1	Differential prediction performance between Caribbean- and Mainland-subgroups using
2	state-of-the-art polygenic risk scores for coronary heart disease: Findings from the
3	Hispanic Community Health Study/Study of Latinos (HCHS/SOL)
4	
5	Christina G. Hutten, University of Illinois Chicago; University of Michigan
6	Frederick J. Boehm, South Dakota State University
7	Jennifer A. Smith, University of Michigan
8	Brian W. Spitzer, Beth Israel Deaconess Medical Center
9	Sylvia Wassertheil-Smoller, Albert Einstein College of Medicine
10	Carmen R Isasi, Albert Einstein College of Medicine
11	Jianwen Cai, UNC Chapel Hill
12	Jonathan T Unkart, SUNY Downstate Medical Center
13	Jiehuan Sun, University of Illinois Chicago
14	Victoria Persky, University of Illinois Chicago
15	Martha L Daviglus, University of Illinois Chicago
16	Tamar Sofer, Beth Israel Deaconess Medical Center
17	Maria Argos, University of Illinois Chicago; Boston University
18	
19	Short Title: PRS for incident CHD
20 21 22 23 24	Corresponding Author: Christina G. Hutten, PhD, MS chutten@med.umich.edu

25 Total Word Count: 3486

It is made available under a CC-BY-ND 4.0 International license .

26 Funding:

27 Dr. Hutten was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the

28 National Institutes of Health (NIH) under award numbers: T32HL125294 (PI: ML Daviglus);

29 F31HL154570 (PI: CG Hutten); Dr. Hutten and Dr. Boehm were supported by the NHLBI-NIH

30 under award number: T32HL007853 (PI: DJ Pinsky).

32 The Hispanic Community Health Study/Study of Latinos is a collaborative study supported by

- 33 contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North
- 34 Carolina (HHSN2682013000011 / N01-HC-65233), University of Miami (HHSN2682013000041
- 35 / N01-HC-65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC-
- 36 65235), University of Illinois at Chicago (HHSN268201300003I / N01- HC-65236 Northwestern
- 37 Univ), and San Diego State University (HHSN268201300005I / N01-HC-65237). The following
- 38 Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the
- 39 NHLBI: National Institute on Minority Health and Health Disparities ,National Institute on
- 40 Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial
- 41 Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of
- 42 Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements

Disclosures:

46 Authors have nothing to disclose.

It is made available under a CC-BY-ND 4.0 International license .

71 Abstract

72

Background: Coronary heart disease (CHD) is a leading cause of death for Hispanic/Latino
populations in the United States. We evaluated polygenic risk scores (PRS) with incident
myocardial infarction (MI) in a Hispanic/Latino study sample.

76 Methods: We leveraged data from the Hispanic Community Health Study/Study of Latinos 77 (HCHS/SOL) to assess four CHD-PRS from the PGS catalog, derived using multiple methods 78 (LDpred, AnnoPred, stacked clumping and thresholding, and LDPred2). We evaluated 79 associations between each standardized PRS and time to adjudicated incident MI, adjusted for 80 age, sex, first 5 principal components, and weighted for survey design. Concordance statistics (c-81 index) compared predictive accuracy of each PRS with, and in addition to, traditional risk factors 82 (TRF) for CHD (obesity, hypercholesterolemia, hypertension, diabetes, and smoking). Analyses 83 were stratified by self-reported Caribbean- (Puerto Rican, Dominican or Cuban) and Mainland-84 (those of Mexican, Central American, or South American) heritage subgroups.

Results: After 11 years follow-up, for 9055 participants (mean age (SD) 47.6(13.1), 62.2% female), the incidence of MI was 1.0% (n = 95). Each PRS was more strongly associated with MI among Mainland participants. LDPred2 + TRF performed best among the Mainland subgroup; HR=2.69, 95% CI [1.71, 4.20], c-index = 0.897, 95% CI [0.848, 0.946]; a modest increase over TRF alone, c-index = 0.880, 95% CI [0.827, 0.933]. AnnoPred + TRF performed best among the Caribbean sample; c-index = 0.721, 95% CI [0.647, 0.795]; however, was not significantly associated with rate of MI (HR=1.14, 95% CI [0.82, 1.60]).

92 Conclusion: PRS performance for CHD is lacking for Hispanics/Latinos of Caribbean origin

93 who have substantial proportions of African genetic ancestry, risking increased health disparities.

It is made available under a CC-BY-ND 4.0 International license .

94	AnnoPred, using functional annotations, outperformed other PRS in the Caribbean subgroup,
95	suggesting a potential strategy for PRS construction in diverse populations. These results
96	underscore the need to optimize cumulative genetic risk prediction of CHD in diverse
97	Hispanic/Latino populations.
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	

It is made available under a CC-BY-ND 4.0 International license .

117 Background

About 20.5 million Americans have coronary heart disease (CHD) and 720,000 will have a new coronary event this year (1). The rates of CHD in the Hispanic/Latino communities are similar to the non-Hispanic White population; however, risk factors for CHD are more prevalent among Hispanics/Latinos (2). Projections estimate Hispanic/Latino populations will represent 28% of the U.S. population by 2060 (3). Thus, tools to identify high-risk individuals are paramount to initiate preventive measures and mitigate CHD morbidity and mortality for Hispanic/Latino populations.

125

Precision medicine promises to use genetic information to target individuals with elevated disease risk and personalize treatments. Polygenic risk scores (PRS) are weighted or nonweighted sums of risk-conferring alleles of single nucleotide polymorphisms (SNPs) and may improve risk prediction over traditional risk factors (TRF) alone (4–8). A major limitation of the existing genetic epidemiology literature is a lack of diversity in study samples which limits generalizability of findings and can contribute to disparities in healthcare and personalized medicine for underrepresented populations (9).

133

Hispanic/Latino populations living in the U.S. are highly diverse, admixed populations
represented by varied genetic ancestries (European, African, and/or Amerindian), as well as
varied cultures and environmental exposures (10). Given this genetic diversity, performance of
PRS developed using SNPs associated with CHD in European ancestry populations is
underwhelming due to differences in linkage disequilibrium (LD), allele frequencies and effect
sizes (11). In a large cohort of Hispanics/Latinos in the U.S., we assessed the ability of four CHD

It is made available under a CC-BY-ND 4.0 International license .

- 140 PRS, derived using varying methods, to predict incident myocardial infarction (MI) and
- 141 determine whether prediction is improved over traditional CHD risk factors.

- . . .

- ____

It is made available under a CC-BY-ND 4.0 International license .

