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I N TRODUC TION

Burns are responsible for 180,000 deaths annually world-
wide and are considered a global public health problem by 
the World Health Organization.1 Guidelines for burn care 
include those of the Japanese Society for Burn Injuries, 
American Burn Association, European Burns Association, 
and International Society for Burn Injuries.2–5 However, the 
complexity of the pathogenesis remains an important clin-
ical challenge. Severe burns cause severe inflammation in 
the acute phase, followed by a complex biological response, 
with inflammation and hypermetabolism lasting for several 
months or longer.6 Burn patients are referred to as the “uni-
versal trauma model,” causing extensive soft tissue damage 
with shock, and the magnitude of physiologic changes in-
duced by the injury reliably reflects what percentage of the 
total body surface area (TBSA) has been burned.7

The primary role of the immune system is to protect the 
body from infection and various diseases, followed by activa-
tion of repair mechanisms with the ultimate goal of restoring 
tissue homeostasis.8,9 In extensive burns, the immune system 
is activated not by pathogens but by the injured tissue itself. 

Specific immune responses are triggered to protect the body 
from excessive inflammatory reactions and persistent tissue 
disintegration.10,11 Severe burns are known to induce early 
and persistent inflammatory reactions in more than 90% of 
patients,12,13 with the predominant inflammatory response 
being termed systemic inflammatory response syndrome 
(SIRS), and the predominant anti- inflammatory response 
being termed compensatory anti- inflammatory response 
syndrome (CARS). Excessive levels of these responses can 
lead to complications such as shock, multiple organ failure, 
and mortality.13,14 As advances in medical care have allowed 
patients with severe burns to survive the acute phase, chronic 
mortality has become a problem. Thus, the theory of SIRS- 
CARS- PIICS (persistent inflammation, immunosuppression, 
and catabolism syndrome) has been proposed (Figure 1).15

BU R NS A N D I M MU N E R E SPONSE

The discovery of innate immune receptors16 and recogni-
tion of molecular patterns of self- tissue as danger signals17 
have made it possible to immunologically understand such 
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Abstract
Immune responses that occur following burn injury comprise a series of reactions 
that are activated in response to damaged autologous tissues, followed by removal of 
damaged tissues and foreign pathogens such as invading bacteria, and tissue repair. 
These immune responses are considered to be programmed in living organisms. 
Developments of modern medicine have led to the saving of burned patients who 
could not be cured previously; however, the programmed response is no longer able 
to keep up, and various problems have arisen. This paper describes the mechanism 
of immune response specific to burn injury and the emerging concept of persistent 
inflammation, immunosuppression, and catabolism syndrome.
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non- infectious inflammation as burns. After toll- like re-
ceptors (TLRs) were identified, various pattern recognition 
receptors (PRRs) were discovered, and the immune system 
recognizes not only foreign microorganisms but also mol-
ecules released from autologous tissues as danger signals.17 
The concept of immune responses driven not only by exog-
enous substances such as bacteria but also by endogenous 
danger signals has greatly changed the recent understanding 
of immunology.18 Pathogen- associated molecular patterns 
(PAMPs) are substances not existing in humans but that trig-
ger immune responses in them, whereas damage- associated 
molecular patterns (DAMPs) induce “sterile inflamma-
tion”.19 While PAMPs are exogenous substances, DAMPs are 
basically endogenous self- substances. In burn patients, tis-
sue damage due to thermal and mechanical injury, ischemia, 
and reperfusion injury releases various DAMPs.20 Those 
derived from damaged tissue that are released extracellu-
larly recognize molecular patterns of foreign microorgan-
isms such as TLRs, The nucleotide- binding oligomerization 
domain- like receptors (NOD- like receptors: NLRs), and 
the retinoic acid- inducible gene I (RIG- I- like receptors) of 
antigen- presenting cells, which are the executing cells of the 
innate immune system recognized by PRRs.21–23 Through 
the action of various cytokines, activated antigen- presenting 
cells diversely alter the phenotype of T cells of the adaptive 

immune system, resulting in progression of both an inflam-
matory response and an anti- inflammatory response.10,11,24 
After SIRS is induced by the innate immune system, CARS 
occurs as a feedback mechanism to maintain immune sys-
tem homeostasis,25 but in reality, SIRS and CARS mix in 
a state called mixed antagonistic response syndrome, and 
these processes are now thought to occur almost in paral-
lel.20,25,26 The patient's immune status then moves toward 
stabilization but does not return to homeostasis; rather, it 
progresses to PIICS, which increases the risk of organ failure 
and sepsis when persistent inflammation, immunosuppres-
sion, and hypercatabolism are sustained (Figure 2).15

