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Functional significance of central D1 receptors
in cognition: beyond working memory
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The role of dopamine D1 receptors in prefrontal cortex function, including working memory, is well
acknowledged. However, relatively little is known about their role in other cognitive or emotional
functions. We measured both D1 and D2 receptors in the brain using positron emission tomography
in healthy subjects, with the aim of elucidating how regional D1 and D2 receptors are differentially
involved in cognitive and emotional functions beyond working memory. We found an inverted
U-shaped relation between prefrontal D1 receptor availability and Wisconsin Card Sorting Test
performance, indicating that too little or too much D1 receptor stimulation impairs working memory
or set shifting. In addition, variability of D1 receptor availability in the amygdala and striatum was
related to individual differences in emotional responses and decision-making processes,
respectively. These observations suggest that the variability of available D1 receptors might be
associated with individual differences in brain functions that require phasic dopamine release. An
interdisciplinary approach combining molecular imaging of dopamine neurotransmission with
cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the
neurobiology of neuropsychiatric disorders such as schizophrenia, addiction and Parkinson’s
disease, as well as novel therapeutics for cognitive impairments observed in them.
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11 January 2012

Keywords: cognition; D1 receptors; dopamine; positron emission tomography; psychiatry

Positron emission tomography
imaging of D1 and D2 receptors and
working memory

Because dopamine D1 receptors in the prefrontal
cortex (PFC) are several times more abundant than
D2 receptors (Hall et al, 1994), the relationship
between D1 receptors and PFC functions has been
widely investigated. Sawaguchi and Goldman-Rakic
(1994) showed that local administration of D1
receptor antagonists into PFC induced impairment
in working memory task in nonhuman primate. In
human, Müller et al (1998) reported that systemic

administration of a mixed D1/D2 agonist facilitated
working memory while the selective D2 agonist had
no effect, indicating that the dopaminergic modula-
tion of working memory processes is mediated
primarily via D1 receptors.

In contrast to D1 receptors, relatively less attention
has been paid to the role of prefrontal D2 receptors in
cognitive functions partly because their density in
extrastriatal regions is very low (Suhara et al, 1999).
It was reported that blockade of D2 receptors in PFC
did not impair working memory in nonhuman
primate (Sawaguchi and Goldman-Rakic, 1994), but
some human studies reported that systemic admin-
istration of D2 agonist or antagonist modulated
cognitive functions that are subserved by PFC
(McDowell et al, 1998; Mehta et al, 1999). We
measured both D1 and extrastriatal D2 receptor
availabilities (binding potentials), indices propor-
tional to receptor density, using [11C]SCH23390 and
[11C]FLB457 positron emission tomography (PET),
respectively, in healthy male subjects, and aimed to
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elucidate how regional D1 and D2 receptors are
differentially involved in neurocognitive perfor-
mance including frontal lobe functions. Receptor
availability is defined as receptors that are available
to be bound by the radiotracer. This means receptors
that are available for stimulation by released endo-
genous dopamine.

A body of animal studies has indicated that
stimulation of D1 receptors in PFC produces an
inverted U-shaped dose–response curve, such that
too little or too much D1 receptor stimulation
impairs PFC functions (Cools and D’Esposito, 2011;
Goldman-Rakic et al, 2000; Williams and Castner,
2006). Therefore, we conducted quadratic regression
analysis to reveal the putative ‘U-shaped’ relation
between D1 receptor availability in PFC and PFC
function. Although standard linear regression analy-
sis revealed a trend-level negative correlation be-
tween D1 receptor availability in PFC and total error
of the Wisconsin Card Sorting Test (WCST), a test
requiring working memory and set-shifting abilities,
a quadratic regression model better predicted the
relation (Takahashi et al, 2008). That is, we found a
significant ‘U-shaped’ relation between D1 receptor
availability in PFC and total error of WCST (because
total error of WCST is a negative measure of
frontal lobe function, the relation is not ‘inverted’;
Figures 1A and 1B). However, neither linear nor
quadratic relation was found between D2 receptor
availability in PFC and any neuropsychological
measures.

