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PI3K-d and PI3K-g are critical regulators of T-cell differentiation, senescence, and
metabolism. PI3K-d and PI3K-g signaling can contribute to T-cell inhibition via intrinsic
mechanisms and regulation of suppressor cell populations, including regulatory T-cells
and myeloid derived suppressor cells in the tumor. We examine an exciting new role for
using selective inhibitors of the PI3K d- and g-isoforms as modulators of T-cell phenotype
and function in immunotherapy. Herein we review the current literature on the implications
of PI3K-d and -g inhibition in T-cell biology, discuss existing challenges in adoptive T-cell
therapies and checkpoint blockade inhibitors, and highlight ongoing efforts and future
directions to incorporate PI3K-d and PI3K-g as synergistic T-cell modulators
in immunotherapy.

Keywords: adoptive cell immunotherapy, TIL (tumor infiltrating lymphocytes), CAR T cancer therapy, immune
checkpoint inhibition (ICI), PI3K delta, PI3K gamma, T cell differentiation
INTRODUCTION

T-cell based immunotherapies aim to reinvigorate immunity against malignant cells either via
infusion of effector T-cells or activation of existing T-cells in the body. Here, we provide an overview
of the mechanism of PI3K signaling in T-cells, particularly PI3K-d and -g, down-stream of T-cell
receptor activation. Particular attention is given to how inhibition of PI3K-d and -g signaling with
drug inhibitors regulates and activates pathways related to T-cell proliferation, differentiation,
senescence, exhaustion, and metabolism. In this context, we consider the current state of therapies
targeting T-cell immune checkpoint pathways and the effects of synergizing PI3K inhibition with
immune checkpoint inhibitors (ICIs) to re-model the activity of T-cells and other
immunosuppressive cells in the tumor microenvironment (TME). We also consider PI3K-d and
-g signaling and inhibition in the context of Adoptive T-cell Transfer (ACT) therapies. ACT
therapies entail harvesting a patient’s immune cells, culturing and potentially modifying them ex
vivo, and reinfusing them back into the patient. Within ACT, three commonly utilized approaches
used for patients are chimeric antigen receptor T-cell (CART), TCR (T-cell Receptor) therapy, and
tumor infiltrating lymphocyte (TIL) therapies. Manufacturing ACT products are costly, time
consuming, technically challenging, and clinical responses are promising but not consistently
achieved (1, 2). We subsequently review the current preclinical and clinical progress with ACT
org August 2021 | Volume 12 | Article 7186211
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therapies, highlight notable differences between their
manufacturing processes, and discuss specific areas for process
improvement in the context of surrogate measures of clinical
outcomes. Finally, while reviewing current limitations in ACT,
we discuss how PI3K-d and -g are promising pharmacological
targets for improving T-cell response in ACT given their
ubiquitous expression in T-cells.
OVERVIEW OF PI3K SIGNALING IN
T-CELLS

PI3K proteins are divided into class IA, IB, II, and III and are
named by order of discovery. Class IA subunits include -a, -b
and -d, and are generally phosphorylated by receptor tyrosine
kinases (RTKs). Class IB is comprised of the PI3K-g isoform and
is expressed and co-localized with G-protein coupled receptors
(GPCRs). In healthy tissue, the PI3K-a and -b isoforms are
ubiquitously expressed whereas the PI3K-d and -g isoforms are
mainly expressed in hematopoietic cells (3, 4). PI3K-d and/or -g
inhibition and knockout in lymphocytes reduces cytokine-
mediated chemotaxis. In particular, knockout of PI3K-g
reduced T-cell migration, while PI3K-d knockout generated
deficiencies in B cell chemotaxis (5).

When over-expressed in cancers, PI3K-a and -b drive tumor
growth and metastasis while expression of PI3K-d and -g in
hematopoietic cells regulates immune cell activity, especially
lymphocyte and myeloid cell differentiation and activation (6–
8). In many solid tumor malignancies, including breast cancer,
lung, head and neck cancer, and melanoma, increased activity
within the PI3K pathway occurs through activating mutations
and gene amplifications in PIK3CA (PI3K-a), or loss of
expression of the PI3K tumor suppressor, PTEN (8–15).
Efforts to develop pan-PI3K inhibitors into successful anti-
cancer therapy have been stymied by low response rates to
PI3K inhibitors and significant toxicities (16–23). Unlike the
use of PI3K inhibitors in solid tumor malignancies, the anti-
tumor effects of PI3K inhibition in lymphoid malignancies are
not dependent on gene mutations, amplifications, or deletions
within the PI3K pathway. Instead, PI3K-d and -g inhibitors exert
direct inhibitory effects on lymphoid cancer cell survival, and
indirect effects by targeting survival and homing of normal
lymphoid and myeloid cells into the TME (24–26). These bi-
functional properties are a result of PI3K-d and -g signaling
regulating activation and differentiation of normal B- and T-cells
while simultaneously limiting the proliferation of the cancer
counterparts of normal lymphoid cells following their
neoplastic transformation.

FDA approved therapies now exist for relapsed B-cell
malignancies like CLL and Follicular Lymphoma (FL) with
idelalisib (PI3K-d), duvelisib (PI3K-d/g), and copanlisib (PI3K-a/
d) (16, 27–31). Clinical trials are ongoing in Richter Syndrome or
transformed FL, Relapsed/Refractory T-cell Lymphomas, Relapsed
or Refractory Peripheral T-cell Lymphoma (PTCL), ALL,
maintenance post autologous transplant for T-cell and indolent B
cell lymphomas, DLBCL, Mantle Cell lymphoma, and Marginal
Frontiers in Immunology | www.frontiersin.org 2
Zone Lymphoma (NCT03892044, NCT02783625, NCT03372057,
NCT04331119, NCT03742323, NCT03133221, NCT04233697,
NCT04263584, NCT03877055, and NCT03474744) (32).

The direct anti-cancer activity of PI3K-d and -g inhibitors in
hematologic malignancies occurs by inhibiting the proliferation
of malignant cells with a simultaneous indirect effect on normal
hematopoietic cells that is related to limiting the immune
suppressive properties of the TME (8, 33, 34). Studies in
healthy T-cell biology have unequivocally demonstrated that
PI3K signaling drives T-cell differentiation and senescence and
supports immune homeostasis by Tregs (3, 6, 35, 36).

TCR Complexes Signals Through PI3K-d
and -g
The TCR/CD3 complex and related CAR constructs work in
concert with co-stimulatory signals like CD28 to induce T-cell
activation via PI3K pathway signaling (37, 38). In brief, CD3-
mediated signaling through Lck, LAT, and PLC protein leads
to phosphorylation of the p110d and p110g subunits of the
PI3K-d and PI3K-g isoforms (Figure 1). The p110d and p110g
subunits work by phosphorylating phosphatidylinositol
4,5 bisphosphate (PIP2) to yield phosphatidylinositol 3, 4,5
triphosphate (PIP3), which permits anchorage and association
of cytosolic proteins near the lipid bilayer to facilitate
downstream signal transduction (39). PIP3 thus functions as a
second messenger initiating multiple signaling cascades, most
notably facilitating the phosphorylation of AKT by PDK1 which
subsequently leads to downstream survival and differentiation
signals secondary to activation of the mechanistic target of
rapamycin 1 (mTORC1) (40, 41) (Figure 1). We have shown
that inhibition of PI3K-d and -g in T-cells with duvelisib
simultaneously activates signaling through the RAS/RAF/MEK
pathway (42).

Upon T-cell activation, there is an increase in glucose and
amino acid uptake and activation of mTORC1, which is required
to maintain T-cell effector functions (43–46). Activation of
mTORC1 also promotes induction and maintenance of aerobic
glycolysis, which leads to increased differentiation and effector
functions (46). In the context of adoptive T-cell therapies,
mTORC1 mediated differentiation into effector cells render
ACT less efficacious, as the survival and expansion potential of
differentiated T cells is limited. Inhibition of mTORC1 activity
through direct inhibition, genetic modification, inhibition of
AKT, or STAT3 activation promotes formation of a pool of T-
cells that are smaller in size with a stem cell memory (Tscm) and
naïve (Tn) cell phenotype by inhibiting aerobic glycolysis and
preventing terminal differentiation (47–50) (Figure 2).

The effects of PI3K activation are recapitulated clinically in
APDS (Activated phosphoinositide 3-kinase delta syndrome
(APDS) , an autosomal dominant pr imary human
immunodeficiency caused by heterozygous gain-of-function
mutations in PIK3CD which encodes the p110d catalytic
subunit of PI3K. Similar to TCR overstimulation, increased
PI3K-d and downstream mTORC1 activity in APDS alters T-
cell glucose transport, leading to unregulated differentiation and
increased senescence by shifting CD8+ T-cells towards short-
August 2021 | Volume 12 | Article 718621
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FIGURE 2 | Antigen stimulation induces T-cell differentiation and associated changes in T-cell metabolism and size. Naïve, stem cell, and central memory phenotype
T cells are smaller and associated with catabolic metabolism. Antigen stimulation of the TCR signals through PI3K and mTORC1 to induce metabolic reprogramming,
increase in T cell size, and eventual senescence.
FIGURE 1 | Blocking TCR/CAR Mediated Activation of PI3K Signaling in T cells. TCR/CAR binding by antigen results in downstream signaling through PI3K d/g,
AKT, and mTORC1. This signal cascade promotes AKT mediated proliferation, aerobic glycolysis, and FOXO1 inhibition, and loss of TCF1/7 and the stem-cell like
epigenetic markers phosphorylated EZH2 and H3K27me3, leading effector T-cell generation. PI3K d/g reverse these effects and in turn increasing proliferative
signaling through MEK and ERK, increase mitochondrial fusion, and promote epigenetic changes associated with T cell stemness.
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lived effector cells that are unable to yield memory lymphocytes
(51, 52). Altered T-cell differentiation due to activating
mutations in the PI3K p110d subunit thus leads to reduced
numbers of circulating reduced CCR7+ Tn and central memory
(Tcm) cells and increased numbers of CD45RA−CCR7− effector
memory (Tem) and CD45RA+CCR7− (Te) CD8+ T-cells. The
over representation of terminally differentiated and senescent T-
cells leads to lymphadenopathy, functional immunodeficiency,
and increased risk for sinopulmonary infections, nodular
lymphoid hyperplasia and viremia from cytomegalovirus
(CMV) and/or Epstein-Barr virus (EBV) and associated B-cell
malignancies (51, 52).