163 Methods

164 Study Population. The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a 165 large cohort of Hispanic/Latino health, comprising 16,415 participants aged 18-74 years. As a 166 multicenter-epidemiologic study to evaluate and identify risk and protective factors with the 167 health of U.S. Hispanics/Latinos, recruitment was conducted using a two-stage area probability 168 sampling of households in Chicago, San Diego, Bronx, and Miami, and enrollment occurred at 169 one of four field centers in each location. (12,13). Institutional Review Board (IRB) approval 170 was obtained at each center's respective IRB, and participants provided written informed consent 171 in their preferred language (English or Spanish). Participants underwent an extensive clinical 172 exam and assessments at baseline (Visit 1: 2008-2011) and follow-up (Visit 2: 2015-2017). 173 Additional telephone follow-up continued through 2019.

174

Of the 16,415 HCHS/SOL participants, 11,623 returned for their Visit 2 exam, and 11,469 provided consent at the Visit 2 examination for continued use of their DNA samples in genetic research by HCHS/SOL affiliated investigators. Of those who provided consent for the use of genetic data and for whom complete Visit 1 and Visit 2 data were available on key covariates were included in the current analyses (n=9055). Those without genotype data (n = 1807) were omitted from PRS analyses (**Supplemental Figure 1**).

181

182 Clinical evaluations in the HCHS/SOL. Visit 1 and 2 examinations were conducted by 183 trained/certified health interviewers at each field center according to standard protocols (14). 184 Participants were asked to fast and abstain from smoking 12 hours and avoid vigorous physical 185 activity on the morning of the examination. Anthropometric characteristics were measured, and

It is made available under a CC-BY-ND 4.0 International license .

body mass index (BMI) was calculated as weight in kilograms divided by height in meters
squared(15). Three seated blood pressure measurements were obtained after a 5-minute rest; the
average of the second and third was calculated for use in analyses (12,15).

189

Medication use in the HCHS/SOL. All prescription and over-the-counter medications used in the four weeks leading up to the Visit 1 examination were ascertained via two methods: 1) participants brought all medication containers to the interview where they were recorded, and 2) participants self-reported which medications were for specific conditions, including high blood pressure and diabetes. Antihypertensive, antidiabetic, and lipid-modifying medication use was defined as either transcribed or self-reported using the Master Drug Data Base (Medispan MDDB®).

197

198 Laboratory evaluation in the HCHS/SOL. Fasting blood samples were shipped to the 199 HCHS/SOL Central Laboratory at the University of Minnesota and measured for: total 200 cholesterol using a cholesterol oxidase enzymatic method; high-density lipoprotein (HDL) 201 cholesterol using a direct magnesium/dextran sulfate method; plasma glucose using a hexokinase 202 enzymatic method; serum triglycerides using a glycerol blanking enzymatic method (Roche 203 Diagnostics, Indianapolis, IN); low-density lipoprotein (LDL) cholesterol was calculated using 204 the Friedewald equation (16); Hemoglobin A1c (HbA1c) was measured using a Tosoh G7 Automated HPLC Analyzer (Tosoh Bioscience) (15). 205

206

Outcomes. Incident MI was based on participant-reported hospitalization or emergency room
(ER) visit during annual follow-up phone interview or at the Visit 2 exam. Medical records

review of hospital and ER visits for MI events were abstracted and adjudicated. First incident MI
events were reviewed by 2 independent reviewers, with discrepancies settled by an adjudicator.
Follow-up time to first MI event was defined as the difference between the date of the first MI
event and the Visit 1 exam date. If no MI event occurred, follow-up time was determined by
censor date (date of death or date of withdrawal) or date of last follow-up.

214

215 Genotyping and Imputation. HCHS/SOL participants who consented to genetic studies at Visit 216 1 had DNA extracted from whole blood samples and genotyped using a customized HCHS/SOL 217 Illumina Omni 2.5 M array (HumanOmni2.5-8 v.1-1) (17–19). Standard quality assurance and 218 quality control measures were applied to generate recommended variant- and sample-level 219 quality filters (19,20). There were 2,232,944 genetic variants that passed quality filters and were 220 informative that proceeded for imputation (10). Genome-wide imputation was performed via the 221 Michigan imputation server using the TOPMed 2.0 imputation panel (21,22). Imputation quality was reported for each variant (R^2) . 222

223

224 Polygenic Risk Scores. The PRS were selected from the PGS catalog (23) to analyze several 225 PRS with varying numbers of SNPs, methods for construction, and genome-wide association 226 (GWAS) discovery populations. Summary statistics were downloaded from the PGS catalog(23). Only variants with imputation quality $R^2 \ge 0.8$ and minor allele frequency ≥ 0.01 were used. 227 228 PRSs were constructed from summary statistics using the PRSice software (24), without any 229 clumping and thresholding. The scores were standardized to mean zero and variance one in the 230 analytic sample. The four PRS are summarized in **Table 1** and methodology for construction is 231 summarized below:

It is made available under a CC-BY-ND 4.0 International license .

232

a) <u>PGS000013 (25) -LDpred (26)</u>: Bayesian approach used to calculate posterior mean effect
size for each SNP based on prior GWAS effect sizes and modeled LD information from an
external reference population (25,26).

b) <u>PGS001355 (27)- AnnoPred (28)</u>: Used functional annotations to estimate prior SNP effect
sizes, incorporated in a Bayesian framework and jointly modeled with an estimated LD matrix

from reference genotype panels and inferred posterior SNP effect sizes (27,28).

c) <u>PGS002776 (29)- SCT (30)</u>: Stacked clumping and thresholding (SCT) first set a clumping window (*kb*), correlation (r^2) and p-value thresholds to select SNPs into a PRS. A set of parameters is chosen for LD, window size, p-value, and INFO score (based on quality of imputation) (30). Clumping and thresholding are then run on each combination of these parameters using the R package 'bigsnpr' (31) to provide a PRS for each combination. Using penalized regression modeling, the PRS are stacked to produce a set of weights to apply to each SNP in prediction modeling (29,30).

d) <u>PGS003725 (32) - LDPred2 (33)</u>: Bayesian approach to calculate a posterior mean effect size
for each SNP based on prior GWAS effect sizes followed by shrinkage using LD information
(32,33).

