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Abstract: The present study aims to describe the use of machine learning (ML) in predicting the
occurrence of postoperative refraction after cataract surgery and compares the accuracy of this
method to conventional intraocular lens (IOL) power calculation formulas. In total, 3331 eyes from
2010 patients were assessed. The objects were divided into training data and test data. The constants
for the IOL power calculation formulas and model training for ML were optimized using training
data. Then, the occurrence of postoperative refraction was predicted using conventional formulas, or
ML models were calculated using the test data. We evaluated the SRK/T formula, Haigis formula,
Holladay 1 formula, Hoffer Q formula, and Barrett Universal II formula (BU-II); similar to ML
methods, we assessed support vector regression (SVR), random forest regression (RFR), gradient
boosting regression (GBR), and neural network (NN). Among the conventional formulas, BU-II had
the lowest mean and median absolute error of prediction. Therefore, we compared the accuracy
of our method with that of BU-II. The absolute errors of some ML methods were lower than those
of BU-II. However, no statistically significant difference was observed. Thus, the accuracy of our
method was not inferior to that of BU-II.

Keywords: IOL power calculation; machine learning; gradient booting regression (GBR); neural
network; support vector regression (SVR); random forest regression (RFR)

1. Introduction

With recent advances in cataract surgery technology, the importance of predicting
postoperative refractive power has increased relatively more [1]. In addition, accurate
refraction prediction is essential for the use of multifocal intraocular lenses, which have
become widely used in recent years [2]. For these reasons, the need for accuracy in
intraocular lens (IOL) power calculation is greater than ever. Although formulas are
becoming more and more accurate, the highest possible accuracy is desired [3]. Satou
et al. have recently reported a formula that uses detailed anatomical measurements of
the anterior eye using anterior segment Optical Coherence Tomography (AS-OCT). Their
formula shows high accuracy without being affected by the axial length of the eye [4].
In addition, several papers that used numerous intraocular lens (IOL) power calculation
formulas in predicting postoperative refraction have been published, and recent reports
have indicated that the Barrett Universal II formula has high accuracy [5–7]. On the other
hand, Kane et al. recently reported that Kane’s formula has higher accuracy in studies with
many cases [8].

The IOL power calculation formula is a regression equation used to predict postopera-
tive refraction with preoperative parameters, such as axial length and corneal curvature,
and an anterior chamber depth and powers and types of implanted intraocular lenses. [9].
The initial power formula is basically a prediction based on the anatomical features of the
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eye and optical calculations [10–13]. The aforementioned Barrett Universal II formula also
uses this method [14,15]. However, with recent developments in computer science, the use
of methods incorporating machine learning (ML) has been reported [16,17]. Therefore, the
present study aimed to assess the accuracy of the available methods for predicting post-
operative refraction using ML. We evaluated four ML methods, including support vector
regression (SVR) [18], random forests regression (RFR) [19], gradient boosting regression
(GBR) [20], and neural network (NN) [21]. This study aimed to create a more accurate
model with a relatively small number of cases. A unique aspect of this investigation was
the application of the predicted postoperative refraction using the conventional IOL power
calculation formula as an explanatory variable in ML. We also examined whether this has
higher accuracy than the original formula.

2. Methods
2.1. Study Design

The current research utilized a retrospective study design. Figure 1a shows the flow
of prediction using the conventional IOL calculation formulas. The constants for the
formulas were optimized using training data. Figure 1b depicts the flow of prediction
using ML methods.
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Figure 1 Summary of the training and test data.
In ML, we trained the model using training data, and the test data were then applied to

predict postoperative refraction. The absolute values of refractive errors and the proportion
of objects with absolute errors of refractions less than 0.5 D were evaluated.

2.2. Patients

Patients were consecutive cases (n = 3331) who underwent cataract surgery at the
Tsukazaki Hospital between October 2017 and January 2019 and met the inclusion criteria.
The inclusion criteria were eyes without ocular disease other than cataracts. For example,
Keratoconus, or moderate or greater glaucoma (The MD value by Humphrey Field An-
alyzer < −6D was used as an exclusion criterion because this number is widely used in
academic circles as the number that separates the middle and early stages of glaucoma [22].)
or diabetic retinopathy were excluded. Since the refractive value from the subjective visual
acuity test was used, glaucoma after the middle stage, which may have reduced central
visual field function, was excluded because it may cause variation in subjective refractive
values. Eyes with a postoperative corrected distance visual acuity less than 16/20 were
excluded. The reason is that these patients may not have accurate ophthalmologic exami-
nations due to old age, mental illness, or dementia. Moreover, eyes in which measurement
using the IOLMaster 700 (Carl Zeiss, Oberkochen, Germany) was unsuccessful before or
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after surgery, were not included. We used a total of 2831 eyes for training for ML: 487 uni-
lateral entries in 487 cases and 1172 binocular entries in 2344 eyes. For the evaluation of
ML performance, 500 eyes per model were tested using only unilocular entries. Table 1
shows a summary of implanted IOLs.