T-Cell Differentiation, Exhaustion,
Senescence, and Metabolism
PI3K-d and -g mediated activation is critical to the processes of
antigen driven T-cell differentiation and induction of exhaustion,
senescence, and metabolic reprogramming mechanisms (53).
During ex vivo manufacturing of the ACT product or
following chronic cancer-induced antigen presentation,
constant engagement of the TCR alters T-cell phenotypes and
functions, ultimately contributing to reduced cytotoxic responses.

T-Cell Differentiation
The different T-cell subsets and their memory and effector
functions have been previously reviewed in extensive detail
(54). Clinically meaningful populations can be defined by
patterns of expression of extracellular T cell markers including
CD45RA, CD45RO, CD62L, and CCR7 (55) (Figure 2). As T-
cells become further differentiated in response to antigen
presentation, CD45RA isoform is switched to CD45RO, CCR7
is lost, and CD62L expression is reduced.

Tn and minimally differentiated Tscm cells can be
phenotypically defined by their expression of the co-
stimulatory molecules CD27 and CD28 in the contect of other
T cell markers. Stimulation via CD3 and CD28 in response to a
cognate antigen promotes the expansion and differentiation of
Tn and Tscm T-cells into CD27+/CD28+/CD45RO+/CCR7+
Tcm cells. These cells, which have previously encountered
antigen, are capable of significant proliferation and have
increased activity upon antigen re-exposure, express CCR7 that
mediates their homing into the peripheral tissues (56, 57).
Effector-memory T-cells (Tem) retain CD45RO but lose CCR7,
CD27, and CD28, which significantly reduces their homing and
proliferative capacity (58). Terminal effector (Te) T-cells switch
to the CD45RA+ CD45 isoform back and retain CCR7
negativity. Te cells are capable of engaging a robust cytotoxic
response, but their persistence is transient, and they lack the
proliferative and homing capabilities of less differentiated cells.
As a consequence of the proliferative capacity of T cells at
different stages of differentiation, ACT composed primarily of
Te cells is predicted to have a limited persistence in vivo and
shorter response duration.

T-Cell Exhaustion and Senescence
Constant T-cell stimulation can also lead to onset of T-cell
exhaustion or senescence, both dysfunctional T-cell states that
Frontiers in Immunology | www.frontiersin.org 4
share similar characteristics of reduced proliferation, cytotoxic
activity, and metabolic capacity but have different underlying
etiologies, cytokine profiles, and cell surface marker phenotypes
(59). While both phenotypes often overlap in immuno-oncology,
exhaustion typically occurs due to constant antigenic stimulation
due to the inflammatory cancer-state, while senescence ensues
when cells are forced to endure multiple, rapid signals to enterthe
cell-cycle and undergo proliferative cell divisions in the face of
repeated antigenic stimulation, exposure to DNA damaging
agents, or other stress signals (59).

The T-cell exhaustion phenotype has been well characterized
in models of chronic viral infection (60). A similar process of
constant antigenic stimulation of the TCR is thought to occur
within the cancer TME and contribute to establishing a
population of exhausted T-cells phenotypically identified by
increased expression of inhibitory receptors such as PD-1
(programmed cell death-1), CTLA-4 (cytotoxic T-lymphocyte-
associated protein 4), TIM-3, LAG-3 (anti-lymphocyte activation
gene-3), and VISTA (52, 61). PD-1 itself has been shown to block
cell cycle progression by inhibiting CD28-mediated activation of
PI3K through its immunoreceptor tyrosine-based switch motif
located in the cytoplasmic tail, and its increased expression in the
setting of activating PI3K mutations may be compensatory (62–
64). Antibody therapies called immune checkpoint inhibitors
(ICIs) targeting molecules like CTLA-4, PD-1, and its ligand,
PD-L1, are now commonly used in a wide variety of cancers and
will be discussed in detail further on in this review.

As a result of repeated antigen-stimulated replication and
differentiation, similar to the pathophysiology seen in APDS, T-
cells can become senescent and lose their ability to proliferate,
manifesting less cytotoxic activity and greater cell cycle arrest (59).
T-cell senescence is either replicative (telomerase-dependent) or
premature (telomerase independent) (65). In replicative senescence,
frequent TCR engagement leads to inactivation of the telomerase
promoter, decreased telomerase expression, and activation of DNA
damage signals. In aggregate, this leads to cell cycle arrest, increased
expression of CD57, and loss of co-stimulatory molecules CD27 and
CD28 (51, 66). On the other hand, cancer mediated T-cell
senescence may be telomerase independent, and impairs T-cell
stimulation via the TCR and reduces response rates to CAR-T
therapy in conditions like CLL (67, 68). We have shown that T-cells
from patients with DLBCL sorted for co-expression of CD27 and
CD28 proliferate whereas T-cells lacking CD27 and CD28 are
senescent (69). Further implications and mechanisms of T-cell
senescence in the setting of CAR-T therapy for malignant
hematologic conditions has been reviewed prior in great detail (65).

T-Cell Metabolism
T-cell differentiation is associated with the transition from
reliance on catabolic metabolism to anabolic metabolism (70).
Tn, Tscm, and Tcm cells rely upon fatty acid oxidation (FAO)
and oxidative metabolism (OXPHOS) to meet metabolic needs.
As T-cells encounter antigen and differentiate they increase
their reliance upon glycolysis to rapidly meet bioenergetic and
biosynthetic demands for rapidly dividing cells, such that Te
cells almost entirely rely upon glycolytic metabolism (71)
(Figure 3). Antigen binding at the TCR upregulates glucose
August 2021 | Volume 12 | Article 718621
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and amino acid transporters at the T-cell surface, driving a
process of metabolic reprogramming (47, 72). During
metabolic re-programming, memory cells demonstrate
increases in mitochondrial mass associated with an induction
of PGC1-alpha and increased respiratory capacity (73, 74). The
switch to glycolytic metabolism while supporting the Te
cytotoxic phenotype is also thought to reduce their longevity
(75). Thus, less differentiated and less glycolytic Tn, Tscm, and
Tcm cells are the preferred cell populations for ACT and other
cancer immunotherapies, and strategies to abrogate metabolic
reprogramming are promising mechanisms by which to
improve therapy efficacy. Increased activity in the AKT/
mTOR pathway drives T-cell metabolic re-programming
and glycolysis, and strategies to inhibit this pathway in ACT
are being tested (47–50). Changes within the tumor
microenvironment also influence non-cancer cell metabolism.
PD-L1 expression on cancer cells can engage with infiltrating
immune effector ce l ls that express PD-1, l imit ing
activation of downstream mTOR signaling (72). Interestingly,
PD-1 blockade has been shown to restore oxidative
phosphorylation (76). Both exhaustion and senescence alter
T-cell mitochondrial biogenesis and respiratory capacity, but in
mechanistically different ways. In exhaustion, both OXPHOS
and glycolytic metabolic mechanisms are suppressed and
associated with increased PD-1 expression, while senescence
is associated with a shift to towards anaerobic glycolysis (59).
The significance of these changes in signaling pathways remains
under investigation.
IMMUNE CHECKPOINT INHIBITORS,
PI3K, AND THE TUMOR
MICROENVIRONMENT

Immune Checkpoint Inhibitor Therapy
Immune Checkpoint Inhibitors (ICI) bind to and interfere with
inhibitory surface receptors on T-cells, thus allowing T-cells to
remain active, participate in antigen recognition, and induce
anti-tumor immune responses. Current clinical ICI applications
target CTLA-4, PD-1, or PD-L1 molecules, and the FDA has
Frontiers in Immunology | www.frontiersin.org 5
approved ICI therapies in multiple malignancies, including
melanoma, Merkel cell, non-small cell lung, head and neck,
gastroesophageal, renal, bladder, and hepatocellular cancers (77,
78). The CTLA-4 inhibitor ipilimumab was the first ICI to be
FDA approved (79, 80), and subsequently nivolumab and
pembrolizumab (anti-PD-1) received approvals. Now, multiple
additional ICI agents have been approved including cemiplimab
(anti-PD-1) and the anti-PD-L1 antibodies avelumab,
atezolizumab, and durvalumab (77). Globally, many more anti-
CTLA-4, anti-PD-1, and anti-PD-L1 antibodies are under
clinical study.

ICI have demonstrated tremendous clinical benefit in
multiple solid tumor indications. For example, in patients with
unresectable advanced stage (III/IV) cutaneous melanoma, ICIs
have achieved single-agent response rates up to 40% in the first-
line setting, higher than the prior 10% seen with chemotherapy
alone. While these improvements in clinical outcomes are
exciting, a majority of patients will not experience a long-term
clinical response and not all malignancies are sensitive to T-cell
checkpoint inhibitors, in large part due to poor intratumoral T-
cell trafficking. A common strategy currently being used is to use
a multi-targeted approach to simultaneously inhibit additional
co-inhibitory receptors other than PD-1 and CTLA-4 associated
with primary or acquired ICI resistance (81, 82). Promising
preclinical data with co-inhibition of TIM-3 or LAG-3 with anti-
PD-1 therapy (83, 84) has led to multiple ongoing clinical trials
testing such combinations in solid tumor malignancies,
including with nvel dual-targeting bispecific antibodies
(NCT03219268, NCT04080804, NCT04140500, NCT03250832,
NCT01968109, NCT04370704, NCT03005782, NCT04139902,
NCT03680508, NCT02817633, NCT03708328, NCT03744468, NCT
02608268, NCT03630159) (32).

An alternate strategy, however, is to combine non-ICI
pharmacologic inhibitors with ICI with the intent of enhancing
T-cell anti-tumor activity in ICI-resistant cancers (85, 86).
Mechanistically, CTLA-4 inhibition reduces CD4+ Treg
proliferation and induces the expansion of a Th1-like CD4+
effector populations, while inhibiting PD-1 reduces T-cell
exhaustion and increases CD8+ tumor infiltrating subsets (87–
90). ICI failure stems from fundamental deficiencies in
mechanisms of innate and acquired resistance (82, 91).
FIGURE 3 | PI3K-d and -g in the Tumor Microenvironement. PI3K-d and -g signaling Tregs, TAMs, and MDSCs regulates suppression and trafficking of CD8+ tumor
infiltrating lymphocytes in the TME. PI3K-d signaling drives Treg suppression of CD8+ tumor-infiltrating T-cells while TAMs and MDSCs rely on PI3K-g for their
immunosuppressive function.
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Variability in cancer type, prior treatment history, tumor
heterogene i ty , and the immunosuppress ive tumor
microenvironment also influence poor therapy response (92,
93). Seven immune escape mechanisms for ineffective immune
mediated anti-tumor response to anti-PD-1/PD-L1 therapy have
been previously described (94, 95), and can be broadly
summarized into three categories, namely 1) T-cell priming
and activation, 2) T-cell trafficking and infiltration, and 3)
tumor cell recognition and killing.