249

Traditional risk factors. Traditional risk factors (TRF) were evaluated in comparison to and in
conjunction with each PRS for predictiveness and defined as follows: Hypercholesterolemia
(total cholesterol of ≥240mg/dL, LDL cholesterol ≥160mg/dL, HDL <40mg/dL, or receiving
cholesterol-lowering medication); hypertension (systolic blood pressure ≥140mmHg, diastolic
blood pressure ≥90mmHg, or use of high blood pressure medication); hypertension AHA

(systolic blood pressure ≥130mmHg, diastolic blood pressure ≥80mmHg based on the 2017
ACC/AHA Guidelines definition, or use of high blood pressure medication (34); obesity (body
mass index ≥30kg/m² at Visit 1); diabetes mellitus (fasting plasma glucose ≥126mg/dL, 2-hour
post-load plasma glucose ≥200mg/dL, HbA1c ≥6.5%, or use of antihyperglycemic medications);
and smoking (self-reported current cigarette smoking) (15).

260

Statistical Analysis. All reported values were weighted to adjust for complex survey design, sampling probability, and non-response in the HCHS/SOL cohort. The calculation of the sampling weights for Visit 2 was based on the sampling weights for Visit 1 and accounted for the participant non-response for Visit 2. Chi-square tests were used to test for significant differences in baseline characteristics and incident MI.

266

Each PRS was modeled continuously. Multivariable Cox proportional hazards models were used 267 268 to assess the association of each standardized PRS adjusted by *a priori* confounders: age, sex, 269 and the first 5 principal components (PCs) to account for genetic ancestry and population 270 structure. PC analysis was performed previously (detailed methods in reference 12), which 271 showed no further benefit to controlling for confounding by ancestry beyond 5 PCs (10). 272 Statistical evaluation of interaction by sex was conducted. We also assessed the associations 273 between each PRS with incident MI stratified by self-reported Caribbean- (Puerto Rican, 274 Dominican, or Cuban heritage) and Mainland- (Mexican, Central American, or South American 275 heritage) Hispanic/Latino subgroups using Cox proportional hazards regression and adjusted for 276 age, sex and the first 5 PCs. Sensitivity analyses were conducted to assess associations of each

It is made available under a CC-BY-ND 4.0 International license .

- 277 PRS with incident MI when restricted to participants 50 years and older while stratified by
- 278 Caribbean- and Mainland-subgroups.

- 280 To determine whether the addition of each PRS improves the prediction of incident MI beyond
- 281 TRF (hypertension, high cholesterol, diabetes, obesity, and smoking) we used the concordance
- statistic (c-index) (35). The c-index was calculated for each of the TRF alone, each PRS alone,
- the TRF combined, and for each PRS+TRF combined.

It is made available under a CC-BY-ND 4.0 International license .

\mathbf{r}	\mathbf{n}	\mathbf{n}
.5	U	U
-	~	~

- 301
- 302 **Results**

303	For the analytic sample ($n = 9055$), mean age was 47.6 years (SD: 13.1), 62.2% were female,
304	with 1% incidence of MI ($n = 95$) over a median 9.8 years of follow-up (IQR: 9.1-10.6 years)
305	(Table 2, Supplemental Figure 1). In unadjusted analysis, increased risk of incident MI was
306	associated with age, Cuban background, Caribbean origin, less than- or greater than- a high
307	school degree or GED, hypertension, diabetes mellitus, and current smoking status (Table 2).
308	Study participation with the San Diego field center was associated with lower risk of incident
309	MI. Each standardized PRS was normally distributed (Figure 1). When stratified by Mainland
310	and Caribbean subgroups, the SCT PRS for Mainland subgroup showed a higher median (IQR)
311	than Caribbean subgroup while the LDPred2 PRS elicited a higher median (IQR) distribution for
312	the Caribbean subgroup (Supplemental Figure 2). Baseline characteristics of the Mainland
313	versus Caribbean subgroups are presented in Supplemental Table 1.
313 314	versus Caribbean subgroups are presented in Supplemental Table 1 .
313 314 315	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in
313 314 315 316	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in Figure 2 . For every one-standard deviation (SD) increase in LDPred2 PRS, the Mainland
 313 314 315 316 317 	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in Figure 2 . For every one-standard deviation (SD) increase in LDPred2 PRS, the Mainland subgroup had 2.69 [95% CI, 1.72-4.20] higher risk of incident MI while the Caribbean group
 313 314 315 316 317 318 	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in Figure 2 . For every one-standard deviation (SD) increase in LDPred2 PRS, the Mainland subgroup had 2.69 [95% CI, 1.72-4.20] higher risk of incident MI while the Caribbean group showed no increased risk (HR 1.01 [95% CI, 0.65-1.56]). Similarly, the LDPred PRS had 2-
 313 314 315 316 317 318 319 	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in Figure 2 . For every one-standard deviation (SD) increase in LDPred2 PRS, the Mainland subgroup had 2.69 [95% CI, 1.72-4.20] higher risk of incident MI while the Caribbean group showed no increased risk (HR 1.01 [95% CI, 0.65-1.56]). Similarly, the LDPred PRS had 2- times higher risk of incident MI in the Mainland subgroup (HR 1.97 [95% CI, 1.23-3.15]) with
 313 314 315 316 317 318 319 320 	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in Figure 2 . For every one-standard deviation (SD) increase in LDPred2 PRS, the Mainland subgroup had 2.69 [95% CI, 1.72-4.20] higher risk of incident MI while the Caribbean group showed no increased risk (HR 1.01 [95% CI, 0.65-1.56]). Similarly, the LDPred PRS had 2- times higher risk of incident MI in the Mainland subgroup (HR 1.97 [95% CI, 1.23-3.15]) with every one-SD increase in PRS; however, while risk increased for the Caribbean subgroup, it was
 313 314 315 316 317 318 319 320 321 	versus Caribbean subgroups are presented in Supplemental Table 1 . Multivariable-adjusted associations of each standardized-PRS with incident MI are presented in Figure 2 . For every one-standard deviation (SD) increase in LDPred2 PRS, the Mainland subgroup had 2.69 [95% CI, 1.72-4.20] higher risk of incident MI while the Caribbean group showed no increased risk (HR 1.01 [95% CI, 0.65-1.56]). Similarly, the LDPred PRS had 2- times higher risk of incident MI in the Mainland subgroup (HR 1.97 [95% CI, 1.23-3.15]) with every one-SD increase in PRS; however, while risk increased for the Caribbean subgroup, it was not significant (HR 1.15 [95% CI, 0.87-1.51]). The AnnoPred PRS showed 48% higher risk of

It is made available under a CC-BY-ND 4.0 International license .