Primal animal studies indicated that stimulation of
D1 receptors in PFC produces an inverted U-shaped
response in working memory, with the response
being optimized within a narrow range of D1
receptor stimulation (Castner and Goldman-Rakic,
2004; Goldman-Rakic et al, 2000; Lidow et al, 2003;
Seamans and Yang, 2004; Vijayraghavan et al, 2007).
Subsequent human studies have investigated the
effect of a functional polymorphism in the catechol
O-methyltransferase gene, which has been shown to
modulate the prefrontal dopamine level, on prefron-
tal function. Catechol O-methyltransferase gene
contains a common polymorphism, a valine (Val)-
to-methionine (Met) substitution at codon 158
(Val158Met). The Val allele is associated with higher
activity, whereas the Met allele is associated with
lower enzymatic activity. Consequently, Val carriers
have a lower level of extracellular dopamine in PFC.
A PET study using [11C]NNC112 has demonstrated
that Val carriers show significantly higher cortical D1
receptor availability than Met carriers, and the
authors suggested a mechanism in which a lower
level of extracellular dopamine in PFC induces
upregulation of D1 receptors in Val carriers (Slifstein
et al, 2008). Val carriers show lower performance and
increased (inefficient) PFC activation during com-
pletion of cognitive tasks related to PFC functions
(WCST and N-back task) (Egan et al, 2001; Goldberg
et al, 2003). It was reported that amphetamine
challenge in Val carriers induced improvement in

the performance of WCST and decreased (efficient)
PFC activation during N-back task, whereas that in
Met carriers caused deterioration in the performance
of WCST and increased (inefficient) PFC activation,
indicating that too little or too much dopamine
signaling would impair PFC functions, although
these studies could not identify the receptor subtype
that has a central role in this effect (Mattay et al,
2003; Williams-Gray et al, 2007).

We first showed an inverted U-shaped relation
between D1 receptors in PFC and executive function
including working memory in normal healthy sub-
jects (Takahashi et al, 2008). An inverted U-shaped
response has been suggested based on cognitive and
behavioral studies, but the exact physiological
mechanism of this effect has not yet been fully
understood. A recent monkey electrophysiology
study has demonstrated a neuron-level mechanism
that constitutes the inverted U-shaped response
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Figure 1 Quadratic (inverted U-shaped) relation between D1
receptor availability in prefrontal cortex (PFC) and performance
of Wisconsin Card Sorting Test (WCST). (A) Region of interest
(ROI) analysis revealed a significant quadratic regression
between D1 receptor availability in PFC and total error (TE) of
WCST. Red solid line: quadratic regression, black broken line:
linear regression. (B) Statistical parametric mapping (SPM)
analysis also revealed significant quadratic regression between
prefrontal D1 receptor availability and total error of WCST.
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whereby too much or too little stimulation of
prefrontal D1 receptors leads to working memory
deficits. D1 receptor stimulation had a suppressive
effect on the PFC neural activities involved in a
spatial working memory task. Moderate D1 receptor
stimulation spatially tunes PFC neurons that
process target signals by preferentially suppressing
nontarget (noisy) neural activities, whereas excessive
D1 receptor stimulation induces nonselective sup-
pression of PFC neural activities irrespective of
whether the neural activities are task related or not
(Vijayraghavan et al, 2007).

Animal studies have suggested that the inverted U-
shaped principle of D1 receptor stimulation mediat-
ing working memory does not necessarily apply to
other prefrontal functions (Floresco and Magyar,
2006). In fact, except for WCST, we did not find
any association between D1 receptor availability and
prefrontal functions less dependent on the working
memory process (word fluency task by phonetic or
semantic cues and problem-solving test; Takahashi
et al, 2008).