Immunogenic vs Immune-Restricted TME
Tumor microenvironments can be classified as immunogenic or
immune-restricted, which refers to the infiltration and presence
of T-cells and other antigen presenting immune cell populations
(96). Immunogenic or ICI-responsive tumor types include
cutaneous melanoma, lung cancers, renal cancers, and bladder
cancers, while colorectal, pancreatic, prostatic, breast, or cancers
of central nervous system origin are regarded as immune-
restricted and ICI-resistant malignancies (97–100).

Lack of ICI response in immune-restricted cancers occurs
from deficiencies in T-cell priming, activation, trafficking, and
infiltration into the TME. Research has focused on increasing
tumor antigen release, improving the presence and efficiency of
antigen presenting cells, and augmenting T-cell intra-tumoral
homing and co-stimulation (100, 101). In immunogenic tumors,
ICI resistance and/or failure is more complicated and follows
three distinct phenotypes: a) patients that do not respond (innate
resistance); b) those that respond initially but fail to respond in
later stages (acquired resistance); and c) those that respond
initially and continue to respond (92, 93). Despite intratumoral
T-cell presence, deficiencies in tumor cell recognition and killing
driven by alterations in MHC or other co-inhibitory signals can
lead to immune evasion and therapy failure (102–104). Even if
adequate antigen presentation exists, T-cell exhaustion,
senescence, and inactivation due to concomitant checkpoint
pathways, or direct suppression by other immune cells
including regulatory T-cells (Tregs) and M2-like tumor
associated macrophages (TAMs) or MDSCs limit the efficacy
of ICI. Therefore, much need exists for therapies that synergize
with ICI to elicit activation, proliferation, and long-term
persistence of antigen experienced tumor-reactive T-cells (105).

PI3K-d and -g Effects in the TME
PI3K signaling plays a multifactorial role in shaping the TME,
particularly the milieu of other T-cell suppressive immune cells
(Figure 5). We have previously linked PI3K pathway signaling to
tumor antigen presentation mechanisms in head and neck
cancers. PTEN loss and PI3K activation downregulated major
histocompatibility complex (MHC) Class I and Class II
induction by IFN-g, and clinical tumor samples demonstrated
inverse staining associations of MHC and Phospho-S6, a serine/
threonine kinase downstream of PI3K (106). Downregulation of
MHC expression in HNSCC and melanoma has a clinical
correlation with treatment resistance and poorer clinical
outcomes (102–104). Furthermore, PTEN loss has been shown
to promote resistance to T-cell targeted immunotherapy in
melanoma (107). The effects of PI3K inhibition on T-cell
Frontiers in Immunology | www.frontiersin.org 6
infiltration and activation in tumors, thus leading to improved
T-cell mediated cytotoxicity with ICI, has been well characterized
in multiple pre-clinical models of immunogenic and immune-
restricted cancers, however the mechanism of such effects
depends which PI3K isoforms are targeted (108, 109).
Importantly, PI3K-d and -g isoforms regulate lymphocyte
trafficking, intratumoral lymphocyte recruitment, T-cell
differentiation, activation, and proliferation, myeloid cell and
macrophage differentiation and function, and immune cell
metabolism (5, 109–113). Chemoattractants produced by
cancers also activate GPCRs and RTKs involved in PI3K
phosphorylation and activation, like PI3K-d in immature and
immunosuppressive myeloid cells, further driving and sustaining
tumor inflammation (114).

Intratumoral T-Cell Infiltration
In cancer, PI3K-d inhibition has been shown to play a role in
augmenting intra-tumoral T-cell activation. In preclinical
models of lung, breast, and colon cancer, in vivo treatment
with the PI3K-a/d inhibitor AZD8835 and the PI3K-d
inhibitor idelalisib favorably increased CD8+ TIL/Treg ratios
by ~2-fold (36). Furthermore, ex vivo cultures of conventional
CD8+ T-cells with AZD8835 and idelalisib demonstrated a dose-
dependent enhancement in T-cell survival, cell size, increased
CD69+ activation marker expression, and increased expression
of the IL-2 receptor CD25 without negatively impacting
proliferation (36).

In a triple negative breast cancer-like transgenic MMTV-
PyMT murine model of breast cancer, an increase of more than
two-fold in the percentage of intra-tumoral CD4+ and CD8+ T-
cells were found in the mammary fat-pad tumors and lung
metastases of PI3K-g knockout mice versus PI3K-g competent
mice (115), along with a 50% reduction in primary tumor growth
volume at 5-weeks, reduced metastases formation, increased
TNF-alpha secretion by CD4+ and CD8+ TILs, and increased
TIL expression of the T-cell activation marker CD69+. In PI3K-g
competent mice, inhibition with the pan-PI3K inhibitor
buparlisib recapitulated the above findings. The most
compelling finding is that while single-agent anti-PD-1
antibody therapy is minimally effective in this TNBC model,
combination therapy of anti-PD-1 antibody with buparlisib
inhibited tumor growth in 100% of the mice. Similar findings
were also seen in syngeneic mouse models of pancreatic ductal
cancer, with tumors from PI3K-g knockout mice exhibiting
significantly more CD4+ and CD8+ T-cell content than
tumors from wild-type mice (116). The most likely explanation
for these observations is that PI3K-d blockade inhibits Tregs and
PI3K-g inhibition suppresses MDSCs and TAMs, thereby
indirectly and favorably altering the T-cell immune infiltrate
(3, 6, 109, 117).

Regulatory T-Cells (Tregs)
Tregs represent a diverse and functionally distinct population of
T-cells involved in immunological self-tolerance. Deficiencies in
Treg function can lead to clinical manifestations of autoimmune
disease while increased Treg presence in cancer enhances
immune escape by inducing poor CD8+ T-cell tumor
August 2021 | Volume 12 | Article 718621
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infiltration and cytotoxic activity (118). A commonly accepted
Treg phenotype is CD4+CD25+Foxp3+CD127lo, and the critical
role of PI3K-d in maintaining Treg proliferation and
immunosuppressive function was initially demonstrated in
mouse models of colitis (119). Specific to cancer immunology,
work in murine models has shown PI3K-d knockout impairs
Treg proliferation and redundancy in the PI3K-a and -b
pathways in conventional T-cells spares their function in the
face of pharmacologic PI3K-d inhibition. Similar results have
been seen with pharmacologic inhibition in human T-cell
populations as well (3, 35). PI3K-d inhibition with AZD8835
(PI3K-a/d) and PI-3065 (PI3K-d specific) decreased tumor Treg
infiltration by over 50% as early as 3 days after treatment in the
CT26 colorectal mouse model (36). Similar results of increased
tumor reduction and reduced numbers of Tregs, M2-TAMs, and
MDSCs were seen in A20 lymphoma and CT26 colorectal mouse
models with combination duvelisib and anti-PD-1 antibody
therapy versus anti-PD-1 therapy alone (120).

Characterizing Treg in blood samples from patients with CLL
prior to and on treatment with idelalisib suggest that idelalisib
therapy diminished Treg immunosuppressive activity (121). In
patients with advanced melanoma, increased numbers of Tregs
have been seen in the peripheral blood and tumors (primary,
lymph nodes, and metastatic sites) of patients (15). Overall, large
meta-analysis from clinical studies have shown that increased
Treg infiltration is associated with reduced OS in a majority of
solid tumors, including cervical, renal, melanomas, and breast
cancers (122).

TAMCs (Tumor Associated Myeloid Cells)
TAMCs encompass a wide phenotype of myeloid-derived cells
that include MDSCs and TAMs. Our current understanding of
myeloid cell biology suggests that cancers generate pro-
inflammatory factors that disrupt normal bone marrow
myelopoiesis, increase the expression of immunosuppressive
factors like arginase and inducible nitric oxide synthase, and
lead to the expansion of a heterogenous population of
immunosuppressive immature myeloid cells (IMCs), also known
as MDSCs (123, 124). While variability in the literature exists,
MDSCs are phenotypically accepted to be CD33+CD11b+HLA-
DR-/low in humans and CD11b+Gr1+ phenotype in mice (123,
125), and can be further divided according to either a granulocytic
or monocytic (mMDSC) phenotype (126). In humans, CD14
+HLA-DR-/low and CCR2+ mMDSCs are regarded as the most
immunosuppressive subtype (127–129). TAMs comprise a
heterogenous population of CD45+ cells residing within the TME
that originate from normal tissue precursors or circulating
myelomonocytic progenitors (130). TAMs are often characterized
based on the classically accepted pro-inflammatory M1- or anti-
inflammatory M2- macrophage phenotypes, named after the
respective Th1 and Th2 cytokines with which their responses are
associated.WhileMDSCs and TAMs are often simplified asM2-like
(M2*) and characterized by high levels of IL-10 secretion (131, 132),
TAM diversity is complex and unlikely yet fully elucidated, but we
surmise that the majority of TAMs functionally fall on a spectrum
somewhere in-between (133–136). The complex myelomonocytic
checkpoints governing the differentiation of TAMs from
Frontiers in Immunology | www.frontiersin.org 7
myelomonocytic progenitors can broadly be considered as 3 steps:
1) IMC expansion and differentiation into MDSCs, 2) MDSC
migration and differentiation into TAMs, and 3) TAM
polarization, with each step being mediated by growth factors
(GM-CSF (granulocyte macrophage colony stimulating factor); G-
CSF), cytokines (IL-10, IL-6) and chemokines (CCL2, CCR5)
released either by the tumor cells or the surrounding stroma (137).

Within the TME, analysis of the myeloid infiltrate with PI3K-
g knockout or inhibition demonstrates an increase in M1/M2
TAM ratios (109, 116). Findings are similar with the dual PI3K-
d/g inhibitor duvelisib in PDX models of T-cell lymphoma, in
which duvelisib reduces the percentage of M2-phenotype
macrophages in the mouse spleens with a concomitant 50%
increase in M1-phenotype macrophages (138). In PI3K-gmurine
knockout models, intratumoral migration of TAMs and their
immunosuppressive activity (as measured by cytokine
production) is severely impaired in the knockout versus wild-
type mice, demonstrating the critical, non-redundant role PI3K-g
plays in myeloid cell activity (6, 115, 116). PI3K-g expression in
myeloid cells in murine pancreatic cancer models is associated
with transcription of genes associated with the M2-macrophage
phenotype in pancreatic cancer, including immunosuppressive
factors like Arg1, TGF-beta, and IL-10. Inhibiting PI3K-g
induced expression of these genes permits for CD8+ T-cell
activation and reduced cancer survival (116).