323	subgroup, the Mainland group showed 80% higher risk of incident MI [95% CI, 1.20-2.72] and
324	Caribbean group had no increased risk. The SCT PRS demarcated no significantly increased risk
325	for any subgroup (Figure 2). Sensitivity analysis for participants over 50 years remained
326	consistent regarding magnitude and significance of the associations for each PRS stratified by
327	Caribbean and Mainland groups (Supplemental Table 2). There was no evidence of
328	heterogeneity of effects by sex for LDPred2 and SCT PRS (interaction p values = 0.17 and 0.52 ,
329	respectively) while there was a significant interaction by sex for LDPred and AnnoPred PRS
330	(interaction p values = 0.04 and 0.03 , respectively) where higher risk was observed among
331	females (Supplemental Table 3).
332	
333	To evaluate predictive probability of traditional risk factors (TRF) in comparison to each PRS,
334	we used Cox proportional hazards regression to model the 5 TRF separately (BMI, high total
335	cholesterol, hypertension, diabetes, and smoking), the 5 TRF together, and the 5 TRF together
336	with each PRS. Each model was adjusted for age, sex, the first 5 PCs, and weighted for complex
337	survey design. Each PRS, TRF, and PRS+TRF performed best at predicting incident MI in the
338	Mainland strata (c-index range: 0.809-0.897); highest for the model that included LDPred2+TRF
339	(c-index: 0.897, SE: 0.025) (Figure 3) and an improvement of 0.017 over prediction by
340	combined TRF. The SCT+TRF performed worse than TRF combined for the Mainland subgroup
341	while AnnoPred+TRF (c-index: 0.883, SE: 0.029) and LDPred+TRF (c-index: 0.884, SE: 0.029)
342	each provided slight improvement. Each PRS alone performed worse in the Mainland subgroup
343	than TRF combined. LDPred2 alone predicted incident MI better than BMI, high total
344	cholesterol or smoking alone.
345	

It is made available under a CC-BY-ND 4.0 International license .

346	The AnnoPred PRS+TRF performed best in the Caribbean subgroup (c-index: 0.721, SE: 0.038),
347	an improvement of only 0.002 over the combined TRF. Ever other PRS+TRF combination
348	decreased prediction of incident MI for the Caribbean subgroup below TRF combined. Each
349	PRS alone performed worse than each separate TRF. The AnnoPred PRS+TRF also performed
350	best in the full analytic sample (c-index: 0.787, SE: 0.036) which improved prediction 0.021 over
351	TRF combined. TRF combined performed better than each PRS alone by 0.048-0.064 increase in
352	c-index for the analytic sample, while each PRS+TRF also improved performance slightly over
353	the combined TRF (Figure 3).
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	

It is made available under a CC-BY-ND 4.0 International license .

^		\mathbf{n}
	n	ч
-	v	~

370

371 Discussion

In the current study, we utilized four comprehensive PRS associated with CHD to assess their
prediction of incident MI in a diverse cohort of Hispanics/Latinos in the U.S. Overall, each PRS
predicted incident MI best for the Mainland subgroup. AnnoPred PRS had improved
performance for the full analytic sample and Caribbean strata over other PRS, which suggests
improved utility among those with heritage from Cuba, the Dominican Republic, and Puerto
Rico. This may indicate a potential avenue for methods development in PRS construction to

378 improve prediction in African-admixed populations.

379

380 Incorporating genetic information into risk prediction tools improves performance. Inouye et al. 381 (2018) compared the predictive value of TRF alone, TRF combined, and PRS+TRF for risk 382 prediction of CHD in the UK Biobank, a cohort of primarily European ancestry. Similar to our 383 findings, each TRF by itself (smoking, diabetes, family history of heart disease, body mass 384 index, hypertension, and high cholesterol) did not perform as well as the PRS at predicting CHD 385 and PRS+TRF showed the best predictive value for CHD by C-index (36). We also found each 386 TRF alone had slightly lower predictive value than 5 TRF combined. The PRS+TRF had even 387 higher predictive value in some instances, such as LDPred+TRF for the Mainland subgroup. 388 While AnnoPred+TRF also showed higher predictive value for the full analytic sample and 389 Caribbean strata, c-index improvement was only modest in all groups. This suggests some PRS 390 may be useful for CHD risk prediction in subgroups of Hispanics/Latinos early in life, before 391 TRF develop.

It is made available under a CC-BY-ND 4.0 International license .

392

393	Comparing relative risk for CHD using TRF (e.g., cholesterol, smoking status, and systolic blood
394	pressure) versus PRS+TRF could lead someone to take preventive measures earlier (37). Given
395	the relatively young age of Hispanic/Latino populations in the U.S. (38), identifying those at
396	increased genetic risk may lessen the burden of CHD events by identifying those in need of
397	primary prevention rather than rely on current clinical guidelines which only incorporate TRF
398	(15,39,40). We found the predictive value of LDPred2+TRF to perform better than TRF
399	combined and suggests the use of a PRS provides an ideal opportunity for preventive
400	management.
401	
402	Hispanic/Latino populations are highly admixed populations with ancestry influenced by
403	European, African, and Amerindian backgrounds (10). Our analysis shows evidence of PRS
404	prediction differences between strata of Mainland and Caribbean subgroups. The Mainland

405 subgroup, with heritage from Mexico, South America, and Central America, tends to include 406 individuals with equal proportions of European and Amerindian genetic ancestry and a lower 407 proportion of African ancestry (10). Alternatively, the Caribbean subgroup tends to consist of 408 individuals with a large proportion of European and African ancestries and a lower proportion of 409 Amerindian ancestry (10). Despite the large proportion of European admixture, each PRS 410 performed worse in the Caribbean subgroup. Previous principal components analysis of 411 Caribbean Hispanic/Latino individuals traced genetic ancestry to Spain and Portugal; however, 412 the distance of genetic ancestry from elsewhere in Europe suggests a bottleneck and genetic drift 413 that occurred when Europeans settled in the Caribbean (41). Each GWAS used for construction 414 of PRS, may not include variants in LD with African populations and may not have sampled

415 participants from the Iberian peninsula. Interestingly, the PRS that performed best in the 416 Caribbean subgroup was the AnnoPred, which was developed, trained, and evaluated in 417 European cohorts (27). Another study using data from the Million Veteran Program identified 418 heterogeneity in PRS validity among Hispanics when stratified by self-identified race/ethnicity 419 principal components (42). Our analysis provides further support that PRS use should consider 420 Hispanic/Latino populations as distinct groups.