Recently, McNab et al (2009) showed the quadratic
relation between the improvement of working mem-
ory capacity by training and the change in D1
receptor availability induced by training, although
greater reduction in D1 receptor availability was
associated with greater improvements in working
memory capacity within the measured range. How-
ever, a recent study showed that age-related reduc-
tion in D1 receptor availability in PFC was associated
with age-related reduction in working memory
performance and PFC activation during working
memory load (Bäckman et al, 2011), indicating that
other factors besides D1 receptor availability, such as
cerebrovascular pathology, could influence the PFC
functions and PFC activation during working mem-
ory load in older adults. Furthermore, although
[11C]SCH23390 and [11C]NNC112 are selective radio-
ligands for D1 receptors, they have some affinity for
5HT2A receptors. 5HT2A receptor density in the
striatum is negligible compared with D1 receptor
density, whereas 5HT2A receptor density is not
negligible in the extrastriatal regions. Previous
reports in the literature have indicated that their
affinity for 5HT2A receptors relative to D1 receptors
is negligible, and recent in-vivo studies reported that
B10% to 25% of the cortical signals of these
radioligands were due to binding to 5HT2A recep-
tors. Thus, cautious interpretation of the extrastriatal
findings regarding these radioligands is recom-
mended (Ekelund et al, 2007; Slifstein et al, 2007).

In line with our previous study (Takahashi et al,
2007), we also found that D2 receptor availability in
the hippocampus (HPC) was positively correlated
not only with episodic memory ability but also with
WCST performance (Takahashi et al, 2008). Patients
with lesions in HPC sometimes show deficits in
WCST (Corkin, 2001; Igarashi et al, 2002). These
observations suggest that hippocampal D2 receptors
could modulate PFC activity by the HPC–PFC path-

way, which has a significant role in the cognitive
process (Laroche et al, 2000; Thierry et al, 2000).
Accumulating evidence has suggested the modula-
tory effects of dopamine on HPC–PFC interactions
(Aalto et al, 2005; Goto and Grace, 2008; Seamans
et al, 1998; Tseng et al, 2007). Conceivably, dopa-
mine influences PFC neurons directly by prefrontal
D1 receptors and indirectly by hippocampal D2
receptors via the HPC–PFC pathway. Supporting
the importance of hippocampal D2 receptors in
PFC functions, MacDonald et al (2009) reported that
lower D2 receptor availability in HPC was associated
with greater intraindividual variability in episodic
memory and executive function, indicating that
lower D2 receptor-mediated transmission in HPC
leads to noisy neural information processing and
results in unstable episodic memory and executive
functions.

Müller et al (1998) reported that the systemic
administration of the mixed D1/D2 agonist pergolide
facilitated working memory while the selective D2
agonist bromocriptine had no effect. However, there
is converging evidence from human and animal
studies to suggest the involvement of D2 receptors
in cognitive functions. It was reported that the
systemic administration of the D2 agonist bromo-
criptine in human improved cognitive functions
including working memory and executive functions
(McDowell et al, 1998), and the administration of the
D2 antagonist sulpiride impaired those functions
(Mehta et al, 1999). In an animal study, mice lacking
D2 receptors were reported to have a working
memory deficit (Glickstein et al, 2002). These
studies, however, did not reveal the regions most
responsible for these effects. Moreover, although the
involvement of D1 receptors in working memory is
widely recognized, it was not clear whether D1
receptor stimulation alone or the combination of D1
and D2 receptor stimulation is most effective.
Positron emission tomography findings including
ours suggested that orchestration of prefrontal D1
receptors and hippocampal D2 receptors might be
necessary for normal prefrontal functions (MacDo-
nald et al, 2009; Takahashi et al, 2007, 2008).