BU R NS A N D I N NATE I M MU N IT Y

Severe burns, trauma, and mechanical tissue injuries such 
as major surgery induce similar intense inflammatory/im-
mune responses.11,25,27 Innate immunity causes the initial 
immune response in the acute phase, which is initiated by 
antigen- presenting cells, mainly macrophages and neu-
trophils, recognizing DAMPs released from the injured 
tissue via PRRs.23,26,28,29 Many of these autologous tissue- 
derived DAMPs (Table 1) activate immunocompetent cells 
by signaling through PRRs such as TLRs, NLRs, receptors 

F I G U R E  1  Diagram of the immune response following burn injury. A two- hit response during the SIRS phase leads to inflammatory multiorgan 
failure. Relatively small burns have a simple outcome of wound closure and healing without complications, but usually have a complex outcome 
with many complications. After the initial SIRS inflammatory and CARS anti- inflammatory responses, many patients present with a clinical 
picture of protein loss, malnutrition, delayed wound healing, and recurrent infections. In addition, there is a persistent inflammatory response and 
dysfunction of both innate and acquired immunity. Clinically, early complications include TSS, followed by sepsis, fatty liver, and NOMI after about 
1 month. Convergence to a state in which both inflammatory and anti- inflammatory responses are abolished leads to a cure. CARS, compensatory 
anti- inflammatory response syndrome; CCI, chronic critical illness; NOMI, non- obstructive mesenteric ischemia; PIICS, persistent inflammation, 
immunosuppression, and catabolism syndrome; SIRS, systemic inflammatory response syndrome; TSS, toxic shock syndrome.
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for advanced glycation end- products, and purinergic recep-
tors.22,30–34 When DAMPs are recognized by PRRs, down-
stream inflammatory pathways are activated via adaptor 
proteins such as MyD88 (myeloid differentiation factor 
88) and TRIF (TIR domain- containing adaptor inducing 
interferon- β), which are involved in the release of multiple 
inflammatory mediators (IL- 1, IL- 6, IL- 8, IL- 18, TNF- γ, 
etc.), and master transcription factor NF- κB, and the acti-
vation of interferon (IFN) regulatory factor is triggered.28,35

High mobility group box  1 (HMGB1), the most widely 
studied nuclear protein, is recognized by multiple PRRs, 
mainly TLR4, and it is reported that acute lung injury is re-
duced in TLR4 knockout models with a decrease in burn- 
induced lung neutrophil infiltration.36 Mitochondrial 
DNA released from damaged tissue has been shown to 
activate neutrophils via TLR9 to induce inflammation.32 
Mitochondrial DNA is also reported to produce the inflam-
matory cytokines IL- 1β and IL- 18 by activating the NLRP3 
inflammasome via NLRs.37 Many other DAMPs are also re-
leased by burn injury and are correlated with cytokines such 
as IL- 6, IL- 10, and TNF- α.22,23 Inflammasomes, one type of 
PRRs, induce the release of inflammatory cytokines and also 
programmed cell death called pyrolysis.38 Inflammasome 
activation begins immediately after injury, increases with 
burn severity,6,39,40 and its activity appears to be necessary to 
protect the body from burns.40

Immunosuppression in critically ill patients involves ac-
tivation of myeloid- derived suppressor cells (MDSCs), mes-
enchymal stem cells (MSCs),41,42 depletion of inflammatory 
cells by apotosis,43 and anti- inflammatory cytokines. MSCs 
have immunomodulatory properties, and MSCs adminis-
tered in wound models are reported to reduce inflamma-
tory cytokines such as IFN- γ, TNF- α, and IL- 6, suppress 
inflammatory responses, and promote wound healing.44 
Macrophages differentiate into M1 and M2 macrophages 
depending on the environment. M1 is a conventional 