De Henau et al. demonstrated that combination anti-PD-1
and anti-CTLA-4 therapy had minimal tumor growth impact in
vivo in mouse models of 4T1 (breast) and B16-GMCSF
(melanoma), but that adding the PI3K-g selective inhibitor
eganelisib to the combination therapy resulted in 30% and 80%
complete remissions in each model, respectively (109). Dual
PI3K-d/g inhibition, in combination with PD-1 pathway
inhibition, resulted in MDSC inhibition and increased CD8+
T-cell infiltration in preclinical models of HNSCC and
osteosarcoma (108, 139). These findings are further supported
by the fact that selective PI3K-g inhibition had minimal impact
in a B16F10 melanoma model, presumably due to lower numbers
of baseline suppressive TAMCs, in contrast to results seen in the
GMCSF expressing B16-GMCSF model. Clinically, ICI
resistance has been well characterized to correlate with the
presence of TAMCs, as increased circulating levels of MDSCs
have been shown to correspond with poor response to anti-
CTLA-4 therapy in melanoma patients (140).
ADOPTIVE CELL TRANSFER THERAPIES

Overview of ACT
CART and TIL therapies use similar fundamental steps of
harvesting T-cells, ex vivo manufacturing, lymphodepletion
therapy, and infusion of final T-cell product. T-cells can be
harvested from peripheral blood via apheresis for CART and
TCR or isolated from tumor for TIL therapy. For CART therapy,
the T harvested cells are transduced or transfected with genetic
material encoding a new synthetic TCR (T-cell receptor), called a
chimeric antigen receptor (CAR), which is able to bind to a
August 2021 | Volume 12 | Article 718621

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chandrasekaran et al. PI3K Inhibition in T-Cell Immunotherapies
specific antigen expressed on the surface of tumor cells. In
contrast to ICIs, no ACT therapies are currently approved to
be used in the first-line treatment setting.

The majority of efforts in CART therapy have focused on
targeting CD19 in B-cell mediated hematologic malignancies.
Clinically, CART is reserved for patients who have disease
refractory to multiple prior lines of therapy with limited third-
line options and poor prognosis. In DLBCL, for example,
approximately 50% of patients with relapsed or refractory
disease will progress following stem cell transplant, and
median survival is ~6 months without any additional
treatment, like anti-CD19-CART (141).

Four commercially available FDA approved anti-CD19-
CART therapies currently exist. Kymriah (tisagenlecleucel) is
the only CART approved for two distinct indications: adults with
relapsed or refractory DLBCL, high-grade B cell lymphoma, and
DLBCL arising from follicular lymphoma (142) and young adults
up to age 25 years of age with relapsed or refractory B cell acute
lymphoblastic leukemia (B-ALL) (143). Axicabtagene lisoleucel
(Axi-cel; Yescarta) is also approved for adult patients with
relapsed or refractory large B cell lymphomas, including
DLBCL, primary mediastinal B cell lymphoma, high grade B
cell lymphoma, and DLBCL from transformed follicular
lymphoma based on results from the ZUMA-1 trial (144). The
similarly approved lisocabtagene maraleucel (liso-cell; Breyanzi)
is the only CART product in which CD4+ and CD8+ CART are
separately manufactured and administered as sequential
components in equal doses (145). Approved for the treatment
of adult patients with relapsed/refractory mantle cell lymphoma
(MCL) is brexucabtagene autoleucel (brex-cel; Tecartus; KTE-
X19), a CD19 CART construct similar to axi-cel (146). KTE-X19
differs in that manufacturing incorporates a process of T-cell
selection and lymphocyte enrichment to prevent contamination
of the CART product with circulating mantle cell lymphoma
cells that could contribute to disease relapse. The most recently
approved CART is idecabtagene vicleucel (ide-cell; Abecma),
which targets BCMA (B cell maturation antigen), a TNF family
cell surface receptor commonly expressed in multiple myeloma,
for the treatment of patients with multiple myeloma refractory to
or relapsed after at least three prior treatments (147, 148).
Another anti-BCMA CART therapy, JNJ-4528, has received
breakthrough designation by the FDA based on results from
the CARTITUDE-1 trial for patients with relapsed/refractory
multiple myeloma (149, 150).

In contrast to CART, in TCR therapy, the T-cells are
transduced with an engineered-HLA specific TCR that binds to
MHC on cancer cells, can target a wider variety of cancer
antigens, and is more sensitive than engineered CART (151).
Unlike CART, however, no TCR therapies are currently
approved for clinical use, but multiple agents are in clinical
trials with a particular interest in targeting the cancer-testis
family antigen NY-ESO-1 (New York esophageal squamous
cell carcinoma 1). The clinical development of TCR therapies,
including common indications and antigen targets, have been
excellently reviewed (152). For the purposes of this review, both
technologies face similar challenges with respect T-cell
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harvesting, ex vivo expansion, final product infusion, and
clinical toxicity, and in this context, we will primarily focus on
CART in the context of clinical challenges and limitations.

In contrast to T-cell harvesting from peripheral blood, TIL
therapy harnesses the power of a patient’s own tumor fighting T-
cells by isolating them from autologous tumor tissue (isolation
step), growing and activating those cells ex vivo (expansion step),
treatment with lymphodepleting chemotherapy prior to TIL
infusion (pre-conditioning step), infusing expanded TILs, and
supporting in vivo T-cell activation and proliferation post TIL
infusion with high-dose interleukin-2 therapy (HD-IL-2) (153).
While no FDA approved TIL therapies currently exist, promising
options are on the horizon (154). The history of research work
on TIL therapy over the past 30 years and recent advancements
in treating melanoma and other cancers with TIL has been
excellently reviewed previously (155–157). Initial studies were
performed in patients with metastatic melanoma in the age prior
to ICI when therapy options were limited (153), and since then
TIL therapy has been further refined and clinically explored in
other epithelial cancers, including ovarian, cervical,
gastrointestinal and renal cell (156, 158–161). TIL therapy
requires patients must have (1) a resectable tumor from which
(2) TILs can be isolated that must (3) exhibit tumor-specific
reactivity. Ex vivo TIL expansion is a resource intensive process
that traditionally takes 5-8 weeks (162).

ACT Product Limitations
All ACT therapies require engaging the antigen receptors to
promote ex vivo expansion to produce enough manufactured
product and in vivo expansion and persistence to generate and
maintain therapeutic response. Many pitfalls to the
manufacturing process exist, including the challenges of
sustained antigen stimulation that promotes T-cell
differentiation, exhaustion, and eventually senescence (65, 163).
Cancer and its inherent chronic inflammatory state can further
impair T-cell mitochondrial function and metabolic fitness,
rendering ACT less effective (67). Current strategies designed
to promote formation of less differentiated cells and improve
metabolic and cytotoxic capacity involve synergistically
combining ACT with other treatments, like anti-PD-1 therapy
and anti-OX40 antibody therapy, or directly modifying CART to
express costimulatory receptors (CD27), stimulatory cytokines,
or ICIs (“Armored CAR”) (164). Adding additional agents to the
ex vivo T-cell expansion process to improve T-cell selection and
expansion are also under consideration, including Bruton’s
tyrosine kinase (BTK) inhibitors and homeostatic cytokines
like IL-7, IL-15, and IL-21 to promote the memory stem cell
phenotype (165, 166).

Both the T-cell intrinsic properties of the ACT product and
extrinsic factors related to the patient clinical history and tumor
microenvironment (TME) may promote or limit the clinical
efficacy of ACT (Figure 4). Intrinsic characteristics pertain to
either the CART construct or the phenotypes of T-cell subsets in
the ACT product, while extrinsic characteristics relate to cancer
biology or prior therapy induced negative effects on T-cells. The
impact of these factors directly augment or inhibit the success of
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the manufacturing process and long-term efficacy of the
transferred cells.

Intrinsic Characteristics That Limit ACT Success
Co-Stimulatory Domains
Functional and phenotypic differences between the
manufactured products are a consequence of heterogeneity
between CART constructs, patient demographics, and the
manufacturing process. These factors, taken together with the
heterogeneity of patients across difference clinical trial designs,
make direct comparisons of the efficacy of competitor products
and trial outcomes challenging. All FDA-approved therapies are
second generation CARTs and contain both a TCR stimulatory
domain (from the T-cell surface glyco-protein CD3 z-chain
(CD3z) and a co-stimulatory domain (167). Co-stimulatory
domains of currently approved CART are either CD28 or
41BB (CD137). Axicabtagene ciloleucel and Brexucabtagene
autoleucel are CD28-based, while tisagenlecleucel (CD19),
lisocabtagene maraleucel (CD19), and idecabtagene vicleucel
(BCMA) utilize 41BB. Data comparing the effect of these co-
stimulatory domains, while predominantly preclinical or from
small-scale clinical investigations, suggest that the type of co-
stimulatory molecule expressed may contribute to differences in
expansion kinetics, persistence, and efficacy amongst approved
CART products (168–171).

41BB co-stimulation appears to induce growth of CD8+ Tcm
cells with increased respiratory capacity, fatty acid oxidation, and
mitochondrial biogenesis, while CD28 co-stimulation induces
Tem with augmented glycolytic activity (171). The reason for
these differences appears to lie within the distinct signaling
pathways each co-stimulatory domain activates (172). In pre-
clinical models, 41BB-CD19-CART demonstrated increased
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gene transcription of transcription factors associated with
memory function (KLF6, JUN, JUNB), while similar CD28-
based CART showed increased surface markers of exhaustion
(TIM-3, LAG-3, CTLA-4). These differences in gene expression
and enrichment pathways suggest 41BB signaling may prevent
T-cell exhaustion, improving the persistence of T-cells in
vivo following treatment of leukemic mice. That said, a
limitation of 41BB-CART is the inability to rapidly proliferate
to control tumor burden (173). In contrast, CD28-CART
proliferate more rapidly than 41BB-CART but fail to persist
long-term. Taken together, the use of each co-stimulatory
molecule in the CART construct contributes distinct beneficial
properties, with CD28-CART possessing a greater proportion of
Tem cells capable of eliciting a rapid short-term effector memory
response and 41BB-CART having more Tcm cells that induce
long-term effector T-cell (Te) function with increased persistence
(167, 173). Not surprisingly, development of third generation
CART constructs that encode both CD28 and 41BB is
underway (174).