Positron emission tomography
imaging of D1 and D2 receptors and
amygdala function

The amygdala has a central role in processing
affective stimuli, and in particular, threatening
stimuli in the brain (LeDoux, 2000). The amygdala
receives a moderate innervation of dopaminergic
fibers (Asan, 1998), and dopamine D1 and D2
receptors are moderately expressed in this region
(Ito et al, 2008). Dopamine release in the amygdala is
increased in response to stress (Inglis and Moghad-
dam, 1999). It has been shown in animal studies that
dopamine potentiates the response of the amygdala
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by augmenting excitatory sensory input and attenu-
ating inhibitory prefrontal input to the amygdala
(Rosenkranz and Grace, 2002). A human functional
magnetic resonance imaging (fMRI) study reported
that dopaminergic drug therapy such as levodopa or
dopamine agonists partially restored amygdala acti-
vation due to emotional task in Parkinson’s disease
patients who showed no significant amygdala activa-
tion during drug-off states (Tessitore et al, 2002). In
addition, another fMRI study of healthy volunteers
has demonstrated that amphetamine potentiated the
response of the amygdala during an emotional task
(Hariri et al, 2002). More recently, Kienast et al
(2008) reported that dopamine storage capacity in
human amygdala, measured with 6-[(18)F]fluoro-L-
DOPA PET, was positively correlated with fMRI
signal changes in the amygdala. However, contribu-
tion of dopamine D1 and D2 receptors to amygdala
activation in response to affective stimuli is un-
known in human. To investigate the relation between
amygdala activation and dopamine receptor subtype,
we conducted a multimodal in-vivo neuroimaging
study in which dopamine D1 and D2 receptor
availabilities in the amygdala were measured with
PET, and amygdala activation in response to fearful
stimuli was assessed by fMRI (Takahashi et al,
2010b). Healthy male subjects, a different cohort
from that of our study described in the previous
section, underwent fMRI for measuring the amygdala
response to fearful faces, after which both D1 and D2
receptors in the amygdala were measured using PET
with [11C]SCH23390 and [11C]FLB457, respectively.

Although robust bilateral amygdala activations
induced by fearful faces were identified in a group
analysis, there was considerable individual differ-
ence in the degree of amygdala activation. Similarly,
although moderate levels of D1 and D2 receptors in
the amygdala were measured, notably high vari-
ances in both receptor availabilities were observed.
Importantly, D1 receptor availability in the amygdala
was not correlated with D2 receptor availability in
the amygdala. Both voxelwise statistical parametric
mapping analysis and regions of interest analysis
revealed that blood oxygen level-dependent signals
in the amygdala induced by fearful faces were
positively correlated with D1 receptor availability,
but not with D2 receptor availability, in the amygdala
(Figures 2A and 2B; Takahashi et al, 2010b). That is,
individuals with high D1 receptor density in the
amygdala tend to show greater amygdala activation
in response to fearful stimuli.

In rat studies, Rosenkranz and Grace (2002)
showed that dopamine enhances the response of
the amygdala by augmenting excitatory sensory
input via dopamine D2 receptor stimulation and
attenuating inhibitory prefrontal input to the amyg-
dala through dopamine D1 receptor stimulation.
More recently, several studies showed that both D1
and D2 receptor stimulations directly enhanced
the excitability of amygdala projection neurons
via postsynaptic mechanism (Kroner et al, 2005;

Rosenkranz and Grace, 2002; Yamamoto et al, 2007).
Amygdala projection neurons are under inhibitory
control by GABAergic interneurons (Royer et al,
1999). Both projection neurons and interneurons in
the amygdala express dopamine D1 and D2 receptors
(Rosenkranz and Grace, 1999). Dopamine and D1
receptor agonist have been shown to augment
interneuron excitability and increase the frequency
of inhibitory postsynaptic current in amygdala
projection neurons (Kroner et al, 2005). This is a
counterintuitive result, considering the fact that
dopamine disinhibits amygdala response in vivo.
However, Marowsky et al (2005) found that a
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Figure 2 (A) Regions of interest (ROIs) correlation
analysis revealed significant positive correlations between D1
receptor availability in the amygdala and the degree of
amygdala activation. (B) Statistical parametric mapping (SPM)
correlation analysis also revealed similar correlations. R indi-
cates right.
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subpopulation of amygdala interneurons (paracap-
sular intercalated cells), located between the major
input and output stations of the amygdala, is
suppressed by dopamine through D1 receptor stimu-
lation. Dopamine D2 receptors also have a role in
disinhibiting amydala response by decreasing inhi-
bition onto projection neurons and increasing
inhibition onto interneurons (Bissiere et al, 2003).
As described above, not only dopamine D1 but also
D2 receptors contribute to potentiating amygdala
response via various mechanisms. In fact, our
previous pharmacological fMRI study reported that
systemic administration of selective dopamine D2
receptor antagonist attenuated amygdala activation
in response to fearful stimuli (Takahashi et al, 2005).
However, as selective dopamine D1 receptor antago-
nist for clinical use is not available, we cannot
directly compare which D1 or D2 antagonist is more
efficient in attenuating amygdala response.