F I G U R E  2  Immune cell changes following burn injury. DAMPs released from tissue damage such as burn injuries induce inflammation mainly 
by activating macrophages of the innate immune system. DAMPs activate immunocompetent cells by signaling through PRRs such as TLRs and 
inflammasomes, which increase the release of multiple inflammatory mediators (IL- 1, IL- 6, IL- 8, IL- 18, TNF- γ, etc.). At the same time, Lymphocytes 
responsible for cellular immunity are decreased, but Th2 is increased due to increases in IL- 4 and IL- 10 and decreases in IL- 2 and IFN- γ. And Tregs of the 
acquired immune system are also activated to control excessive inflammation. However, when bone marrow- derived stem cells are rapidly differentiated, 
they release MDSCs. MDSCs enhance Treg function and suppress macrophage and T- cell function, leading patients to a state of PIICS. DAMPs, 
damage- associated molecular patterns; IFN, interferon; IL- , interleukin- ; MDSCs, myeloid- derived suppressor cells; PIICS, persistent inflammation, 
immunosuppression, and catabolism syndrome; PRRs, pattern recognition receptors; TLRs, toll- like receptors; TNF- α, tumor necrosis factor alpha; 
Tregs, regulatory T cells.
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T A B L E  1  DAMPs and PRRs associated with burns/trauma.

Origin DAMPs PPRs

Cytosol Uric Acid NLRP3, P2X7

HSPs TLR2,4, CD91

Mitochondria Mitochondrial DNA TLR3,7,8,9, RAGE

ATP P2X7, P2Y2

Nucleus HMGB1 TLR2,4, 9, RAGE

Histone TLR2,4, 9, NLRP3

ECM Hyaluronan TLR2,4, RAGE

Abbreviations: ATP, adenosine triphosphate; DAMPs, damage- associated 
molecular pattern molecules; ECM, extracellular matrix; HMGB1, high 
mobility group box 1; HSPs, heat shock proteins; NLRP3, Nucleotide- binding 
oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3; 
PRRs, pattern recognition receptors; RAGE, receptors for advanced glycation end 
products; TLR, toll- like receptor.
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macrophage differentiated by TNF- α and IFN- γ, whereas 
M2 is differentiated by IL- 4 and IL- 13. M2 acts in an in-
hibitory manner by secreting anti- inflammatory cytokines 
such as IL- 10, TGF- β, and IL- 1Ra and is also importantly 
involved in changes in the adaptive immune system and 
tissue repair.45 However, while these immunosuppressive 
mechanisms suppress excessive inflammation, excessive im-
munosuppression is reported to result in a poor prognosis 
in cases of decreased expression of MHC- II (HLA- DR) in 
macrophages.8,46

BU R NS A N D A DA P TI V E I M MU N IT Y

Suppressive changes centered on T cells regulate the im-
mune environment after burn injury, and immunosuppres-
sive functions of helper T cells (Th), such as the change of 
immune response from Th1 to Th2, anergy and exhaus-
tion of T cells, and activation of regulatory T cells (Tregs), 
are reported.25,47,48 Prolonged immunosuppression due 
to prolonged loss of function of these T cells is one of the 
pathogeneses of PIICS. In the acute phase of severe burn, 
neutrophils are increased and lymphocytes responsible for 
cellular immunity are decreased, but not all lymphocytes 
are decreased; Th2 is increased due to the increases in IL- 4 
and IL- 10 and decreases in IL- 2 and IFN- γ. The increase in 
Th2 after burn injury suppresses the activity of inflamma-
tory Th1, which underlies the cellular immune response.49 
Both Th17 and Tregs are induced to differentiate by TGF- β 
during the differentiation process, but high levels of IL- 6 
inhibit differentiation into Tregs and promote differentia-
tion of Th17.50 These changes are closely related to the in-
nate immune system because they depend on the cytokine 
environment. Although Th17 responses can be induced 
in burn- injured mice,50 Tregs are reported to be increased 
and activated by burn injury.41 Suppressive mechanisms 
induced by suppressive cytokines such as IL- 10 and TGF- β 
and co- suppressive factors such as CTLA- 4 and PD- 1 are 
also reported.10 Tregs are also reported to exhibit a unique 
phenotype of recognizing self- antigens during development 
and of expressing surface antigens such as already activated 
T cells. They are activated early in the invasion similar to 
innate immune cells, and their activation may be triggered 
through the T- cell receptors by self- antigens.51,52