Table 1. Summary of the training and test data.

Training Data Test Data p Value

n

Total: 2831
YP2.2: 296
SZ-1: 260

W60R: 193
KS-SP: 28

NS60YG: 21
SN60WF: 125
SN6AT: 208
SN6AD: 79
SV25T: 38

ZCB00V: 463
TECNIS multi: 463

TECNIS symphony: 202

Total: 500
YP2.2: 500

Axial length 24.02 ± 1.57 23.92 ± 1.35 0.1741
Average radius of the corneal curvature 7.63 ± 0.27 7.62 ± 0.25 0.6757

ACD 3.10 ± 0.41 3.10 ± 0.38 0.9293
LT 4.57 ± 0.43 4.57 ± 0.43 0.5257

WTW 11.74 ± 0.41 11.75 ± 0.41 0.5651
IOL power 19.63 ± 4.25 19.55 ± 3.50 0.6942

Postoperative refraction −0.13 ± 0.82 −0.09 ± 0.92 0.3323
Table 1 contains a summary of the training and test data. No significant difference was observed between the two
groups in age, axial length, radius of corneal curvature, lens thickness, anterior chamber depth, white-to-white
distance, refractive power of the implanted IOL, and postoperative refraction. Abbreviations: ACD, anterior
chamber depth; LT, lens thickness; WTW, white-to-white distance p-values were calculated using an unpaired
t-test. The correction of multiple comparisons was not performed.

For the test data, we randomly selected 500 YP2.2 implanted eyes from 500 patients.
Then, we excluded the fellow eyes of the test data from objects. For the training data,
we used 296 YP2.2 (KOWA), 260 SZ-1 (NIDEK), 193 W60R (Santen), 28 KS-SP (STAAR),
21 NS60YG (NIDEK), 125 SN60WF (Alcon), 208 SN6AT series (Alcon), 79 SN6AD (Alcon),
38 SV25T series (Alcon), 463 ZCB00V (J&J Medical), 463 TECNIS Multifocal series (ZMB00,
ZLB00, and ZKB00; J&J Medical), and TECNIS symphony series (ZXR series and ZXV
series; J&J medical). We also conducted subgroup analysis on the basis of axial length. Our
previous study showed that mean axial length of Japanese was 23.6 mm [21]. Using this
data as a reference, subgroup analysis was performed such that axial length of less than
22 mm was defined as the short-axis group (n = 10), that between 22 mm to less than 24 mm
was defined as the middle-axis group (n = 301), and axial length of 24 mm or greater was
defined as the long-axis group (n = 189).

2.3. Preoperative, Postoperative Examinations, and Surgical Measurements

Preoperatively, we assessed axial length, corneal curvature, anterior chamber depth,
lens thickness, and white-to-white distance using IOLMaster 700.

Ten weeks after surgery, we measured the same items similar before surgery using
IOLMaster 700. Distance visual acuity was measured at 5.0 m using the decimal visual
acuity chart. For postoperative refraction, we used subjective spherical equivalent.

Six experienced surgeons performed cataract surgeries. 2.4-mm temporal corneal
incision was made. Next, a 5.0-mm continuous curvilinear capsulorhexis was created.
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2.4. IOL Power Calculation Formulas and Optimization of Constants

Regarding conventional IOL power calculation formulas, we evaluated the SRK/T
formula [23], Haigis formula [9], Holladay 1 formula [10], Hoffer Q formula [11,12], and
Barrett Universal II formula [13].