421

422 The portability of PRS between populations has come into question due to differences in LD, 423 allele frequencies, and genetic architecture (9,43); however, we hypothesized a more diverse 424 sample of Hispanics/Latinos, such as HCHS/SOL, would provide a higher likelihood that the 425 SNPs are in LD with a causal variant. This may be why each PRS conferred increased risk for 426 incident MI in the Mainland subgroup. Previous work has shown selecting genetic variants from 427 the robust GWAS literature in European ancestry populations generally performs well in 428 Hispanic/Latino populations (44). The LDPred and LDPred2 PRS both utilized multi-ancestry 429 GWAS for SNP selection and evaluation (25,32). The additional step used in LDPred2 using 430 shrinkage by LD may have improved its performance, although only in the Mainland group. 431

Furthermore, we provide evidence that a larger number of SNPs does not always lead to
improved performance and may differ by genetic ancestry. LDPred2 contained 5 million less
SNPs than the original LDPred and while using similar Bayesian methods for construction,
LDPred2 conferred higher risk of incident MI for every 1-SD increase in PRS compared to
LDPred for the Mainland sample. Consistent with our findings, the eMERGE network assessed
a 1.7 million SNP PRS for incident CHD compared to the same LDPred PRS utilized here with

It is made available under a CC-BY-ND 4.0 International license .

6.6 million SNPs in a self-reported Hispanic sample of 2500 individuals. The 1.7 million PRS
performed better than the larger LDPred PRS according to c-index (0.683 vs. 0.659,
respectively), despite having fewer SNPs included (45). However, LDPred PRS performed better
in the analytic and Caribbean subset for HCHS/SOL, which may have benefited from the
additional 5 million SNPs providing a higher chance that those included were in LD. Similarly,
AnnoPred contains nearly 2 million more SNPs than LDPred2 and was the best performing in
the Caribbean subgroup.

445

446 Our findings extend the understanding of genetic contributions to CHD in Hispanic/Latino 447 populations and, thus, prevent expanding health disparities as we enter the era of precision 448 medicine. Most genetic research has been conducted in populations with overwhelmingly high 449 percentages of European genetic ancestry (9). From our analysis, it is apparent that genetic 450 ancestry plays a role in predicting incident MI with PRS. More accurate predictions may be 451 possible by considering European, African, and/or Amerindian ancestry proportions. The PRS 452 assessed in this study may not be the most predictive tool for use in Hispanic/Latino populations; 453 however, it is promising the PRS were associated with increased risk of incident MI and that 454 some associations were more pronounced in certain strata. Identifying additional SNP-CHD 455 associations in Hispanic/Latino populations may improve PRS-based CHD predictions for these 456 populations.

457

The present study has several strengths. This is one of the first studies to provide insight into the genetic contribution to CHD for Hispanic/Latino populations in the U.S. using one of the largest and most diverse prospective longitudinal studies of Hispanic/Latino health in the U.S. We had

461	access to well-characterized baseline and follow-up data, including genotype data. Despite the
462	large and diverse cohort of Hispanics/Latinos, study participants were relatively young, with an
463	average age of 41.6 years at Visit 1. Given subjects' young ages, we accrued a relatively small
464	number of CHD events. However, despite the low event count, we identified several significant
465	PRS-CHD associations. Further, the definition of CHD used to create each PRS may differ from
466	our outcome definition, which only included incident MI. However, each event was adjudicated,
467	lowering the likelihood of misclassification.
468	
469	Utilization of a PRS may help ameliorate the burden of CHD for Hispanic/Latino populations in
470	the U.S. by identifying high-risk individuals for implementing preventive measures at an earlier
471	timepoint than is possible when using traditional risk factors (TRF) alone. The LDPred2 PRS
472	shows promise in predicting CHD events in Mainland Hispanic/Latino populations originating
473	from Mexico, Central America, and South America, while AnnoPred PRS shows promise as a
474	method for PRS development to improve risk prediction in Caribbean Hispanics/Latinos with
475	Cuban, Dominican and Puerto Rican ancestry. Future research with a greater number of CHD
476	events will provide further evidence for the utility of PRS in Hispanic/Latino populations in the
477	U.S.
478	
479	
480	
481	
482	

483

It is made available under a CC-BY-ND 4.0 International license .

484

485 **References**

486 487	1.	Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American
488		Heart Association Circulation 2023 Feb 21:147(8)
489	2.	Leigh JA. Alvarez M. Rodriguez CJ. Ethnic minorities and coronary heart disease:
490	2.	An update and future directions. Curr Atheroscler Rep. 2016;18(2):9.
491	3	U.S. Census Bureau 2017 National Population Projections and Vintage 2017
492	0.	Population Estimates [Internet], 2017 [cited 2023 Mar 27]. Available from:
493		www.census.gov/popest
494	4.	Kullo IJ, Jouni H, Austin EE, Brown SA, Kruisselbrink TM, Isseh IN, et al.
495		Incorporating a Genetic Risk Score Into Coronary Heart Disease Risk Estimates.
496		Circulation. 2016:133(12):1181–8.
497	5.	Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, et al. Risk
498		prediction by genetic risk scores for coronary heart disease is independent of self-
499		reported family history. Eur Heart J. 2016 Feb 7;37(6):561–7.
500	6.	Hajek C, Guo X, Yao J, Hai Y, Johnson WC, Frazier-Wood AC, et al. Coronary
501		Heart Disease Genetic Risk Score Predicts Cardiovascular Disease Risk in Men, Not
502		Women. Vol. 11, Circulation. Genomic and precision medicine. NLM (Medline);
503		2018. p. e002324.
504	7.	Iribarren C, Lu M, Jorgenson E, Martínez M, Lluis-Ganella C, Subirana I, et al.
505		Clinical Utility of Multimarker Genetic Risk Scores for Prediction of Incident
506		Coronary Heart Disease: A Cohort Study among over 51 Thousand Individuals of
507		European Ancestry. Circ Cardiovasc Genet. 2016 Dec 1;9(6):531-40.
508	8.	Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, et
509		al. A multilocus genetic risk score for coronary heart disease: Case-control and
510		prospective cohort analyses. The Lancet [Internet]. 2010;376(9750):1393–400.
511		Available from: http://dx.doi.org/10.1016/S0140-6736(10)61267-6
512	9.	Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of
513		current polygenic risk scores may exacerbate health disparities. Nat Genet.
514		2019;51(4):584–91.
515	10.	Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, et al.
516		Genetic Diversity and Association Studies in US Hispanic/Latino Populations:
517		Applications in the Hispanic Community Health Study/Study of Latinos. Am J Hum
518		Genet. 2016;98(1):165–84.
519	11.	Smith JL, Tcheandjieu C, Dikilitas O, Iyer K, Miyazawa K, Hilliard A, et al. Multi-
520		Ancestry Polygenic Risk Score for Coronary Heart Disease Based on an Ancestrally
521		Diverse Genome-Wide Association Study and Population-Specific Optimization.
522		Circ Genom Precis Med. 2024 Jun;17(3).
523	12.	Sorlie PD, Avilés-Santa LM, Wassertheil-Smoller S, Kaplan RC, Daviglus ML,
524		Giachello AL, et al. Design and Implementation of the Hispanic Community Health
525		Study/Study of Latinos. Ann Epidemiol. 2010;20(8):629–41.