GE N ETIC A NA LYSIS OF 
BU R N PATIE N TS

From gene expression studies, burn patient samples were 
grouped and analyzed at 0–1, 1–2, 2–4, and 4–7 days, indi-
cating that inflammation/immune- related processes were 
enriched for at least 1 week after injury. In contrast, cell 
activation- regulated processes were enriched at later time 
points.53 In a mouse model of burn injury, inflammatory 
response genes such as IL- 6, IL- 8, and IL- 1β were also ex-
pressed. In addition, processes that enhance metabolism and 

catabolism were expressed.54 In a study comparing micro-
array data from the Glue Grant Trauma- Related Database 
to 10 elderly patients (n = 10) and a sex-  and TBSA burned 
- matched adult control group (n = 20), differential expression 
between the elderly and adult groups. A number of immune- 
related pathways were downregulated, including those 
associated with antigen processing via MHC class I, ubiq-
uitination, and proteasomal degradation. Cellular signaling 
pathways, including NF- κB, C- type lectin receptor, and T- 
cell receptor signaling, were also significantly decreased in 
elderly burn patients, as were pathways associated with an-
tiviral immunity. Since many of the genes whose expression 
was increased in elderly patients with severe burns were as-
sociated with cellular pathways associated with destruction, 
such as complement activation and immunoglobulin pro-
duction, the altered inflammatory and immune responses in 
elderly patients after burn injury indicate that elderly burn 
patients are unable to initiate an appropriate inflammatory 
and stress response in the acute phase after burn injury.55 
The gene expression analysis of 213 burn patients and 79 
healthy controls revealed that down- regulated genes were 
enriched in the T- cell activation pathway, while up- regulated 
genes were enriched in the neutrophil activation response. 
Key genes that may be regulated by miRNAs (NFATC2, 
RORA, and CAMK4) were downregulated in burn patients. 
Expression of key genes was associated with the percentage 
of Th cells (CD4+) and survival and was a good predictor 
of burn prognosis.56 In addition, proteomic analysis showed 
that hemoglobin Subunit α 1(HBA1), Transthyretin (TTR), 
and Serpin Family F Member 2 (SERPINF2) correlated with 
mortality outcomes, and are promising markers for the fu-
ture.57 These genetic and protein expression information 
are mainly studies that capture changes in the acute phase 
and support the immune response that has been discussed 
above. On the other hand, there are currently no studies on 
the association with mortality in the late phase, and future 
studies are expected.