For the optimization of A constant (SRK/T formula), surgeon factor (Holladay 1 for-
mula), and personalized Anterior Chamber Depth (pACD) (Hoffer Q formula), Excel
(Microsoft, Albuquerque, NM, USA) was used, and the calculation was performed using
training data. For the optimization of a0, a1, and a2 (Haigis formula), we used linear
regression in accordance with the original method. Linear regression was performed using
Python 3 (https://www.python.org/ (accessed on 25 February 2021) Python Software
Foundation, Delaware, DE, USA) and Scikit-learn library (http://scikit-learn.org/stable/
(accessed on 25 February 2021) Free software machine learning library for the Python
programming language) using training data. For the Barrett Universal II formula, the
optimized A constant was used.

The predicted postoperative refractions of SRK/T formula, Haigis formula, Holladay
1 formula, and Hoffer Q formula were calculated using Excel. In detail, these published
formulas were created using Excel functions and calculated by inputting measurements
such as ocular axis length IOL power, and each optimized IOL constant. These values
were calculated using the test data and optimized constants in accordance with the original
methods. The predicted postoperative refractions of Barrett Universal II formula were
calculated using a calculator on the website.

For the SRK/T formula, Holladay 1 formula, Hoffer Q formula, and Haigis formula,
we used constants that optimized for each formula. In contrast, for the Barrett Universal II
formula, A constants optimized for the SRK/T formula were used. Therefore, to minimize
the error of power calculation using the Barrett Universal II formula, we calculated the
average of the refraction errors in the training data for the Barrett Universal II formula;
then, the average was subtracted from the calculated predicted refractions in the test data.
Optimized constants for the IOL power calculation formula of the datasets are presented
in the Table 2

Table 2. Optimized Constants for IOL power calculation formula.

A Constants
(for SRK/T)

SF
(for Holladay 1)

pACD
(for Hoffer Q)

a0, a1, a2
(for Haigis)

YP2.2 119.2 YP2.2 1.93 YP2.2 5.792 YP2.2 −1.72, 0.277, 0.260

SZ-1 119.48

W60R 119.49

KS-SP 119.72

NS60YG 120.88

SN60WF 119.2

SN6AT 119.16

SN6AD 119.24

SV25T 119.56

ZCB00V 119.58

Tecnis
multi 119.63

Tecnis
symphony 119.19

These values were used as predicted refractions. Abbreviations: SF, surgent factor; pACD, personalized anterior
chamber depth.

https://www.python.org/
http://scikit-learn.org/stable/
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2.5. Machine Learning

ML was conducted using a self-made program with Python 3. The Scikit-learn library
(http://scikit-learn.org/stable/ (accessed on 25 February 2021) was used for SVR and
RFR. For GBR, the XGboost library (https://github.com/dmlc/xgboost (accessed on 25
February 2021) was utilized. For NN, we used the TensorFlow library (https://github.com/
tensorflow/tensorflow (accessed on 25 February 2021) as a backend and the Keras library
(https://github.com/keras-team/keras (accessed on 25 February 2021) as a wrapper. The
structure of the NN is depicted in the Figure 2.
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Figure 2. The structure of Neural Network (NN).

Because random numbers are used for learning with NN, some fluctuations occurred
in the prediction result. Therefore, for NN, learning was repeated 30 times and the average
value was used.

The parameters to be used as explanatory variables were selected based on the GBR
prediction accuracy in the training data. There are two reasons for using GBR for parameter
selection. One is that the feature importance can be obtained by calculation, and the other
is that the calculation speed is fast and therefore suitable for cross-validation. First, we
selected a formula whose predicted values were used as explanatory variables. We selected
the formule with the highest feature importance for prediction among the four conventional
formulas (SRK/T formula, Holladay 1 formula, Hoffer Q formula, and Haigis formula).

http://scikit-learn.org/stable/
https://github.com/dmlc/xgboost
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
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We excluded the predicted value of the Barrett Universal II formula from the candidates
for explanatory variables because the details of the formula have not been published and
also to avoid autoregressive behavior. Next, we selected the parameters considered for
use as the explanatory variables of ML. The candidates for explanatory variables were age,
axial length, corneal curvature, anterior chamber depth, lens thickness, white-to-white
distance, IOL constants (optimized value), IOL power, and predicted refraction using the
selected conventional formula. Gender was not considered because it did not contribute
much to accuracy in our previous unpublished study. It showed that F-value, which means
the feature importance, was the smallest in the gender of all parameters. (F-values: Axial
length, 217; corneal curvature radius,123; lens power, 121; lens thickness, 24; white to
white,23; ACD, 22; A constant,21; age, 17; gender,13) Prior to the use of these values, they
were normalizes to obtain an average of 0 and a standard deviation of 1. We selected a
combination of parameters that minimized the error via cross-validation in the training
data. As a dependent variable, postoperative refraction was used. Hyperparameters in ML
were optimized via cross-validation using grid-search with the training data.

