effect of platform specific

sequencing errors on immune repertoire data (18), but to
our knowledge the field has yet to examine the relevance
of such errors to immunotherapy biomarker discovery. We
hypothesized that the low substitution error rate of Ion Torrent
platform might be critical for the measurement of convergence
(19, 20). Indeed, in a side-by-side comparison of samples
analyzed using Illumina-based Sequenta and Ion Torrent based
Oncomine TCRB sequencing, we found measurements of TCR
clonality, diversity and clonal overlap to be consistent across
platforms, while TCR convergence values were not significantly
correlated. Furthermore, a subsequent analysis of published
ImmunoSeq data revealed elevated TCR convergence values
that were highly correlated with sample clonality and could be
accurately modeled as a suggested artifact derived from residual
substitution sequencing errors. In reviewing literature, we
note additional reports of TCR convergence in Illumina-based
data that are significantly higher than those we observe in
Ion Torrent data (21). Taken together, these results suggest
the choice of sequencing platform may be consequential for
biomarker applications of TCR convergence, and raise the
possibility that TCR convergence may have been overlooked
as a predictive biomarker owing to obfuscating platform
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specific noise. Beyond platform specific sequencing errors, other
factors that may influence data quality include the number of
PCR cycles used during library amplification, the fidelity of
the chosen polymerase, but also the success of downstream
informatics methods in eliminating PCR or sequencing
errors. Indeed, among the three Illumina-based assays tested,
we observed differences in the frequency of convergent
TCRs, suggesting that assay protocol may significantly
impact results.

Our results also highlight potential tradeoffs in the application
of molecular barcodes to immune repertoire sequencing. In a
comparison of the Oncomine TCRB assay with the molecular
barcode based Archer Immunoverse HS TCR beta assay, we
found that the latter assay detected fewer rearrangements and had
a lower sensitivity than the Oncomine assay. However, this assay
also reported convergence frequencies that were not significantly
different than those reported by the Oncomine assay, suggesting
that the use of molecular barcodes may reduce noise deriving
from sequencing or PCR errors at the expense of lower sensitivity
compared to conventional PCR based approaches.

Here we report elevated TCR convergence in baseline
peripheral blood of those who respond to CTLA-4 blockade for
cancer. We define TCR convergence as the aggregate frequency
of T cell clones within an individual that share a variable
gene and CDR3AA sequence with at least one other clone, but
differ at the nucleotide level. This definition can be contrasted
with instances in literature where this term has been used to
refer to TCRB or IGH amino acid sequences found in more
than one individual (22–24) (i.e., “public” rearrangements) or
instances where researchers attempt to identify functionally
equivalent TCRs that differ in amino acid space (25). Compared
to the latter approach, we have adopted a stringent definition
of convergence, with the goal of minimizing the false positive
rate for the detection of convergent TCRs. Our approach builds
upon the notion that false positive convergent events, either
owing to the grouping of functionally dissimilar clones, or the
presence of artifactual clones deriving from residual substitution
errors, have the potential to conceal meaningful signal in
TCR repertoire data, a possibility exacerbated by the rarity
of bona fide convergence events. Consequently, the frequency
of convergent TCRs reported here may underestimate the
frequency of functionally equivalent T cell clones. Nonetheless,
we note that functional or binding data would ultimately
be required to prove shared tumor antigen specificity of
convergent TCRs.

One proposed advantage of TCR convergence as a biomarker
is its ability to detect T cell responses to tumor neoantigens
beyond those arising from non-synonymous mutations.
Although this dataset is small, we find that convergence values
could discriminate responders from non-responders with
significant accuracy (AUC = 0.77), comparing favorably to
the historical performance of tumor mutation burden as a
biomarker. The extent to which elevated TCR convergence is
a feature of CPI sensitive tumors of other cancer types will be
clarified by ongoing studies involving larger cohorts.

We hypothesize that T cells having convergent TCRs are
likely to target tumor-associated antigens in those with cancer.

However, these data do not shed light on the phenotype of
such tumor antigen specific T cells. Given that chronic antigen
stimulation may give rise to exhausted or dysregulated T
cells having distinct expression levels of cell surface receptors,
including inhibitory receptors (26), it is possible that FACS-based
methods may be used to enrich for T cells having convergent
TCRs. This possibility may be relevant given recent reporting
of a phenotypically abnormal PD-1 high intratumoral T cell
population in NSCLC subjects treated with PD-1 blockade, the
frequency of which was found to be predictive of immunotherapy
response (27).