526	13.	LaVange LM, Kalsbeek WD, Sorlie PD, Avilés-Santa LM, Kaplan RC, Barnhart J, et
527		al. Sample Design and Cohort Selection in the Hispanic Community Health
528		Study/Study of Latinos. Ann Epidemiol. 2010;20(8):642–9.
529	14.	Hispanic Community Health Study/Study of Latinos. About the Study/ Manuals &
530		Forms/ Study Protocol, General Description and Study Management [Accessed 03-
531		27-2023]. https://sites.cscc.unc.edu/hchs/manuals-forms.
532	15.	Daviglus ML, Talavera GA, Avilés-Santa ML, Allison M, Cai J, Criqui MH, et al.
533		Prevalence of major cardiovascular risk factors and cardiovascular diseases among
534		Hispanic/Latino individuals of diverse backgrounds in the United States. JAMA -
535		Journal of the American Medical Association. 2012;308(17):1775–84.
536	16.	Friedewald W, Levy R, Fredrickson D. Estimation of the concentration of low-
537		density lipoprotein cholesterol in plasma, without use of the preparative
538		ultracentrifuge. Clin Chem. 1972;18(6):499–502.
539	17.	Rosenberg NA, Li LM, Ward R, Pritchard JK. Informativeness of Genetic Markers
540		for Inference of Ancestry. Am J Hum Genet. 2003;73(6):1402–22.
541	18.	Dunn EC, Sofer T, Wang MJ, Soare TW, Gallo LC, Gogarten SM, et al. Genome-
542		wide association study of depressive symptoms in the Hispanic Community Health
543		Study/Study of Latinos. J Psychiatr Res. 2018;99:167-76.
544	19.	Sofer T, Emery L, Jain D, Ellis AM, Laurie CC, Allison MA, et al. Variants
545		Associated with the Ankle Brachial Index Differ by Hispanic/Latino Ethnic Group: a
546		genome-wide association study in the Hispanic Community Health Study/Study of
547		Latinos. Sci Rep. 2019;9(1):11410.
548	20.	Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, et al. Quality
549		control and quality assurance in genotypic data for genome-wide association studies.
550		Genet Epidemiol. 2010;34(6):591–602.
551	21.	Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation
552		genotype imputation service and methods. Nat Genet. 2016 Oct 1;48(10):1284–7.
553	22.	Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al.
554		Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature.
555		2021 Feb 11;590(7845):290–9.
556	23.	Lambert S, Gil L, Jupp S, Ritchie S, Xu Y, Buniello A, et al. The Polygenic Score
557		Catalog: an open database for reproducibility and systematic evaluation. 2020;
558	24.	Euesden J, Lewis CM, O'Reilly PF. PRSice: Polygenic Risk Score software.
559		Bioinformatics. 2015 May 1;31(9):1466-8.
560	25.	Khera A V., Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-
561		wide polygenic scores for common diseases identify individuals with risk equivalent
562		to monogenic mutations. Vol. 50, Nature Genetics. Nature Publishing Group; 2018.
563		p. 1219–24.
564	26.	Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al.
565		Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am
566		J Hum Genet. 2015 Jan 1;97(4):576–92.
567	27.	Ye Y, Chen X, Han J, Jiang W, Natarajan P, Zhao H. Interactions Between Enhanced
568		Polygenic Risk Scores and Lifestyle for Cardiovascular Disease, Diabetes, and Lipid
569		Levels. Circ Genom Precis Med. 2021 Feb 1;14(1):E003128.

570	28.	Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, et al. Leveraging functional
571		annotations in genetic risk prediction for human complex diseases. PLoS Comput
572		Biol. 2017 Jun 1;13(6).
573	29.	Wong CK, Makalic E, Dite GS, Whiting L, Murphy NM, Hopper JL, et al. Polygenic
574		risk scores for cardiovascular diseases and type 2 diabetes. PLoS One. 2022 Dec
575		1;17(12 December).
576	30.	Privé F, Vilhjálmsson BJ, Aschard H, Blum MGB. Making the Most of Clumping
577		and Thresholding for Polygenic Scores. Am J Hum Genet. 2019 Dec 5;105(6):1213-
578		21.
579	31.	Prive F, Aschard H, Ziyatdinov A, Blum MGB. Efficient analysis of large-scale
580		genome-wide data with two R packages: Bigstatsr and bigsnpr. Bioinformatics. 2018
581		Aug 15;34(16):2781–7.
582	32.	Patel AP, Wang M, Ruan Y, Koyama S, Clarke SL, Yang X, et al. A multi-ancestry
583		polygenic risk score improves risk prediction for coronary artery disease. Nat Med.
584		2023 Jul 1;29(7):1793–803.
585	33.	Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: Better, faster, stronger. Bioinformatics.
586		2020 Dec 1;36(22–23):5424–31.
587	34.	Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb
588		C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA
589		Guideline for the Prevention, Detection, Evaluation, and Management of High Blood
590		Pressure in Adults: A Report of the American College of Cardiology/American Heart
591		Association Task Force on Clinical Practice Guidelines. Hypertension. 2018
592		Jun;71(6).
593	35.	Liu L, Forman S, Barton B. Fitting Cox Model Using PROC PHREG and Beyond in
594		SAS. SAS Glob Forum. 2009;
595	36.	Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, et al.
596		Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults:
597		Implications for Primary Prevention. J Am Coll Cardiol. 2018;72(16):1884–93.
598	37.	Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic
599		risk scores. Nat Rev Genet. 2018;19:581–90.
600	38.	Zong J. A Mosaic, not a monolith: a profile of the U.S. Latino Population, 2000-2020
601		[Internet]. 2022 Oct [cited 2023 Mar 27]. Available from:
602		https://latino.ucla.edu/research/latino-population-2000-2020/
603	39.	Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al.
604		Polygenic risk score identifies subgroup with higher burden of atherosclerosis and
605		greater relative benefit from statin therapy in the primary prevention setting.
606		Circulation. 2017;135(22):2091–101.
607	40.	Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018
608		AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
609		Guideline on the Management of Blood Cholesterol: A Report of the American
610		College of Cardiology/American Heart Association Task Force on Clinical Practice
611		Guidelines. J Am Coll Cardiol. 2019;73(24):e285–350.
612	41.	Moreno-Estrada A, Gravel S, Zakharia F, McCauley JL, Byrnes JK, Gignoux CR, et
613		al. Reconstructing the Population Genetic History of the Caribbean. PLoS Genet.
-		

It is made available under a CC-BY-ND 4.0 International license .