2.6. Statistical Analysis

For statistical analysis, we used Python 3 and the SciPy library (https://www.scipy.
org/ (accessed on 25 February 2021). Unpaired t-tests were utilized to compare average
values of continuous variables (such as age or axial length) between training and test data.
When comparing the accuracy of each IOL power calculation formula and ML method, we
used the Shapiro–Wilk test to evaluate data normality and the Friedman test to determine
whether there were differences between groups. Lastly, the paired t-test or the Wilcoxon
signed-rank test was used, depending on the nature of the distribution. To compare the
proportion of objects with refraction errors less than 0.5 D, chi-squared tests were utilized.
We applied the Bonferroni correction for multiple comparisons when the p-value was less
than 0.05. An adjusted p-value of less than 0.05 was considered statistically significant.

2.7. Ethics Statement

The procedures used in this study were in accordance with the Declaration of Helsinki
and were approved by the Ethics Committee of Tsukazaki Hospital. Signed informed
consent was obtained from all subjects after they were informed of the procedures. This
study was registered as UMIN000034493: “Prediction of the refraction after cataract surgery
using artificial intelligence.”

2.8. Data Availability

Due to the nature of this research, participants of this study did not agree for their
data to be shared publicly, so supporting data is not available.

3. Results

As a result of the study using the feature importance of GBR, the SRK/T equation
was selected as the conventional equation to be used as a candidate for explanatory
variables. As a result of the subsequent grid search, axial length, radius of corneal curvature,
anterior chamber depth, lens thickness, IOL power, and predicted value using the SRK/T
formula were selected as explanatory variables. Therefore, we used a combination of these
explanatory variables in all ML methods. The absolute prediction error of the conventional
IOL power calculation formulae is depicted in Figure 3. Mean absolute error for the
Barrett Universal II formula, SRK/T formula, Holladay 1 formula, Hoffer Q formula, and
Haigis formula were 0.2960, 0.3314, 0.3312, 0.3602, and 0.3210, respectively. The p-value
by the Friedman test was < 0.0001. The Barrett Universal II formula provided values
that were significantly lower than those provided by other formulae in terms of absolute
prediction error.

https://www.scipy.org/
https://www.scipy.org/
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Since the prediction error of the Barrett Universal II formula was the lowest, the
accuracy of ML methods was compared to that of the Barrett Universal II formula. Before
ML, we selected the parameters that should be used in cross-validation in the training data.
The selected parameters were the same combination in all ML methods, which included
axial length, radius of corneal curvature, IOL power, lens thickness, anterior chamber
depth, and predicted value using the SRK/T formula. These parameters were then used to
conduct ML.

The absolute prediction error of the Barrett Universal II formula and ML methods is
shown in Figure 4. Mean absolute error for the Barrett Universal II formula, SVR, GBR,
RFR, and NN were 0.2960, 0.2877, 0.2929, 0.2964, and 0.2891, respectively. The p-value
by the Friedman test was > 0.05. SVR and NN yielded lower absolute errors than the
Barrett Universal II formula. RFR, GBR, and NN had lower median absolute errors than the
Barrett Universal II. However, no significant difference in accuracy was observed among
these groups.

Mean absolute error for the Barrett Universal II formula, SVR, GBR, RFR, and NN
were 0.2960, 0.2877, 0.2929, 0.2964, and 0.2891, respectively. The p-value by the Friedman
test was > 0.05.

Subgroup analysis based on axial length is shown in Figure 5, and no significant
differences were observed among the axial length subgroups.

As the value predicted by the SRK/T formula was used as the explanatory variable,
we compared absolute prediction error values provided by the SRK/T formula and ML
methods (Figure 6). All ML methods yielded significantly lower absolute error values than
did the SRK/T formula method.

The proportion of objects with absolute prediction errors less than 0.5 D is shown in
Table 3. The ML methods had a higher proportion of objects than the Barrett Universal II
formula. However, the values failed to reach statistical significance.
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did the SRK/T formula method. 