Naïve and CM T-Cell Phenotype
T-cell differentiation has broad implications on proliferative
capacity, effector function, and metabolic reprogramming. The
intrinsic phenotypic differences, existing either pre- or post-
manufacturing, thereby significantly influence quality of the
manufactured product and subsequent therapeutic success.

Recent work by Fraietta et al. in a study of 41 patients with
relapsed and refractory CLL having received anti-CD19-CART
retrospectively associated complete remissions following CART
therapy with an increased frequency of a class of memory-like
CD8+CD27+CD45RO- T-cells in the leukapheresis sample prior
to CART manufacture based on cluster analysis (68). Similarly,
FIGURE 4 | Addressing Challenges Associated with Intrinsic and Extrinsic Product Characteristics in ACT. Challenges with ACT pertain to intrinsic and extrinsic
characteristics that limit success of the manufactured product. Intrinsic characteristics are T cell specific and extrinsic include cancer-induced pressures or prior
therapy effects. Measured outcomes can be considered as clinical or surrogate outcomes.
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complete remissions following CART therapy were more likely
in patients receiving products containing reduced frequencies of
senescent CD8+PD-1+ CART cells (20% vs 50% or higher in PR/
non-responders) and increased frequencies of Tcm-like CD8
+CD27+PD-1- CART cells. The improved disease remission rate
seen with the CD27+ memory like T-cells is anticipated to have a
direct effect on in vivo expansion and subsequently long-term
CART persistence. Clinical trial data with axi-cel (axicabtagene
ciloleucel) demonstrated that higher CART levels in peripheral
blood in the first 4 weeks following treatment were associated
with increased treatment response and that detection of CART in
the peripheral blood up to 2 years correlated with long-term
ORRs (objective response rates) (144). Conversely, we have
reported that oligoclonal expansion of CD27/CD28 double-
negative T-cells in response to pancytopenic aplasia, led to
rapid disease relapse in a patient following CART therapy (175).

Taken together, optimization of CAR constructs and a greater
understanding of favorable CART T-cell phenotypes on intrinsic
function are areas for further research. Unfortunately, standard
methods for CART manufacturing at this time do not
automatically enrich the product for favorable T-cell
phenotypes and inadvertently may also promote antigen-
driven terminal differentiation (41, 176–178).

Tumor Immunogenicity and T-cell Reactivity
TIL products rely on the intra-tumoral presence and isolation of
tumor antigen specific T-cells. In less immunogenic malignancies or
malignancies that lack high acquired/somatic mutational load,
expanding tumor reactive T-cells has been challenging. In recent
years, this process has benefited from newer high-throughput
genetic sequencing technologies that can identify tumor-specific
mutations and neoantigens that can be targeted by TILs. Advances
in whole exome sequencing have enabled investigators to selectively
isolate and expand tumor and peripheral blood T-cells reactive
against those tumor epitopes for TIL therapy (179). Such
advancements allow researchers to identify patient specific,
targetable, and somatic mutations in epithelial cancers like breast
(BC), esophageal, and ovarian cancers and employ them in TIL
therapy (180). A recent study of a patient with chemo-refractory
metastatic HR+ (Hormone Receptor) BC with a complete response
following treatment with autologous TILs demonstrated the infused
product was reactive against mutant versions of 4 different proteins
(SLC3A2, KIAA0368, CADPS2, CTSB) (181). Other approaches
include selecting TILs from the expanded product that demonstrate
a specific phenotype, such as with LN-145-S1, a PD-1 selected TIL
therapy under investigation in head and neck cancers
(Clinicaltrials.gov Identifier: NCT03645928) (32).

Extrinsic Characteristics That Limit ACT Success
Malignancy-Driven T-Cell Terminal Differentiation
Patients with hematologic malignancies, especially those having
had multiple lines of cytotoxic chemotherapy, have more
senescent T-cells (67, 68) and fewer of the memory-like CD8+
cells that are associated with durable remissions after CART
therapy. The level of cancer induced T-cell senescence also varies
by cancer-type, especially among chronic versus acute CD19+ B
cell malignancies. In CLL, there is a T-cell-intrinsic disadvantage
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that exists prior to initiating CART manufacturing that is likely
related to CLL-induced immune dysfunction (67, 68). These T-
cell intrinsic defects may potentially explain the finding that
meta-analysis of clinical trials shows lower rates of CD19-CART-
mediated remissions in CLL compared to other hematologic
malignancies (2, 182).

Tumor-Driven CAR Target Antigen Loss
Disease relapse after CD19-CART therapy can be antigen positive
(CD19+) or antigen negative (CD19-). 10-20% of patients with
CD19+ malignancies can develop native-antigen negative disease
(CD19 mutation or down regulation) that is challenging to treat or
re-treat with CD19 CART (183). Approaches to overcome antigen
loss include designing CAR constructs that target multiple antigens,
such as CD19 and CD22 for ALL (Acute Lymphoblastic Leukemia)
(NCT03241940 and NCT03289455), ALL and diffuse large B cell
lymphoma (DLBCL) (NCT03233854), ALL and non-Hodgkin
lymphoma (NHL) (NCT03330691 and NCT03448393), and NHL
and CLL (NCT03019055). With dual-recognition, CARTs can
engage either antigen and tumor cells must lose expression of
both antigens concomitantly for escape.

Clinically, disease relapse due to antigen loss or lack of
antigen presence is less common than antigen positive relapse,
which more often is related to lack of CART persistence, low
CART potency, or B cell aplasia (183). In the Phase II JULIET
trial with tisagenlecleucel in patients with DLBCL, no differences
in response between groups stratified by tumor expression of
CD19 were seen (142). With axi-cel, further analysis of CD19
expression at the time of progression showed that only 3 (27%)
out of 11 patients with CD19+ baseline disease had CD19-
disease at progression (144).

The sensitivity of methods used to assess epitope presence also
matters. In the axi-cel trial, 8 patients with assay-tested CD19-
disease were included in the trial, and response rates in these 8
patients were similar to trial participants with assay-confirmed
CD19+ disease. While not powered to specifically examine this,
the positive responses to anti-CD19 CART even with epitope
negative disease suggests that current antigen detection assays
may not entirely or accurately assess target antigen presence.

Prior Systemic Therapy
Most FDA approved indications for CART include patients with
relapsed or refractory aggressive B cell lymphomas, and therapy for
such patients often involve high dose chemotherapy with stem cell
transplantation. An unintended consequence of cytotoxic
chemotherapy is the depletion of Tn, Tscm, and Tcm subsets that
possess the greatest expansion potential and anti-cancer activity
(184, 185). DLBCL patients with a history of extensive prior
chemotherapy have fewer naïve and minimally differentiated T-
cells, including increased populations of CD27 and CD28 double-
negative senescent cells, when compared to healthy controls and
newly diagnosed DLBCL patients (69).

Lymphodepletion with chemotherapy prior to ACT infusion
also impacts clinical efficacy. In patients with NHL undergoing
CD19 CART, pa t ient s who rece ived combina t ion
cyclophosphamide with fludarabine versus cyclophosphamide
alone had increased CART expansion, persistence, and objective
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response rates , especial ly CRs (50% vs 8%) (186).
Lymphodepletion has broad benefits, including killing of
immunosuppressive regulatory T-cells (Tregs) and myeloid
derived suppressor cells (MDSCs), elimination of T-cells with
cytokine receptors that function as homeostatic cytokine sinks
resulting in increased levels of cytokines like IL-7, IL-15, and IL-
21 necessary for in vivo ACT expansion (187), and direct
modulation of tumor IDO (indoleamine 2,3-dioxygenase)
(188), all of which together beneficially support T-cell
persistence and cytotoxic activity (189). In preclinical models,
TBI (Total Body Irradiation) has been shown to increase
microbial Toll-Like Receptors (TLRs) that activate antigen
presenting cells (190). The impact of prior systemic therapies
on CART success suggests there is potential for treatment with
additional immunomodulatory therapies that favorably alter in
vivo frequencies of Tn and Tcm cells prior to T-cell isolation or
suppress Tregs and other immunosuppressive cell populations
and alter circulating cytokine levels prior to CART infusion.

Measured Outcomes With ACT
Clinical Outcomes and Toxicities
CART Therapy Outcomes
Clinical outcomes with CD19 CART vary based on the B-cell
malignancy histology, patient demographics, and intrinsic
features of the manufactured product, including co-stimulatory
domains engaged and CD4/CD8 T-cell ratios. Meta-analysis of
42 trials of anti-CD19 CAR T-cells in various B cell hematologic
malignancies showed higher complete response (CR) rates of
77% in acute lymphoblastic leukemia patients (ALL) versus 25%
in chronic lymphocytic leukemia (CLL) and 54% in non-
Hodgkin lymphoma (NHL) (2). Across all four commercially
available CD19 CART therapy approval trials, except for B-cell
ALL, the primary end points were ORR (CR or PR (partial
response)), with additional metrics of time to response, duration
of response (DOR), relapse free survival (RFS), overall survival,
and CART kinetics also investigated. Clinical response rates (CR
and PR) from pertinent clinical trials of the above CART
therapies are reviewed in detail in Table 1.
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Taking these findings together, CART response rates in high
grade B-cell lymphomas are generally >50% regardless of the
therapy given. Of note, the median time to clinical response
appears to vary according to clinical trial-specified assessments
(1 vs 3 months), and in some cases, delayed CRs have been
observed. In Zuma-1, the first tumor assessment was at 1-month,
which corresponded with the median time to response, however
23 patients (11 of 35 with a partial response and 12 of 25 with
stable disease) developed CRs in the absence of additional
therapies up to 15 months after CART. The heterogeneity in
patient populations and prior therapy received between trials,
variability in observed CR and PR rates with similarly designed
CART products, and observation of delayed ORRs beyond pre-
determined clinical timepoints suggest we still have much learn
about how we assess clinical outcomes with CART.