Using a multimodality in-vivo neuroimaging
approach and dual radioligands, we could for the
first time directly compare amygdala dopamine D1
and D2 receptor availabilities with amygdala res-
ponse evoked by fearful stimuli in human. Although
the more detailed mechanism needs to be clarified in
future investigations including animal studies, our
study suggested that dopamine D1 receptors have a
major role in the overall potentiation of amygdala
response. At the behavioral level, a number of animal
studies have reported that systemic and local
applications of D1 agonist (or antagonist) into the
amygdala potentiate (or decrease) fear response in
animals. Although some studies reported that appli-
cations of D2 agonist and antagonist induced similar
effects, the results were less consistent compared
with D1-mediated effects (for review, see de la Mora
et al, 2010 and Pezze and Feldon, 2004). Thus, our
finding could be regarded as being consistent with
previous behavioral pharmacological studies. The
combination of PET molecular imaging and fMRI
seems to represent a powerful approach for under-
standing molecular functions in affective neuro-
science.

Positron emission tomography
imaging of D1 and D2 receptors and
decision making under risk

Decision making under risk has been studied in
philosophy, psychology, and economics throughout
the last century. Normative economic theories (e.g.,
expected utility theory) assume that individuals
are rational decision makers and have purely self-
regarding preferences. However, we sometimes make
boundedly rational decisions (altruistic behavior,
moral judgment, gamble, etc.), which are not
accounted for by normative economic theories.
Behavioral or experimental economics studies have
shown a substantial body of field and empirical

evidence that decision makers systematically depart
from Camerer and Loewenstein (2004). One type of
systematic departure is that subjective weights on
probabilities appear to be nonlinear: people often
overestimate low probabilities (e.g., playing lotteries)
and underestimate high probabilities. A leading
alternative to the expected utility theory is the
prospect theory (Tversky and Kahneman, 1992).
The central feature of the prospect theory is non-
linear probability weighting. Objective probabilities,
p, are transformed nonlinearly into decision weights
w(p) by a weighting function. In an inverse S-shaped
nonlinear weighting function, low probabilities are
overweighted and moderate-to-high probabilities are
underweighted. The function neatly explains the
typically observed pattern of risk seeking for low-
probability gain and risk aversion toward high-
probability gain.