Figure 5. Mean absolute prediction error categorized according to the axial length. In the short-axis
group, the mean absolute error for the Barrett Universal II formula, SVR, GBR, RFR, and NN were
0.3360, 0.2967, 0.3069, 0.2593, and 0.3085, respectively. In the middle-axis group, the mean absolute
error for the Barrett Universal II formula, SVR, GBR, RFR, and NN were 0.2858, 0.2789, 0.2788, 0.2898,
and 0.2821, respectively. In the long-axis group, the mean absolute error for the Barrett Universal II
formula, SVR, GBR, RFR, and NN were 0.3045, 0.3153, 0.3008, 0.3089, and 0.2991, respectively. The
p-value by the Friedman test was > 0.05 for all axial length subgroups.

p values were calculated using chi-squared test. The correction of multiple compar-
isons was not performed.

Table 4 shows the results of the importance analysis for each factor of GBR, with the
SRK/T formula playing the largest role.
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Figure 6. Mean absolute prediction error of the SRK/T formula and machine learning methods.
Mean absolute error for the SRK/T formula, SVR, GBR, RFR, and NN were 0.3314, 0.2877, 0.2929,
0.2964, and 0.2891, respectively. The p-value by the Friedman test was < 0.0001. The SVR formula vs.
the SRK/T formula: p < 0.0001; GBR vs. the SRK/T formula: p < 0.0001; RFR vs. the SRK/T formula:
p = 0.0001; NN vs. the SRK/T formula: p < 0.0001; (The p-values were calculated using the Wilcoxon
signed-rank test and were adjusted using the Bonferroni correction).

Table 3. Proportion of objects with errors less than 0.5 D.

Barrett Universal II Formula SVR RFR GBR NN

406/500 422/500 412/500 414/500 422/500
Abbreviations: SVR, support vector regressor; RFR, random forest regressor; GBR, gradient boosting regressor;
NN, neural network. Barrett Universal II formula vs. SVR: p = 0.1800; Barrett Universal II formula vs. RFR:
p = 0.6229; Barrett Universal II formula vs. GBR: p = 0.5102; Barrett Universal II formula vs. NN: p = 0.1800.

Table 4. Means of five cross validation for Characteristic Importance of GBR.

Axial
Length

Corneal
Curvature ACD LT IOL

Power SRKT

Mean 0.131356521 0.181638074 0.204091 0.173306 0.075068989 0.234539
Abbreviations: GBR, gradient boosting regressor; ACD, anterior chamber depth; LT, lens thickness.

4. Discussion

The current study compared the accuracy of conventional IOL power calculation
formulas with that of ML-based methods in predicting postoperative refraction. The
absolute prediction errors of the conventional formulas were nearly the same as those of
previous reports [3–5]. In addition, the Barrett Universal II formula had low prediction error,
which is in accordance with previous studies. Considering that the Barrett Universal II
formula was the most accurate, it was then compared with the ML methods. The absolute
mean prediction errors of SVR and NN were lower than that of the Barrett Universal
II formula. However, no significant difference was observed. The ML method had a
higher percentage of cases with an absolute prediction error of less than −0.5 D than the
Barrett Universal II method. However, no significant differ-ence was found. However, no
significant difference was observed.

As first described by Arthur Samuel in 1959, ML is a “Field of study that gives
computers the ability to learn without being explicitly programmed”. ML methods are
also often used in the field of ophthalmology. There are numerous reports about image
identification using NN, and we have conducted several reports on this area as well [24,25].
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The prediction of postoperative refraction values is suitable for ML because it calculates
the numerical value (postoperative refraction) using a set of numerical values obtained
with preoperative measurements.

In this study, the predicted postoperative refraction value obtained using the con-
ventional IOL power calculation formula was used as an explanatory variable in ML. For
actual learning, calculated values from the SRK/T formula were used, which resulted in
significantly enhanced accuracy compared with the original SRK/T formula. As conven-
tional IOL power calculation formulas can be used to calculate postoperative refraction
with preoperative parameters based on optics, these parameters were considered more
appropriate for incorporation into a means of prediction using the calculated value rather
than each parameter independently.

Various types of IOLs were used in patients, and we used the data from these cases for
training. This is because consecutive cases were used to eliminate bias, which probably not
only resulted in higher volumes of training data but also contributed to an improvement
in accuracy. Postoperative refraction is affected by the type of IOLs used; therefore, an
IOL constant is applied in the conventional IOL power calculation formula for each lens.
Conversely, in our model, the value predicted by the SRK/T formula was used as the
explanatory variable, which also acted as the IOL constant. Since the A constant, optimized
using training data, was used for calculations using the SRK/T formula, we think that the
influence of IOL type on refraction can be corrected by using the value predicted using the
SRK/T formula as the explanatory variable.