CART Therapy Toxicity
Toxicity following CART infusion is common, with the most
worrisome being CRS (cytokine release syndrome) and
neurotoxicity (2). In CRS, infusion of cytotoxic T-cells leads to
a rampant release of cytokines like IFN-g, GM-CSF, TNF, IL-10,
and IL-6, triggering an inflammatory response characterized by
tachycardia, risk for acute respiratory distress syndrome (ARDS)
acute hypoxic respiratory failure, and multiorgan failure (191).
CRS is treated by administering the IL-6 inhibitor tocilizumab or
steroids, both of which can reduce the morbidity and mortality
associated with CRS. Tocilizumab does not appear to suppress
the cytotoxic activity of the infused T-cells, and is generally
preferred to steroids as initial therapy (192). Neurotoxicity from
CART is biologically less well understood, but symptomatically
recognizable. Neurotoxicity can occur with CRS, after CRS, or in
delayed form multiple weeks after infusion, has been observed
occurring in all grades as high as 64% (axi-cel). Across the
aforementioned approval trials, Grade 3 & 4 CRS rates were
highest with tisagenlecleucel (DLBCL: 22% and ALL: 46%) and
lower for axi-cel (13%), liso-cel (2%), KTE-X19 (15%), and ide-
cel (5%). The most common other Grade 3 or higher adverse
event with CART is cytopenia, with neutropenic predominance.
In the KTE-X19 and ide-cel trials, more than 90% of patients
TABLE 1 | Clinical Outcomes from CART FDA Approval Trials.

CART Trial CART Therapy Phase Indication Minimum # of Prior Therapies ORR (CR/PR)

JULIET Tisagenlecleucel Phase II R/R DLBCL post or ineligible for ASCT 2 52%
(40%/12%)

ELIANA* Tisagenlecleucel Phase II R/R B-ALL (<25 yo) 1 81%*
(-/-)

ZUMA-1 Axi-cel Phase II R/R DLBCL, PMBL, or TFL 2 82%
(54%/28%)

Transcend NHL 001 Liso-cel Phase I R/R DLBCL, FL, PMBL 2 73%
(53%/20%)

ZUMA-2 KTE-X19 Phase II R/R MCL 3 85%
(59%/26%)

KarMMA Ide-Cel Phase II R/R Multiple Myeloma 3 73%
(33%/40%)
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ORR (objective response rate), CR (complete response rate), PR (partial response rate), R/R (relapsed/refractory), ASCT (autologous stem cell transplant), PMBL (Primary Mediastinal B cell
lymphoma), FL (Follicular Lymphoma), TFL (transformed Follicular Lymphoma), MCL (Mantle Cell Lymphoma).
Currently approved CART therapies by trial name, indication, and clinical response rates.
*Prior therapy could include autologous stem cell transplant, ORR, Overall remission rate.
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experienced Grade 3 or higher cytopenias. Direct comparisons
between individual CART product toxicities are challenging due
to differences in the grading criteria used between trials.

Current TIL Therapy Outcomes
TIL therapy has shown promise as an effective cancer therapy.
Results from 93 patients with metastatic melanoma receiving
lymphodepletion and TIL infusion demonstrated an ORR of
>50% with 22% experiencing (n=20) complete tumor regression.
At 3 years, 19/20 were still in complete response (193). In
comparison, single agent HD-IL-2 therapy, which is FDA
approved in this therapy refractory setting, has a 5-10% ORR
(194). In a smaller study of 9 patients with recurrent metastatic
cervical cancer, 3 patients had an ORR with 2/3 being CRs (159).
Studies in ovarian cancer, kidney, gastrointestinal, and head and
neck cancers have also been attempted, with mixed results (156,
158, 195). A critical challenge to assessing the clinical value of
these data in today’s clinical context is that many past studies
with TIL therapy occurred prior to the development of ICI
therapies like anti-PD-1/PD-L1 and anti-CTLA-4.

Recent advancements in commercial TIL production have
improved upon the initial limitations of TIL therapy, and recent
clinical trial data strongly suggests this modality will become part
of the clinical paradigm as an option after current standard of
care in the near future. LN-144 (lifileucel) is a commercially
produced TIL therapy that has a TIL manufacturing time of 22
days (Gen-2 TIL) and has demonstrated clinical benefit in
cancers like melanoma, cervical cancer, and head and neck
cancers. In a Phase 2 clinical trial (NCT02360579), LN-144
demonstrated a 38% (n=18) ORR (1 CR, 17 PR) in 47
metastatic melanoma patients previously treated with anti-
PD-1 antibody and/or BRAF inhibitor (DOR 1.3-14.0 months)
(154). Similar results were seen in 13 recurrent metastatic
squamous cell carcinomas of the head and neck cancer
patients (31% ORR) (NCT03083873) (196) and in 27
recurrent, metastatic or persistent cervical carcinoma patients
(44% ORR, 11% CR, 33% PR) treated with lifiluecel LN-145 TIL
therapy (NCT03108495) (197). LN-145 trials are ongoing in
patients with metastatic triple negative BC (NCT04111510) and
other bone and soft tissue sarcomas (NCT03449108) (32).

TIL Toxicity
TIL therapy toxicity lacks the CRS and neurotoxicity seen with
CAR-T therapy, is most often related to the consequences of the
Frontiers in Immunology | www.frontiersin.org 12
pre-conditioning non-myeloablative therapy or post-infusion
HD-IL-2 therapy, and is generally short lived (<2 weeks).

In trials with commercially produced TILs (NCT02360579,
cohort 2, n=47), the most frequently reported toxicities of any
grade (>50% of patients) were thrombocytopenia, chills,
neutropenia, febrile neutropenia, anemia, and pyrexia.
Approximately 95% of patients reported Grade 3 & 4 toxicities,
with the most common being thrombocytopenia (81%),
neutropenia (53%), febrile neutropenia (53%), anemia (47%),
and leukopenia (43%) (154). Similar results were seen in cervical
cancer (NCT03108495) (n=27), with Grade 3 & 4 toxicities
observed in 96% of patients, the most frequent being anemia
(56%), thrombocytopenia (44%), neutropenia (30%) and febrile
neutropenia (30%) (197). Myeloablative regimens, typically
combining chemotherapy with TBI, may improve ORRs and
CRs, albeit with increased clinical toxicity. NCT01319565 is a
clinical trial evaluating the addition of TBI to pre-conditioning
regimens prior to TIL therapy (32).

Surrogate Outcomes
While there is much interest in developing surrogate endpoints
to determine ACT success, no standardized metrics currently
exist. However, surrogate outcomes like manufacturing success
and ACT cell product persistence in vivo may become valuable
metrics in future clinical trials.

Manufactured Product Quality
Failure to manufacture or complications while awaiting CART
therapy are measurable outcomes that indirectly affect planned
CART therapy for patients with aggressive disease. While most
patients that undergo leukapheresis are able to receive CART
therapy, manufacturing failure remains a limitation in the
success of this novel therapy. Reasons contributing to
manufacturing failure include the collection of insufficient
numbers of T-cells from pre-treated patients or contamination
of the apheresis product with granulocytes and monocytes (198).
Other quality control issues related to post-manufacturing
viability, product purity, or product potency, as determined by
quantitative or qualitative cytotoxic or cytokine release assays,
may also render the final product unsuitable for infusion (198).
Early non-commercia l CART products had higher
manufacturing failure rates from 2% as high as 14%. In the
post-marketing-approval use of CART, rates of manufacturing
failure have continually decreased (Table 2).
TABLE 2 | Clinical Experience With CART Manufacturing.

CART Therapy Number Enrolled Manufacturing Failure % (#) Manufactured & Not Received % (#) Total Not Received % (#)

Tisagenlecleucel 165 7% (12) 23% (38) 30% (50)
Tisagenlecleucel (B-ALL) 92 8% (7) 11% (10) 18% (17)
Axi-cel 111 1% (1) 8% (9) 9% (10)
Liso-cel 344 <1% (2)* 14% (48) 15% (50)
KTE-X19 74 4% (3) 4% (3) 8% (3)
Ide-Cel 140 <1% (1) 8% (11) 9% (12)
August 2021 |
Rates for failure to receive therapy due to progression of disease or other complications from time of pheresis to CART infusion are shown. Total failure to receive therapy rates range from
8% to 30%. (*8% (25/344) received a non-conforming CART product not meeting criteria for liso-cel).
Manufacturing failure rates in clinical trials for FDA approved therapies range from <1% to ~8%*.
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T-Cell Therapy Persistence and Pharmacometrics
Long-term CART persistence correlates with response rates. In the
Zuma-1 Phase II trial, CART cells peaked in the blood within 14
days post infusion and were detectable up to 180 days for most
patients. At 24 months, 3 patients with CRs still had detectable
peripheral blood CART transgene levels (144). Similarly, with
tisagenlecleucel, CAR transgene levels were measurable in the
peripheral blood up to 2 years in patients with durable responses
(142). Kinetic studies with BCMACART showed 29 of 49 patients
(59%) had cells present at 6 months and 4 of 11 patients (36%) at
12 months post infusion (148). Delayed CRs, especially those
occurring 3 months or more after therapy infusion, raise
important questions about CART pharmacometrics and time to
optimal response. In Zuma-2, the median time to CR was 3.0
months but ranged from 0.9 up to 9.3 months (146). Even more
impressive, delayed CRs reported in ZUMA-1 were seen up to 15
months in the absence of additional therapies (144).

Multiple strategies to improve CART persistence have been
considered. Controlling the ratio of CD4 and CD8 T-cells in the
infused product and using lymphodepleting fludarabine
chemotherapy prior to infusion are some promising methods
(199, 200). Additional strategies being considered include
building newer generation CARs with multiple costimulatory
domains in addition to CD28 or 41BB, like ICOS, or
modifications in CD28 amino acid residues (201, 202).
Reduction in target CAR antigen levels, either in direct response
to CART therapy or through cancer-mediated downregulation
results in loss of CAR stimulation and CART persistence.
Strategies involving maintenance therapy that bolsters target
antigen levels have demonstrated promise in preclinical
models (203).