A synthesis of economics and neuroscience is
called neuroeconomics. Neuroeconomics fMRI stu-
dies have demonstrated the neural basis for bound-
edly rational decision makings under risk, including
some features of the prospect theory (De Martino
et al, 2006; Tom et al, 2007). A deeper question is
how modulatory neurotransmission is involved in
the central process of these boundedly rational
decision makings (Fox and Poldrack, 2009; Rangel
et al, 2008; Trepel et al, 2005). Investigation of the
relationship between the dopamine system and
prospect theory seems promising, considering the
fact that dopamine is linked to risk-seeking behavior
(Leyton et al, 2002) and is involved in disrupted
decision making observed in neuropsychiatric dis-
orders such as drug/gambling addiction and Parkin-
son’s disease (Steeves et al, 2009; Zack and Poulos,
2004). Based on the circumstantial findings, Trepel
et al (2005) speculated in a thoughtful review that
dopamine transmission in the striatum might be
involved in shaping probability weighting. To test
this speculation, 18 healthy male subjects were
studied for D1 receptors with [11C]SCH23390 PET,
and 18 other healthy male subjects were studied
for striatal D2 receptors with [11C]raclopride PET
(Takahashi et al, 2010a). To estimate decision weight,
certainty equivalents were determined outside the
PET scanner, based on the staircase procedure
suggested by Tversky and Kahneman (1992). A
gamble’s certainty equivalent is the amount of sure
payoff at which a player is indifferent between the
sure payoff and the gamble. Participants were
presented with options between a gamble and a sure
payoff on a computer monitor. Gambles were
presented that had an objective probability P of
paying a known outcome x (and paying zero
otherwise). Multiple gambles with different combi-
nations of P and x were used. In each trial, the
participants chose between a gamble and a sure
payoff according to their preferences. Each time a
choice was made between a gamble and a sure payoff
in a trial, the amount of a sure payoff in the next trial
was adjusted and eight trials per each gamble were
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iterated to successively narrow the range including
the certainty equivalents. On the basis of this
certainty equivalents estimation experiment, we
estimated probability weighting using the one-para-
meter function derived axiomatically by Prelec
(1998), w(p) = exp{�(ln(1/p))a} with 0 < a< 1. This
w(p) function has an inverted S-shape with a fixed
inflection point at p = 1/e = 0.37 (at that point the
probability 1/e also receives decision weight 1/e).
Nonlinearity is fully captured by a single parameter
a. A smaller value of a (closer to 0) means a more
nonlinear inflected weighting function and a higher
value (closer to 1) means a more linear weighting
function. At a= 1, the function is linear.

In the first group, with D1 receptors investigated,
mean (s.d.) a of the weighting function was 0.58
(0.16). In the second group, with striatal D2 receptors
investigated, mean (s.d.) a was 0.56 (0.19), indicating
that the two groups were comparable. Averaged
weighting functions of the two groups are shown in
Figure 3 (Takahashi et al, 2010a). Both regions of
interest and voxel-by-voxel statistical parametric
mapping analyses revealed significant positive cor-
relation between striatal D1 receptor availability and
the nonlinearity parameter a of weighting function
(Figures 4A and 4B; Takahashi et al, 2010a). That is,
people with lower striatal D1 receptor availability
tend to show more pronounced overestimation
of low probabilities and underestimation of high
probabilities. It has been suggested that emotional
responses to gambles influence weighting. In parti-
cular, the overweighting of low-probability gains
may reflect hope of winning and the underweighting
of high-probability gains may reflect fear of losing a
‘near sure thing’ (Trepel et al, 2005). One study
supportive of this hypothesis found more nonlinear
weighting functions for gambles over emotional

outcomes (kisses and shocks) than over money
(Rottenstreich and Hsee, 2001). In this sense,
individuals with lower striatal D1 receptor avail-
ability might be interpreted as showing more ‘emo-
tional’ decision making.

A neuroeconomics fMRI, using a simpler expo-
sure-choice paradigm, showed that Prelec’s nonli-
nearity parameter a was negatively correlated with
striatal activity during reward anticipation under
risk (Hsu et al, 2009). That is, people with a greater
degree of nonlinearity in striatal activation to
anticipated reward tend to overestimate low prob-
abilities (to be risk seeking) and underestimate high
probabilities (to be risk averse). Although the
mechanism(s) linking the fMRI finding to our PET
finding needs to be clarified in future investigations,
our molecular imaging approach allows us to broad-
en our understanding of the neurobiological mechan-
ism underlying decision making under risk beyond
the knowledge attained by neuroeconomics fMRI.
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Figure 3 Average fitted probability-weighting function. Red line
represents the first group with D1 receptors investigated, and
black line the second group with striatal D2 receptors
investigated.
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Figure 4 Correlation between nonlinearity of probabilities
weighting and D1 receptor availability in the striatum. (A) Plots
and regression line of correlation between a (nonlinearity
parameter) and D1 receptor availability in the putamen
(r = 0.66, P = 0.003). (B) Image showing regions of correlation
between nonlinearity parameter of weighting function and D1
receptor availability in the striatum.
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Functional significance of individual
difference in D1 receptors