Recently, Sramka et al. have reported about ML methods that can predict refractions
after cataract surgeries [16]. Moreover, they have investigated the accuracy of SVR and NN.
Their NN model adopted the ensemble model. In contrast, the NN model in this study was
simple and did not use an ensemble, and it was like the Hill-radial basis function (RBF)
calculator [7]. The accuracy of the models was extremely like that of ours. The structure of
the Hill RBF calculator has not been published, and therefore, discussing the relationship
between network structure and prediction accuracy is difficult. However, refractive power
prediction after cataract surgery uses relatively few parameters and is similar to NN; thus,
a complicated network may not be necessary.

In the present study, we investigated the accuracy of four representative ML methods
in the prediction of refractive power after cataract surgery. In terms of the mean absolute
error value or the proportion of absolute prediction errors less than 0.5 D, SVR and NN
were better than the other methods. However, no statistically significant difference was
observed. Model selection is a major theme in ML [26,27], and several cheat sheets are
available [28,29]. However, the accuracy of the model depends on the data set; thus, we
must assess which model is superior in the data set. To date, it is unclear which of the four
models assessed in this study is the best. However, more samples must be used to identify
the most accurate model.

The present study had several limitations. First, the accuracy of our method was not
compared with that of the Hill-RBF calculator (The RBF Calculator Physician Team, Haag-
Streit Switzerland (Koeniz, Switzerland) and Mathworks (Natick, USA)) [17], which uses
the ML method. The Hill-RBF calculator was primarily established for LENSTAR (Haag-
Streit, Koeniz, Switzerland), and this was the primary reason for the lack of comparison. In
addition, such a method is only applicable when the target refraction is −2.5 D or higher.
The objects in this study included eyes with high myopia in which the target refraction
is less than −3.0 D, and they are out of bounds for this calculator. Since no study has
shown that the Hill-RBF calculator is significantly more accurate than the Barrett Universal
II formula, we believe that, at the very least, our method is not inferior to the Hill-RBF
calculator. The second problem is that we did not compare our formula with Kane’s one,
because we emphasized the fact that many papers have shown that the Barrett Universal II
formula is the best [5–7]. However, in terms of the number of cases studied, it is reasonable
to point out that Kane’s formula is the most accurate, [8] and further studies to compare
our formula with Kane’s one are needed.
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Because the study was conducted in Japanese patients, who have very few short ocular
axial patients, only a few cases with a short ocular axial length of less than 22 mm were
included. Future studies are needed, such as using data from other races. Alternatively,
the newly proposed formula using AS-OCT by Satou et al. that is independent of ocular
axial length may be optimal [4]. However, it is complicated to obtain detailed AS-OCT data
accurately from all preoperative cataract patients.

Another potential limitation of the present study is that some values used in our model,
such as subjective refraction or IOL constants in power calculation formulae, can vary
depending on the facility, suggesting that a model trained at one facility cannot be used
with data from other facilities. Two methods to solve this problem are possible—namely,
(i) a method of constructing a model based on large data from multiple facilities, and (ii) a
method of constructing a model for each facility. Conceivably, facility-specific models
would fit each facility better, albeit with smaller data volume. However, determining which
method is more accurate is necessary. Furthermore, our method does not have a sufficient
interface; therefore, the interface must be improved before its application in other facilities.
At present, the method is rather complicated, but once it reaches the implementation stage,
learning and inputting can be automated, which will enable operation at the user level
with the same level of work as the conventional method.

In conclusion, the predictive accuracy of the four ML methods for refractive power
after cataract surgery was compared with that of the conventional IOL power calculation
formulas. The accuracy of the ML models was not inferior to that of the Barrett Universal
II formula, which is the most accurate among the conventional formulas. Furthermore,
we obtained higher accuracy using the prediction result of the conventional formula as an
explanatory variable than that using the original formula. This suggests the possibility of
improving the accuracy of conventional formulae based on optical calculations. In general,
the more training data ML has, the more accurate it becomes, so if the number of data
is sufficient, the ML method can be applied to cases of abnormally shaped eyeballs. The
results suggest that it may be possible to create a formula that is optimal for each facility
on a facility-by-facility basis. Moreover, the method will not be affected by differences in
race, and it can become the mainstream method for IOL power calculation in the future.
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