Manufacturing Time
Manufacturing time indirectly affects CART efficacy. Patients
awaiting CART therapy have aggressive disease and are at high
risk of complications by cancer, cancer progression, or other co-
morbidities. Adverse events while awaiting CART inevitably
renders a portion of patients ineligible to receive the
manufactured product (Table 2). Typical manufacturing times
range from 2-4 weeks, with the median times from leukapheresis
to product delivery for axi-cel and KTE-X19 reported as 17 and
16 days, respectively (144, 146). For JULIET, 38 (23%) of 165
enrolled patients discontinued study participation for reasons
unrelated to manufacturing, of which 34 of 38 were related to
disease progression (142). In the tisagenlecleucel ALL trial, ~11%
(10/92) of patients died prior to receiving CART due to disease
progression (n=4), complications from sepsis, respiratory failure
and fungemia (n=3), and other complications (n=3) (143). In the
ZUMA-1 axi-cel trial, 8% (9/111) enrolled patients did not
receive CART due to progressive disease or serious adverse
reactions following leukapheresis (144). 14% (48/344) of the
enrolled patients in the liso-cell trial had lymphoma
complications or died before receiving CART, even with
allowance for bridging therapy between leukapheresis and
CART infusion (145). Similarly, 4% (3/74) of patients for
whom KTE-X19 CART were successfully manufactured did
not receive therapy (146), and ~8% (11/140) did not receive
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the manufactured ide-cel product (148). Combining the
manufacturing failure and pre-infusion drop-off rates means
~9-30% of patients in CART clinical trials fail to receive the
manufactured product (Table 1). Comprehensive data showing
the real-world success of manufacturing commercial CART
products in patients treated outside of a clinical trial is still
pending, but the challenges of patient selection outside of the
clinical trial setting, increasing adoption of commercial CART
therapies at more cancer treatment centers, and additional
challenges related to increased production and demand raises
concerns whether or not these rates will increase.

TIL therapies face similar challenges in efficient
manufacturing. Using the selected TIL manufacturing protocol
with the traditional pre-REP, selection, and REP process typically
takes 5-8 weeks for production, and the final expansion products
are given immediately so as to avoid the risk of product loss due
to cryopreservation (162). Combining the inability to grow TILs
in ~20-25% of patients with the risk of disease progression
during the long expansion times, drop-out rates in clinical
trials initially ranged from 25-70% (156, 204–206). Use of a
newer expansion method called the young TIL protocol has
reduced manufacturing times by up to 3 weeks, but left the issue
of concern with cryopreservation, limiting the ability to
streamline the process with centralized expansion and direct
distribution to clinical sites. Newer Gen-2 and Gen-3 versions of
the commercially produced lifileucel LN-144/LN-145 TIL
therapy seek to address these limitations. The Gen-1 TIL
manufacturing time, which included phenotype selection, was
38 days in duration, and yielded a fresh, hypothermic product.
The Gen-2 TIL process omits TIL selection and allows for
production of a final, shippable, cryopreserved product within
22 days. Newer Gen-3 versions of LN-145 now seek to reduce the
manufacturing time to just 16 days (207).

Improving ACT Therapy With PI3K Inhibitors
Taking into consideration the signaling cascade linking the CAR
and TCR with PI3K signaling, the role of PI3K on T-cell
differentiation and metabolic reprogramming, and the standard
methods of expanding CARTs and TILs ex vivo using anti-CD3/
CD28 stimulation, the evidence for utilizing PI3K-d and -g
inhibition as a means to improve the ACT manufacturing
process is compelling.

We identify five points of intervention within the ACT therapy
manufacturing process wherein strategic changes can be made to
modify intrinsic and extrinsic T-cell product characteristics and
improve clinical and surrogate outcomes, in particular those related
to prior therapy and cancer mediated T-cell differentiation, CD4/
CD8 expansion ratios, Treg activity, T-cell exhaustion, and post
treatment toxicity (Figure 5). These points of intervention include:
1) In vivo treatment with a PI3K inhibitor (PI3Ki) therapy prior to
leukapheresis or T-cell isolation, 2) Ex vivo culture conditions, 3)
Lymphodepleting therapy, 4)Maintenance therapy, and 5) Toxicity
prevention strategies. We discuss the exciting current preclinical
and clinical data supporting the role of PI3K-d and -g inhibition in
each of these situations while giving consideration to other non-
PI3K mediated strategies currently being studied.
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In Vivo PI3Ki Therapy Prior to Leukapheresis or T-Cell
Isolation
The potential benefits to in vivo PI3K therapy prior to
leukapheresis or T-cell isolation may have direct impacts on
having a more favorable baseline T-cell phenotype for CART or
increased T-cell yield from tumor for TIL therapy.

Altering the Pre-Leukapheresis T-Cell Phenotype
As previously discussed, the effects of prior systemic therapy and
malignancy-driven T-cell terminal differentiation together reduce
frequencies of memory and naïve cells in the leukaphereses T-cell
product, thus reducing expansion capability and subsequent
manufactured product response rates. As previously discussed,
data from Fraietta et al. in CLL patients associated increased
frequencies of CD27+CD45RO-CD8+ memory-like T-cells prior
to CART manufacturing with improved disease remission rates
(68). This finding supports exploring strategies to enhancememory-
like T-cell expansion in vivo prior to pheresis with PI3Ki therapy.
Such studies are planned but have yet to be undertaken. The
majority of evidence to test this hypothesis derives from ex vivo
pre-clinical and clinical studies and will be further discussed in the
following sections.

Enhanced Intratumoral Infiltration
In TIL therapy, early studies noted high patient dropout rates of
~33% due to lack of T-cells in the tumor for successful expansion.
These studies employed 2-phase TIL expansion protocols
comprised of an initial pre-rapid expansion phase wherein tumor
tissues are cultured with IL-2 to support T-cell division and survival,
and a subsequent process of T-cell selection based on tumor
reactivity followed by 14-days of rapid expansion (REP). During
REP, T-cells were activated via anti-CD3 binding and co-cultured
with irradiated feeder cells (either autologous or allogeneic) (208,
209). Challenges with this process include poor expansion during
the pre-REP phase if no T-cells are present, lack of tumor-reactive
T-cells to undergo rapid expansion, and reduction in T-cell health
associated with rapid expansion and prolonged ex vivo culture
(210). Therefore, methods to augment T-cell infiltration into the
tumor microenvironment prior to T-cell isolation could therefore
have positive effects on improving TIL manufacturing success. As
Frontiers in Immunology | www.frontiersin.org 14
prior noted, in vivo preclinical studies have demonstrated that
PI3K-d inhibition and knockout favorably increase the CD8+
TIL/Treg ratios in mouse models of lung, breast, and colon
cancer (36). Not surprisingly, clinical studies are now underway
to further assess such findings and characterize a role for PI3K
inhibition prior to TIL isolation (NCT04142554 & NCT02646748).

Ex Vivo Culture Conditions
During ex vivo culture, preferential expansion of either the CD4+
cells vs CD8+ cells can skew CD4/CD8 ratios in infused product
and influences the CART product persistence and efficacy (211).
Concomitant stimulation of CD8+ TCRs and CARs promotes CD8
+ CART-cell exhaustion with increased PD-1 and LAG-3 surface
expression and decreased long-term persistence (212). Such
divergences in maturation may also persistent following infusion,
as T-cell phenotypes from the bone marrow of multiple myeloma
patients post anti-BMCA-CART demonstrated increased
frequencies of CD8+ Tscm and Tcm populations vs CD4+ Tcm
and Te populations, suggesting CD4 and CD8 cells may undergo
divergent courses of maturation in vivo following infusion (213).
One approach, explored to counter this effect is to engineer paired
CD4/CD8 CART products and infuse a final 1:1 therapy. Use of this
strategy in a non-commercial anti-CD-19 CART product in a phase
1 trial of children and young adults with relapsed or refractory B-
ALL reported a ~90% remission rate with 93% manufacturing
success (NCT02028455) (214). These results are not uniform,
however, as 25 patients in the Transcend NHL 00 Liso-cel trial
received non-conforming CART products that did not contain
equivalent CD4+/CD8+ product ratios (145). An alternate
thought is that the presence of CD4+ cells beneficially influence
and support CD8+ cell expansion. Ex vivo studies using pheresis
samples from healthy donors and lymphoma patients demonstrated
that initial CD4:CD8 ratios of at least 40%:60% more than doubled
CD8+ CART expansion yields. A final 1:1 product was most closely
achieved with starting ratios of 70%:30%, and this product also
demonstrated the greatest anti-tumor effect against Raji (human B-
lymphocyte cell line) lymphoma cells in an immunodeficient mouse
model (215).

Growing separate CD4 and CD8 cultures or manipulating pre-
expansion CD4/CD8 ratios introduces additional technical
FIGURE 5 | Improving ACT Therapy with PI3K-d and PI3K-g Inhibition. Five distinct timepoints during ACT manufacturing are identified wherein intervention with
PI3K-d/-g inhibitors may improve manufactured product quality and clinical outcomes.
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challenges. As an alternative, pharmacological manipulation of
culture conditions may offer a simpler approach. Several groups,
including our own, however, have shown that adding PI3K
inhibitors during CART manufacturing may be an alternative to
separately manufacturing CD4+ and CD8+ CART products. The
Paulos lab has shown that PI3K-d activity alters T-cell
differentiation in murine and human CD8+ adoptively transferred
T-cells using both murine transgenic TCR pmel-1 CD8+ T-cell
models and a human peripheral blood T-cell model wherein T-cells
are transduced with a tumor antigen specific CAR that recognizes
the mesothelin, 4-1BB, and CD3z signaling domains (mesoCAR)
(216). Inhibition of PI3K-d during ex vivomanufacturing for 7-days
with idelalisib resulted in a less differentiated T-cell products
possessing a Tcm phenotype (increased CD62L/CCR7, CD127,
and Tcf7) (216). These T-cell products also demonstrated
increased anti-tumor activity against melanoma and
mesothelioma in mice.

Phenotypically, altering PI3K signaling during ex vivo expansion
appears to reduce T-cell exhaustion. We and others have shown
PI3K inhibitors promote dose-responsive decreases in the
expression of immune checkpoint molecules and exhaustion
markers like TIM-3, LAG-3, and PD-1, thus restoring the Tcm
phenotype (42, 113, 217). In the mesoCAR-Tmodel, treatment with
eganelisib (PI3K-g) reduced surface TIM-3 expression (113).
Altering the exhaustion phenotype of the manufactured CART
product may have significant clinical implications, since in JULIET
11 patients with the highest percentages of LAG-3+ T-cells did not
respond to tisagenlecleucel or had early relapse (142). Similarly,
TILs from patients with HNSCC (head and neck squamous cell
cancers) refractory to anti-PD-1 therapy demonstrated an enhanced
exhaustion phenotype with TIM-3 upregulation that appears to be
mediated by PI3K-Akt pathway activity (218). Further supporting
these findings, the Paulos lab demonstrated that TIL cultures
expanded from patients with lung carcinoma demonstrated
reduced TIM-3 expression and higher CD62L when the cells were
subsequently cultured with idelalisib for 2 weeks (216).