All of our three studies mentioned above showed that
individual differences in D1 receptor availability in
the brain predicted the individual differences in brain
functions (working memory/set shifting, emotional
reaction, and decision making under risk) better than
that of D2 receptor availability (Takahashi et al, 2008,
2010a,b). We do not think that dopamine D2 receptors
have minimal roles in these brain functions. However,
can we learn something from these studies showing
the predominance of D1 receptors in terms of
predicting these brain functions?

Dopamine neurons are known to show tonic firing
and phasic (burst) firing, and in turn tonic and
phasic dopamine release are induced, respectively
(Grace, 1991; Grace et al, 2007). Phasic dopamine
release in the striatum occurs during reward and
reward-predicting stimuli (Grace, 1991; Schultz,
2007b). Phasic dopamine release in the amygdala is
also induced in response to stress or emotional
stimuli (Inglis and Moghaddam, 1999). Although
both tonic and phasic dopamine release are neces-
sary for PFC functions, phasic dopamine release has
a crucial role in working memory and set shifting
(Braver et al, 1999; Phillips et al, 2004). Thus, phasic
dopamine release seems to be important for the brain
functions that we investigated (working memory/set
shifting, emotional reaction, and decision making
under risk).

It has been shown that D1 receptors have much
less affinity to endogenous dopamine than D2
receptors (Richfield et al, 1989). Furthermore, cor-
tical and striatal D1 receptors are known to be
predominantly extrasynaptic (Caille et al, 1996;
Smiley et al, 1994). These facts suggest that D1-
mediated neurotransmission is mainly governed by
volume transmission (Dreher and Burnod, 2002;
Garris et al, 1994), which might be induced by the
phasic dopamine release from axonal terminals
(Schultz, 2007a). Therefore, it can be suggested that
available D1 receptors are preferentially stimulated
by phasically released DA, whereas low-level base-
line tonic dopamine release is sufficient for stimulat-
ing D2 receptors (Frank et al, 2007; Schultz, 2007b).
A recent computational model also showed that
phasic dopamine release primarily increases D1
occupancy, whereas D2 occupancy was less affected
(Dreyer et al, 2010). Thus, these considerations lead
us to believe that the variability of available D1
receptors might be more associated with individual
differences in brain functions that require phasic
dopamine release.

Clinical implications

Our previous PET study using [11C]SCH23390
revealed that, compared with normal controls, D1

receptors in PFC were decreased in schizophrenia,
which was associated with poor performance on
WCST (Okubo et al, 1997b). However, another PET
study using [11C]NNC112 reported that increased D1
receptors in PFC were associated with working
memory deficits in schizophrenia (Abi-Dargham
et al, 2002). The same research group recently
replicated increased D1 receptors in PFC of drug-
naive schizophrenia patients (Abi-Dargham et al,
2011). The group also reported that PFC D1 receptor
availability measured by [11C]NNC112 was signifi-
cantly upregulated in chronic ketamine users,
although no significant relationships were found
between PFC D1 receptor availability and perfor-
mance on working memory tests (Narendran et al,
2005).

It has been discussed that these inconsistent
results might stem from several factors including
differences in radioligands, but our more recent
PET study measuring cortical D1 receptors with
both [11C]SCH23390 and [11C]NNC112 in the
same schizophrenia population showed that pre-
frontal D1 receptors were decreased in chronic
schizophrenia regardless of radioligands (Kosaka
et al, 2010). Still, the reasons for these inconsistent
results need to be clarified in the future. An inverted
U-shaped response might account for working
memory deficits in schizophrenia patients, whether
D1 receptors in PFC are increased or decreased in
patients.