615 616 617 618	42.	Clarke SL, Huang RDL, Hilliard AT, Tcheandjieu C, Lynch J, Damrauer SM, et al. Race and Ethnicity Stratification for Polygenic Risk Score Analyses May Mask Disparities in Hispanics. Vol. 146, Circulation. Lippincott Williams and Wilkins; 2022. p. 265–7.
619 620 621	43.	Graham SE, Clarke SL, Wu KHH, Kanoni S, Zajac GJM, Ramdas S, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021 Dec 23;600(7890):675–9.
622 623 624	44.	Grinde KE, Qi Q, Thornton TA, Liu S, Shadyab AH, Chan KHK, et al. Generalizing polygenic risk scores from Europeans to Hispanics/Latinos. Genet Epidemiol. 2019;43(1):50–62.
625 626 627 628 629	45.	Dikilitas O, Schaid DJ, Kosel ML, Carroll RJ, Chute CG, Denny JA, et al. Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups. Am J Hum Genet. 2020 May 7;106(5):707–16.
630		

PRS	Method	Number	GWAS population	Training	Evaluation population	Reference
PGS000013	LDPred	of SNPs 6,630,150	Multi-ancestry(75.3% European, 13.6% South Asian, 6% East Asian, 2.2% Hispanic or Latin American, 1.7% African, 1.2% Greater Middle Eastern)	population 100% European	Multi-ancestry (49.2% European, 15.9% Multi- ancestry (including European), 9.5% African, 9.5% Hispanic or Latin American, 6.3% South Asian, 4.8% East Asian, 3.2% Not Reported, 1.6%	PMID: 30104762
					Additional Asian Ancestries)	
PGS001355	AnnoPred	2,994,055	100% European	100% European	100% European	PMID: 33433237
PGS002776	SCT	390,782	Multi-ancestry (75.3% European, 13.6% South Asian, 6% East Asian, 2.2% Hispanic or Latin American, 1.7% African, 1.2% Greater Middle Eastern)	100% European	100% European	PMID: 36459520
PGS003725	LDpred2	1,296,272	Multi-ancestry (76.4% European, 5.3% African, 14.7% East Asian, 2.1% Hispanic of Latin American, 1.5% South Asian)	100% European	Multi-ancestry (25% African, 25% European, 25% South Asian, 12.5% Hispanic or Latin American, 12.5% East Asian)	PMID: 37414900

Note: Table provides PRS summary data based on information available in the PGS Catalog repository (23) or the respective manuscript.

It is made available under a CC-BY-ND 4.0 International license .

	on to adjudicate	Incider	nt MI
	n	Number of events	HR (95% CI)
Sample baseline characteristics	9055	95	
Sex			P <0.001
Males	3421	56	Reference
Females	5634	39	0.63 (0.33, 1.21)
Age (years)			P <0.001
18-39	2244	6	Reference
40-49	2470	21	1.25 (0.39, 4.00)
50-59	2676	46	4.22 (1.40, 12.73)
60+	1665	22	3.15 (0.98, 10.06)
Hispanic/Latino background			P = 0.4
Mexican	3515	29	Reference
Central American	942	8	0.95 (0.39, 2.31)
Cuban	1426	22	2.14 (1.15, 3.97)
Dominican	839	8	2.93 (0.84, 10.22)
Puerto Rican	1467	18	1.43 (0.68, 2.98)
South American	618	6	1.80 (0.60, 5.37)
More than one/other heritage/NA	248	4	
Background Strata			P = 0.1
Mainland	5075	43	Reference
Caribbean	3732	48	1.92 (1.09, 3.37)
More than one/other heritage/NA	248	4	
Study Center			P = 0.1
Bronx	2157	21	Reference
Chicago	2282	25	0.89 (0.36, 2.20)
Miami	2402	34	0.96 (0.41, 2.22)
San Diego	2214	15	0.35 (0.14, 0.88)
Education	2225	12	P = 0.044
No high school diploma of GED	3333	42	2.19 (1.18, 4.09)
GFD	2279	22	Ref
Greater than High school or GED	3428	30	2.14 (1.01, 4.54)
Health insurance	0.20		P = 0.1
Does not have health insurance	4288	43	Ref
Has health insurance	4675	49	1.41 (0.77, 2.57)
Total Physical activity levels			P = 0.2
High	875	15	Ref
Moderate	4004	35	0.51 (0.19, 1.38)
Low	4150	45	0.64 (0.26, 1.56)
Lipid Lowering Medications	1236	22	1.76 (0.95, 3.277)
Statin users	1135	19	1.64 (0.85, 3.14)
CHD risk factors at Visit 1			
High total cholesterol	4243	66	1.60 (0.82, 3.14)
Dyslipidemia	3605	54	1.35 (0.73, 2.48)
Hypertension (>140/90)	2653	54	3.34 (1.79, 6.24)
AHA updated 2017 Hypertension	4236	75	2.97 (1.33, 6.63)

Table 2. Baseline characteristics in relation to adjudicated incident myocardial infarction through 2019

It is made available under a CC-BY-ND 4.0 International license .

(>130/80)			
Obesity (>= 30kg/m^2) (ref = 18.5-25 kg/m ²)	3897	36	1.06 (0.34, 3.33)
Diabetes Mellitus	1970	39	3.93 (1.43, 10.82)
Current Smoker	1664	34	2.24 (1.16, 4.33)

Note: All values (except N) are weighted for study design and non-response.

It is made available under a CC-BY-ND 4.0 International license .

Figure Legends

Figure 1. Standardized PRS distributions stratified by Caribbean and Mainland subgroups. A. LDPred, B. AnnoPred, C. SCT, D. LDPred2. Blue = Caribbean subgroup, Red = Mainland subgroup

Figure 2. Cox proportional hazards regression model associations of each standardized PRS with incident MI outcomes stratified by Caribbean and Mainland subgroups. A. LDPred, B. AnnoPred, C. SCT, D. LDPred2. Blue = Caribbean subgroup, Red = Mainland subgroup. Models were adjusted for age, sex, the first 5 principal components, and weighted for complex survey design.

Figure 3. Concordance statistic (C-index). Cox proportional hazards regression models for the associations between each PRS and incident MI for traditional risk factors individually and in combination with each PRS. All models were adjusted for age, sex, and the first 5 principal components. TRF = Traditional risk factors; BMI = body mass index; High Total Chol = High Total Cholesterol; Smoking = current smoking status; Analytic (Gray) = full analytic sample; Caribbean (Blue) = self-reported Cuban, Dominican Republic, and Puerto Rican heritage; Mainland (Red) = self-reported Mexican, Central American, and South American heritage groups.