One question arising from this work is whether additional
insight would be gained by analysis of the unseen TCRα (TCRA)
chains of T cells having convergent TCRB chains. Accepting that
members of a convergent TCR group share antigen specificity,
one can infer that either: (1) the unseen TCRA chains are
functionally identical and help determine the antigen specificity
of the receptor; or (2) convergent TCRs are TCRB chain
dominant, while the TCRA chains play an accessory or stabilizing
role but do not affect the antigen specificity of the receptor.
Given that the unsequenced TCRA chains of group members are
likely to differ in sequence space owing to the random nature
of VDJ recombination, the latter case may be more likely. In
this scenario, the full length TCRB chains of convergent TCRs
could be paired with generic TCRA chains to efficiently generate
tumor antigen specific TCRs. However, the proposition that beta
chain dominance is a feature of TCRs having convergent TCRB
chains is not to suggest that most TCRs are beta chain dominant.
Many TCRs may exhibit alpha/beta chain codominance or even
alpha chain dominance. Indeed, beta chain dominance could be a
property of a minority of TCRs, but the majority of TCRs having
convergent TCRB chains.

Finally, although it is not a focus of this study, the
link between chronic antigen stimulation and autoimmunity
suggests that TCR convergence may also have application to
the identification of mechanistic or predictive biomarkers for
autoimmune disease and infectious disease, particularly those
involving chronic infection. To this end we note that elevated
TCR convergence has been identified as a repertoire feature of
salivary gland inflammatory lesions in individuals with Sjogren’s
syndrome (28), while convergent TCRsmay be underrepresented
in the peripheral blood of individuals with uncontrolled HIV
infection (29).
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Supplemental Figure 1 | (A) Clonality values for Oncomine and ImmunoSeq

(N = 666) data sets. ImmunoSeq data corresponds to samples presented in

Emerson et al. (12). Set 1 corresponds to eight samples used as part of the

Sequenta-Oncomine cross-platform comparison, while Set 2 corresponds to 22

peripheral blood samples used to evaluate the predictive value of TCR

convergence and clonality. (B) Convergence values for Oncomine and

ImmunoSeq datasets. Set 1 samples analyzed by the Sequenta assay have

significantly higher convergence values than the same samples analyzed by the

Oncomine TCRB-LR assay. (C) Correlation between clonality and convergence in

ImmunoSeq (N = 666) and (D) oncomine (Sets 1 and 2 combined,

N = 30) datasets.

Supplemental Figure 2 | Modeling ImmunoSeq convergence values as a

product of substitution sequencing errors. A model was generated taking into

account the sequencing depth per clone, and the likelihood that a substitution

sequencing error would give rise to a synonymous mutation within the CDR3 of

each clone. Observed vs. predicted values are presented for three hypothetical

residual substitution sequencing error rates. Model fit was assessed by Spearman

correlation. A residual substitution error rate of 8.5E-3 gave rise to convergence

values that most closely fit the observed convergence values in the Emerson et al.

(12) dataset.

Supplemental Figure 3 | Clones detected following sequencing of 10E3, 10E4,

and 10E5 sorted CD3 positive peripheral blood T cells from a healthy donor.

Sorted cells were cultured in CTSTM OptiMem for 4 days followed by extraction of

total RNA. The entirety of the RNA was used for library preparation via the

Oncomine TCRB-LR assay followed by sequencing to saturation.

Supplemental Table 1 | (Sheet 1) Key repertoire metrics for each sample

presented in Table 1. Repertoire metrics were produced as a standard output of

the Ion Reporter analysis pipeline. A detailed description of the metrics presented

in this file is found within the glossary section of the user guide for the Oncomine

TCRB-LR assay. (Sheet 2) Key repertoire metrics for samples evaluated as part of

the cross-platform comparison.

Supplemental Table 2 | Productive rearrangements reported following

sequencing of 30 plasmid pool containing productive TCRB rearrangements

presented in Sandberg et al. (10) and used to validate the BIOMED-2 primer set.

Plasmids were pooled at equimolar input, followed by survey or deep level

sequencing via the Oncomine and ImmunoSeq assays. ImmunoSeq assay was

run by a contract research organization.

Supplemental Table 3 | Limit of detection analysis of Oncomine TCRB and

Archer Immunoverse HS TCR beta assays. (A) Average number of clones

detected across PCR replicate libraries for Oncomine TCRB-LR and Archer

Immunoverse HS TCR beta assays. Jurkat total RNA was spiked into total RNA

derived from healthy donor PBL at 10E-5 or 10E-6 frequency, then libraries

prepared from 25 to 300 ng RNA using the Oncomine TCRB-LR or Archer

Immunoverse HS TCR beta assay. Two PCR replicates were performed for each

input amount and spike in frequency. Libraries were analyzed using an equivalent

depth (∼2M reads per library; libraries not sequenced to saturation) across the

assays. (B) Fraction of libraries having detected Jurkat spike-in clone. (C) Average

convergent TCR frequency across library replicates for Oncomine TCRB-LR and

Immunoverse HS TCR beta assays. (D–F) Average number of clones detected,

fraction of libraries having detected Jurkat clone, and average convergent TCR

frequency for Oncomine TCRB-SR and Immunoverse HS TCR beta assays.

Libraries were sequenced to saturation (>20M reads each) via the Ion Torrent or

lllumina platform. All experiments were performed by a contract research

organization according to assay manufacturer specification.

Supplemental Data Sheets 1–7 | Clonotyping data and repertoire metrics

deriving from the Oncomine TCRB-LR assay and Ion Reporter analysis.
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