The central profile of most antipsychotics is the D2
receptor blockade property. Antipsychotics are rea-
sonably effective in ameliorating positive symptoms
in schizophrenia. However, negative symptoms and
cognitive impairments of schizophrenia are typically
not responsive to antipsychotic therapy. This has led
to the investigation of alternative agents for the
treatment of cognitive impairments in schizophrenia,
and a body of data from animal and human studies
support the utility of the D1 agonist (Buchanan et al,
2007; Okubo et al, 1997a). However, the efficacy of
D1 agonists on cognitive impairments has not so far
been proven due to several practical issues of drug
development. In addition to these issues, we need to
taken into account the fact that schizophrenia is a
heterogeneous disorder. D1 receptor density might be
different according to the type of the disease,
changeable even in a single patient according to its
stage (prodromal phase, first episode phase, and
chronic phase). The inverted U-shaped property of
D1 receptor stimulation might lead to bidirectional
effect of D1 agonist depending on the type or stage of
schizophrenia. Anhedonia or blunted affect is one of
the central features of negative symptoms. Some
neuroimaging studies have suggested that reduced
amygdala activation was associated with these
symptoms (Dowd and Barch, 2010; Takahashi et al,
2004). Therefore, similarly to the strategy for cogni-
tive impairment, D1 agonist might be useful for
restoring amygdala activation, and consequently
improve these negative symptoms.
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Misestimating risk could lead to disadvantaged
choices such as initiation of drug use/gambling and
transition to regular drug use/gambling (Kreek et al,
2005). Our studies have shown that people with
lower striatal D1 receptor availability tend to mis-
estimate the weight of probabilities, and in particu-
lar, to overestimate low probabilities of winning
gambles (risk seeking). This finding led us to the
intuitive conjecture that D1 agonist, again, might be
useful for easing misestimation of risk, and conse-
quently beneficial for pathological gambling. How-
ever, on the contrary, clinical reports have indicated
the association between dopamine agonist medica-
tion and the emergence of pathological gambling in
Parkinson’s disease patients (Gallagher et al, 2007).
Although early reports implicated D3 receptor
agonists as being most likely to induce pathological
gambling in Parkinson’s disease patients (Dodd et al,
2005), it has been reported that mixed D1/D2
receptor agonists can also promote pathological
gambling (Lu et al, 2006). These clinical findings
appear to challenge our prediction, but indeed they
may not. Pathological gambling is a complex behav-
ior, which has been related to failures in impulse
control or response inhibition as observed in Parkin-
son’s disease, but also to impaired decision making,
including risky or ambiguous decision. Estimation of
risk requires the latter high-level processing, and we
would argue that this is related to striatal D1 receptor
availability, leading to the following hypothesis: low-
level striatal D1 receptor availability (which might in
part be determined by genetic factors) is linked to a
risk-seeking trait. The risk-seeking trait was reported
to be linked to enhanced activation and DA release in
the striatum during risk-seeking behavior (Leyton
et al, 2002; St Onge and Floresco, 2009). Chronic
exposure to unusually high release of DA by risk-
seeking behavior might induce downregulation of D1
receptors (Moore et al, 1998; Yasuno et al, 2007). The
further decrease in D1 receptor availability then
leads to further risk seeking. Low-level striatal D1
receptor availability could therefore be a gateway to a
vicious cycle, creating a predisposition to drug
addiction and pathological gambling. Recently, cir-
cumstantial evidence to support this hypothesis has
been reported. Martinez et al (2009), based on their
PET study, suggested that reduced D1 receptor
binding may be associated with an increased risk of
relapse in cocaine addiction. Needless to say, this
tentative hypothesis needs to be tested in future
investigations, and we believe that understanding
the molecular mechanism of extreme or impaired
decision making will contribute to the assessment
and prevention of drug and gambling addiction as
well as the development of novel pharmacological
therapies for these addictions. In conclusion, inter-
disciplinary approach combining molecular imaging
techniques with cognitive neuroscience and clinical
psychiatry will provide new perspectives for under-
standing the neurobiology of neuropsychiatric dis-
orders and their innovative drug developments.
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