Figure 2.

		Caribbean	Caribbean	Mainland	Mainland	P-value
			No. of Incident		No. of Incident	
			MI events		MI events	
	Ν	n (%)	n	n (%)		
Total	8807	3732 (42.4)	48	5075 (57.6)	43	
						Р
Sex						< 0.015
Females	5634	2274 (60.9)	22	3222 (63.5)	15	
						Р
Age (years)						< 0.001
18-39	2244	689 (18.7)	3	1451 (28.6)	2	
40-49	2470	1004 (26.9)	9	1398 (27.5)	11	
50-59	2676	1173 (31.4)	22	1447 (28.5)	22	
60+	1665	857 (23.0)	14	779 (15.3)	8	
Hispanic/Latino background						NA
Mexican	3515	0 (0.0)	NA	3515 (69.3%)	29	
Central American	942	0 (0.0)	NA	942 (18.6%)	8	
Cuban	1426	1426 (38.2)	22	0 (0.0)	NA	
Dominican	839	839 (22.5)	8	0 (0.0)	NA	
Puerto Rican	1467	1467 (39.3)	18	0 (0.0)	NA	
South American	618	0 (0.0)	NA	618 (12.2)	6	
Study Center						< 0.001
Bronx	2157	1753 (47.0)	17	315 (6.2)	1	
Chicago	2282	474 (12.7)	8	1754 (34.6)	17	
Miami	2402	1479 (39.6)	23	870 (17.1)	11	
San Diego	2214	26 (0.7)	0	2136 (42.1)	14	
Education						< 0.001
No high school diploma or GED	3335	1246 (33.4)	19	2019 (39.8)	21	
At most a High School diploma or GED	2279	962 (25.8)	13	1274 (25.1)	9	
Greater than High school or GED	3428	1524 (40.8)	16	1776 (35.0)	12	
Health insurance						< 0.001
Does not have health insurance	4288	1307 (35.0)	18	2878 (56.7)	24	
Has health insurance	4675	2367 (63.4)	28	2166 (42.7)	18	

Supplementary Table 1. Baseline characteristics by Caribbean vs. Mainland subgroups

Total Physical activity levels						< 0.001
High	875	314 (8.4)	7	521 (10.3)	7	
Moderate	4004	1568 (42.0)	17	2324 (45.8)	18	
Low	4150	1843 (49.4)	24	2217 (43.7)	18	
Lipid Lowering Medications	1236	643 (17.2)	13	568 (11.2)	9	< 0.001
Statin users	1135	512 (10.1)	13	599 (16.1)	6	< 0.001
CHD risk factors at Visit 1						
High total cholesterol	4243	1839 (49.3)	35	2305 (45.4)	28	< 0.001
Dyslipidemia	3605	1476 (39.5)	28	2043 (40.3)	23	0.348
Hypertension (>140/90)	2653	1426 (38.2)	27	1161 (22.9)	27	< 0.001
AHA updated 2017 Hypertension (>130/80)	4236	2183 (58.5)	38	1938 (38.2)	35	< 0.001
Obesity (>= 30kg/m^2)	3897	1624 (43.5)	19	2144 (42.2)	17	0.510
Diabetes Mellitus	1970	879 (23.6)	18	1047 (20.6)	21	< 0.001
Current Smoker	1664	915 (24.5)	24	697 (13.7)	7	< 0.001

	Analytic HR	Caribbean HR	Mainland HR
PRS	(95% CI)	(95% CI)	(95% CI)
	N=3682 (57 events)	N = 1772 (33 events)	N = 1839 (22 events)
PGS000013	1.46(1.08, 1.07)	1 24 (0 85 1 70)	202(106383)
LDPred	1.40 (1.06, 1.97)	1.24 (0.83, 1.73)	2.02 (1.00, 5.83)
PGS001355	1 57 (1 14 2 15)	1 22 (0 94 2 09)	1 07 (1 17 2 20)
AnnoPred	1.37 (1.14, 2.13)	1.33 (0.84, 2.08)	1.97 (1.17, 5.30)
PGS002776	1 21 (0 86 1 60)	1 01 (0 62 1 62)	1 70 (0 08 2 02)
SCT	1.21 (0.80 1.09)	1.01 (0.03, 1.03)	1.70 (0.98, 2.93)
PGS003725	1 52 (1 02 2 25)	1 11 (0 67 1 94)	2.95(1.56.5.22)
LDpred2	1.32 (1.03, 2.23)	1.11 (0.07, 1.84)	2.83 (1.30, 5.23)

Supplemental Table 2. Association of each PRS with incident MI in participants >50 years stratified by Caribbean and Mainland subgroup

Note: models are adjusted for sex, first 5 principal components and is weighted for complex survey design

	Female					Male			
PRS, Strata	Sample n	Incident MI N (%)	HR (95% CI)	C-index (SE)	Sample n	Incident MI N (%)	Male HR (95% CI)	C-index (SE)	
AnnoPred	4425	33 (0.7)	2.39 (1.47, 3.89)	0.844 (0.048)	2823	46 (1.6)	1.20 (0.92, 1.56)	0.614 (0.064)	
Caribbean subset	1185	21 (1.8)	1.88 (1.15, 3.08)	0.782 (0.064)	1239	22 (1.8)	0.98 (0.69, 1.39)	0.611 (0.104)	
Mainland subset	2471	11 (0.4)	3.72 (1.85, 7.48)	0.929 (0.038)	1500	22 (1.5)	1.41 (0.96, 2.06)	0.738 (0.073)	
LDPred	4425	33 (0.7)	2.14 (1.31, 3.49)	0.835 (0.053)	2823	46 (1.6)	1.15 (0.89, 1.49)	0.610 (0.068)	
Caribbean subset	1185	21 (1.8)	1.70 (1.03, 2.79)	0.777 (0.068)	1239	22 (1.8)	0.92 (0.70, 1.22)	0.612 (0.1030	
Mainland subset	2471	11 (0.4)	3.55 (1.52, 8.31)	0.917 (0.044)	1500	22 (1.5)	1.56 (0.99, 2.46)	0.748 (0.067)	

Supplemental Table 3. Associations of LDPred and AnnoPred PRS with incident MI stratified by sex and subgroup

Note: All models are adjusted for age, first 5 principal components, and weighted for complex survey design

It is made available under a CC-BY-ND 4.0 International license .

Supplemental Figure 1.

Supplemental Figure 2. Boxplot distributions of PRS