PER SISTE N T I N FL A M M ATION, 
I M MU NOSU PPR E SSION, A N D 
CATA BOLISM SY N DROM E

SIRS and CARS in the acute phase of invasion are biological 
reactions necessary to maintain function and tissue repair 
after burns. Usually, as the disease stabilizes, it gradually 
subsides and immune homeostasis is restored, but if it does 
not subside and immune homeostasis is not achieved after 
2 weeks or more, it becomes a chronic critical illness (CCI), 
which is defined as PIICS (Table 2).15 The pathogenesis of 
long- term chronic inflammation, immunosuppression, 
and catabolism in CCI includes persistent inflammation 
with persistent increase in MDSCs, immunosuppression 
due to decreased monocyte/macrophage and T- cell func-
tion, and protein catabolism with muscle wasting and 
cachexia similar to cancer and other chronic inflamma-
tory diseases.58 MDSCs are a heterogeneous population of 
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immature myeloid cells that accumulate during conditions 
such as cancer and sepsis and are increased during emer-
gency myelopoiesis.59 It is thought that incomplete bone 
marrow cells containing MDSCs are produced during this 
phase of emergency myelopoiesis.8,60 MDSCs produce the 
anti- inflammatory cytokines IL- 10 and TGF- β, differenti-
ate macrophages into anti- inflammatory type 2 cells, and 
promote Treg proliferation. In addition, they exert a strong 
immunosuppressive effect, such as by promoting the apop-
tosis of T cells.61 The hypermetabolic state after burn injury 
is also reported to persist for up to 36 months after injury,62 
and stress hormones such as catecholamines can lead to 
persistent insulin resistance and increased glycogen, pro-
tein, and lipid breakdown. This results in increased rest-
ing energy expenditure, muscle wasting, protein loss, and 
increased acute- phase protein synthesis, ultimately lead-
ing to organ catabolism associated with organ dysfunction 
and death.63 Even 6 months after injury, patients continue 
to show increased PD- 1 expression on CD4+ T cells and 
decreased secretion of IL- 6 and TNF- α with altered TLR 
expression on monocytes, indicating a persistent state of 
immunosuppression.64 As there is no effective treatment 
for CCI,65 it has become a social problem requiring long- 
term inpatient treatment without home care due to the 
severe disability caused. Studies show that the immune re-
sponse in the acute phase after sepsis is equally abnormal 
in older and younger patients, but restoration of immune 
homeostasis is more difficult in older adults.66,67

K I N ETIC S OF BLOOD CE L L S 
FOL LOW I NG BU R N I N J U RY

The observed data of blood cell counts in burn patients 
seem to indicate that the absence of platelet and lymphocyte 
counts after the injury is closely related to the outcome of 
mortality.68 Platelets play important roles in several diverse 
processes other than hemostasis and thrombus formation, 
including promoting the interaction of inflammation and 
immune responses to both innate and acquired immune re-
sponses.69,70 Anucleate platelets function as hemostatic cells 
in mammals, but in non- mammalian organisms, nucleated 

thrombocytes are involved in phagocytosis and in wound 
closure by forming blood clots and are thought to play a role 
not only in hemostasis but also as the first attacker of im-
munothrombosis, which removes foreign substances.71 In 
severe burns, platelets may accumulate and cause compli-
cations because of vascular endothelial damage in multiple 
organs.72–74

BU R NS A N D VASCU L A R 
E N DOTH E LI A L DA M AGE

In severe burns, a systemic inflammatory response is elicited 
that causes vascular endothelial damage.72–74 Endothelial 
cells form a barrier that controls permeability and plays a 
central role in the distribution of water, cells, and molecules 
from the circulation to the tissues, and they have a central 
role at the forefront of defense against danger signals in the 
innate immune response.75 DAMPs activate PRRs expressed 
on endothelial cell surfaces,76 immune cells, tissue mac-
rophages, and monocytes to induce the initiation of inflam-
matory and coagulation cascades.77

ACU TE A N D L ATE COM PLICATIONS 
OF BU R NS

Toxic shock syndrome (TSS)

Burns are at high risk for TSS because Staphylococcus au-
reus is a commensal organism of the skin. The post- injury 
onset of TSS occurs 2–4 days after the burn injury.78,79 
The incidence of TSS in children with burns is reported to 
range from 2.5% to 14%, and mortality can increase to 50% 
if TSS is not recognized and treated.80 Total mortality rates 
for TSS in adults range from 30% to 80%, whereas lower 
mortality rates of 3%–10% are seen in children.81,82 TSS 
is an immune response triggered by super antigens pro-
duced by S. aureus and S. pyogenes.83 Super antigens can 
non- specifically activate T cells via the T- cell receptors, 
thus causing them to release large amounts of cytokines. 
Positivity for antibodies to toxic shock syndrome toxin 
1 (TSST- 1) is over 90% in adults but much lower in chil-
dren, who are usually thought to have acquired antibodies 
by adolescence.81 A study examining the development of 
TSS due to nosocomial MRSA infection in burn patients 
reported significantly lower TSST- 1 antibody levels on 
admission and on the date of MRSA infection determina-
tion than in patients who did not develop TSS.84 Clinicians 
should be alert to TSS because it occurs in all age groups, 
not just children, regardless of burn size.85

Sepsis

Sepsis is a fatal complication of burns and the leading cause 
of death after the first 24 h of injury. The prevalence of sepsis 

T A B L E  2  Persistent inflammation, immunosuppression, and 
catabolism syndrome.14

Factor Findings

Persistence Prolonged hospitalization >14 days

Inflammation C- reactive protein >150 μg/dL

Immunosuppression Total lymphocyte count <800/mm3

Catabolism Weight loss of >10% during hospitalization 
or BMI <18 kg/m2

Creatinine height index <80%
Albumin <3.0 g/dL
Pre- albumin <10 mg/dL
Retinol binding protein <10 μg/dL

Abbreviation: BMI, body mass index.
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in burn patients ranges from 26% to 65%.21,86,87 The first line 
of defense of the innate immune system against pathogens is 
the anatomical barrier of the skin and mucosal epithelium 
before antigen- presenting cells and complement, but burns 
are reported to cause not only loss of the skin barrier but 
also damage to the intestinal epithelium.88,89 In addition to 
disruption of the anatomic barrier, the combination of ex-
cessive inflammation and immunosuppression caused by 
DAMPs increases the mortality rate of sepsis in patients with 
severe burns.89 The Surviving Sepsis After Burn Campaign 
guidelines, which were published in 2023,90 provide 60 state-
ments for guidance on 14 topics related to the early treat-
ment of sepsis in burn patients.

Liver, pancreas, and gastrointestinal 
complications

Hepatic dysfunction and decreased albumin synthesis persist 
over the years and are thought to be caused by the fatty liver 
seen after burn injury. Burn injury causes hepatic injury due 
to hypoperfusion, inflammatory cytokines, edema, and fatty 
changes in the liver.91 Fatty liver and hepatomegaly are seen 
in severely burned patients.92–94 Fatty infiltration was found 
in 82% of patients undergoing liver biopsies and in 18% of 
patients with hepatic necrosis.94 Gastrointestinal complica-
tions occur frequently in burn patients, and although the 
causal relationship is not clear in the previous reports, 25% 
of severe burns are considered affected by ulceration, bleed-
ing, perforation, and mesenteric infarction.95,96 Muschitz 
et al. reported that among 814 patients with severe burn, 17 
patients developed intestinal infarction, 82% of which were 
due to non- obstructive mesenteric ischemia (NOMI). The 
mortality rate was 71%.97

Bacterial translocation

Following burn injury, organ blood f low is redistributed 
to vital organs and intestinal blood f low is reduced, expos-
ing the intestines to a hypoxic environment and causing 
disruption of the intestinal epithelial barrier.98 In severe 
burns, hypoperfusion and impaired motility of the in-
testinal tract were shown to cause certain Gram- negative 
aerobic bacteria to proliferate abnormally in the gut mi-
crobiota, thus altering the microbiota and compromis-
ing intestinal immunity.99 These intestinal bacteria and 
endotoxins cause bacterial translocation by crossing the 
disrupted intestinal epithelial barrier and entering the 
systemic circulation via the mesentery.99,100 Although the 
detailed changes in the gut microbiota of patients with 
severe burns have not been elucidated,101,102 butyrate, a 
metabolite of gut bacteria, has been reported to promote 
Treg differentiation and suppress inf lammation,103 mak-
ing intervention in the gut environment important in sta-
bilizing immunity. Disruption of the bacterial f lora in the 
intestinal tract is called dysbiosis,104 and attempts such as 

symbiotic and fecal transplantation may be useful in cur-
ing this condition.105

CONCLUSIONS

Immunological changes after severe burn injury are re-
viewed from the acute to chronic phase. While many facts 
have been elucidated, no breakthrough treatment has been 
found, and treatment is likely to be similar to that in the gen-
eral critically ill patient, along with proper supportive care. 
In particular, PIICS almost always occurs in patients with 
severe burns, which is why burns are called the king condi-
tion requiring intensive care.
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