Functionally, PI3Ki-expanded CART cells demonstrate
increased cytotoxicity, superior persistence and in vivo expansion,
and greater anti-leukemia activity against human CLL cells
engrafted in an immunodeficient NOG (NOD/Shi-scid/IL-2Rgnull)
mouse model (42). In these experiments, short-term exposure to
PI3Ki during CART cell manufacturing led to persistent alterations
in CART cell function, even weeks after in vitro exposure to
duvelisib, suggesting critical transcriptional and epigenetic changes
occur in PI3Ki-expanded T-cells. Such changes may have lasting
implications on cytotoxic function. In vivo mouse model studies
with idelalisib demonstrated increased mesoCART-cell persistence
up to 55 days post T-cell transfer, with the percentage of CD45+
peripheral blood lymphocytes almost 3-fold higher in the idelalisib
cultured group vs control cultures (216). Pmel-1 transgenic CD8+
T-cells expanded ex vivo with either idelalisib (PI3K-d) or eganelisib
(PI3K-g) showed enhanced in vivo tumor control against a B16F10
melanoma (median survival 70 days and ~60 days, respectively) vs
control CD8+ cultures (30 days) (113).

Mechanistically, as previously reviewed, TCR stimulation with
anti-CD3/CD28 beads during CART-cell manufacturing can induce
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PI3K/AKT signaling and T-cell terminal differentiation (68), similar
to how PI3K/mTOR signaling is differentially regulated during
antigen-driven expansion of CD4+ and CD8+ T-cells. Western
blot analysis of murine CD8+ T-cells transduced with a TCR against
the cancer-testis PLAC1 prior to in vivo infusion demonstrated that
the transduced cells expressed increased PI3K-g and phospo-AKT
(219). Furthermore, lymphocyte differentiation studies have shown
that daughter T-cells with increased PI3K/mTOR signaling
differentiate into an effector cells, while those with reduced PI3K/
mTOR signaling retain self-renewal capacity (220, 221). We also
believe that minimal negative effects seen on ex vivo T-cell
expansion in the presence of PI3K inhibition is mediated by
concomitant signaling through the MEK/ERK pathway. We have
previously shown that CART products cultured and expanded in
the presence of duvelisib simultaneously demonstrated reduced
phosphorylation of downstream PI3K pathway proteins with
increased MEK and ERK phosphorylation (42).

A plausible explanation for the increased cytotoxicity seen in
PI3Ki-expanded CART cells is secondary to downstream
increases in CD27 and CD28 expression, a feature of T-cells
noted to have increased in vivo persistence and cytotoxic activity
(222). It has been well characterized that rapid expansion of TILs
with IL-2 reduces T-cell surface CD27 and CD28 expression and
results in an increased fraction of terminally differentiated T-cells
in the final product (223, 224). In more recent years, cells
expanded via the young TIL method has mitigated the adverse
effects of rapid expansion, with young TIL products
demonstrating longer telomeres and higher expression of
CD27 and CD28 (210, 225). Pharmacologically achieving
similar results with PI3Ki, however, may be less technically
challenging. Already Dwyer et al. has shown that mesoCART
cultured with eganelisib demonstrate reduced T-cell
differentiation and increased CD27/CD28+ surface expression
(113). Inhibition of PI3K-d, either alone or simultaneously with
PI3K-g, also increased CD28 expression in these models.

Taken together, PI3K inhibition during ex vivo T-cell culture has
the ability to inhibit differentiation and exhaustion mechanisms
without affecting proliferation. Further supporting these preclinical
and clinical correlate studies is data from a recent phase I study of
bb21217, an anti-BCMA CART therapy based on ide-cel that adds
the PI3K inhibitor bb007 during ex vivo culture to enrich the drug
product for memory-like T-cells (226). Comparison of T-cell
populations from peripheral blood versus the manufactured drug
product showed bb21217 had increased enrichment for CD27
+/CCR7+ Tm cells, depletion of CD57+ senescent cells, increased
CD127 expression (a marker of persistent Tm formation), and
higher peak in vivo CART expansion.

As prior discussed, prolonged manufacturing time and
manufacturing failure remain as major clinical hurdles. While
data is lacking, early studies promising suggest the addition of
PI3Ki to ACT expansion cultures can shorten manufacturing
times or reduce the manufacturing failure rate.

Lymphodepleting Therapy
As previously discussed, lymphodepletion with chemotherapy prior
to CART infusion improves T-cell persistence and cytotoxic activity
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(186) by killing immunosuppressive Tregs and MDSCs, eliminating
homeostatic cytokine sinks (187), and modulating tumor IDO
(indoleamine 2,3-dioxygenase) (188). Interestingly, PI3K-d
inhibition with idelalisib in patients with CLL has been shown to
inhibit CD4+CD25+CD127- Treg proliferation and Treg-induced
suppression of CD4+ and CD8+ T-cells, suggesting pre-infusion
pharmacologic PI3Ki therapy may favorably augment the effects of
lymphodepletion (121). Multiple studies in TIL therapy have
already been performed to add additional therapy, like radiation,
to the to the pre-conditioning regimen (227–229), but none with
PI3K inhibitors.

Maintenance Therapy
Another consideration is to continue PI3Ki therapy following ACT
product infusion. One reason for this is to mitigate the ill effects of
rapid in vivo expansion. Similar to ex vivo anti-CD3/CD28
stimulation, rapid in vivo CART expansion induces increased
expression of the T-cell exhaustion marker PD-1. Adding anti-
PD-1/PD-L1 therapy after ACT is one approach being considered
to rescue T-cells from exhaustion, but responses from CART trials
have not been uniformly positive (230). Multiple clinical trials are
now studying post-TIL anti-CTLA-4 or anti-PD-1 therapies in
advanced or metastatic cutaneous melanoma, HNSCC, NSCLC,
or cervical cancers (NCT02278887, NCT03645928, NCT03108495).
Post-TIL HD-IL-2 therapy, which is given to support TIL expansion
and persistence, may also unfavorably stimulate in vivo Treg
expansion. In one study, melanoma patients with the highest fold
expansions of these ICOS+ Treg-like cells following TIL therapy
and HD-IL-2 were noted to have worse clinical outcomes than
patients with fewer ICOS+ Tregs (231). Taken together, post ACT
PI3Ki therapy, with or without checkpoint blockade, may favorably
modulate cytotoxic T-cell and suppress Treg expansion post ACT.

Toxicity Prevention
Reducing toxicities like CRS would also improve outcomes with
CART. While tocilizumab and steroids are useful treatments for
CRS, tocilizumab requires IV infusion and steroids can inhibit the
CART effect. There remains much need for safe and tolerable
therapies to use in the post-infusion period to reduce risk of CRS
without affecting CART efficacy. Recent preclinical evidence
suggests that in ex vivo CRS assays and in vivo murine models
of CD19 CART, the dual PI3K-d and -g inhibitor duvelisib,
antagonizes and reduces IL-6 secretion better than single agent
isoform selective PI3K-d and -g inhibitors without negatively
inhibiting CART function (232). More data from pre-clinical
humanized mouse models and from the clinical setting are
necessary to further validate and test these promising approaches.
CLINICAL TRANSLATION AND
FUTURE DIRECTIONS

Despite the recent success of T-cell immunotherapies, much room
for improvement remains. With ACT, the timing of cell
manufacturing, availability of normal lymphocytes and tumor
antigen for ACT manufacturing, and the complexity of the
manufacturing process must be intimately integrated with the
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clinical treatment timeline to achieve success. This poses unique
challenges, and we have highlighted herein five points in the ACT
manufacturing process where the addition of PI3K inhibitors might
result in improvement in manufactured product or the clinical
outcome of ACT. T-cell targeted immunotherapies face challenges
related to immune cell infiltration and T-cell activity in the TME.
Multiple therapeutic synergies pairing anti-PD/PD-L1 agents with
chemotherapy, radiation therapy, molecular targeted therapies like
HER-2 targeted agents and inhibitors of VEGF, CDK4/6, PARP,
HDAC, BRAF, MEK, and other checkpoint inhibitors like TIM-3
and LAG-3 (NCT04370704) have been considered in order to
overcome the well-characterized challenges of tumor immune
escape mechanisms (95, 233–236). Furthermore, targeting
metabolic pathways of cancer and related cells in the TME
contributing to nutrient and metabolic stress has become an area
of growing interest with multiple therapeutic targets under
consideration, including IDO, MCT1/MCT4, mitochondrial
complex I, and the mitochondrial tricarboxylic acid (TCA) cycle
(237–240).

Toxicities With PI3K Inhibitors
While the PI3K pathway is critical to cancer development and
regulates activity of multiple immune cell populations in the
TME, clinical development of pan-PI3K inhibitors for the
treatment of solid tumor malignancies in melanoma, breast,
lung, colorectal, and head and neck cancers has faced
challenges of inefficacy and clinical toxicity (16–23).

The toxicities of PI3K inhibitors must be considered during
clinical applications. Clinically, they can manifest with
autoimmune or autoinflammatory signatures, including liver
toxicity, hyperglycemia, rash, and colitis. Notably, these
symptoms overlap during treatment of both solid and
hematologic malignancies, vary by route of administration, and
appear to improve with isoform-selectivity (241, 242).
Furthermore, while the mechanisms of immunomodulation
governing these toxicities are still yet to be fully characterized,
many of them toxicities overlap with those seen with ICIs, which
must be further considered during synergy trials (78).

Isoform selectivity and drug formulation have a direct effect
on clinical side-effects and toxicities (241, 242). Hyperglycemia is
most commonly seen with PI3K-a inhibition (selective and pan-
inhibitors), due to therapy induced disruptions in insulin
signaling and glucose hemostasis leading to clinically evident
metabolic changes (243). Comparison of idelalisib (oral, PI3K-d)
with copanlisib (IV, PI3K-a/d) shows that Grade 3 diarrhea or
colitis is rarely seen with copanlisib, but common (>15%) with
idelalisib, likely due to the IV formulation (241). Furthermore,
severe colitis and pneumonitis risk is higher with PI3K-d and -g
inhibition (idelalisib, copanlisib, and duvelisib) (31, 242, 244).

Clinical trials have shown PI3K-d and -g inhibition are
associated with increased immune suppression and
opportunistic infection risk (111, 244). In DYNAMO, a Phase
II study of duvelisib in patients with refractory indolent non-
Hodgkin lymphoma, dual -d/-g inhibition led to frequent AEs of
any-grade of diarrhea (48.8%), nausea (29.5%), neutropenia
(28.7%), fatigue (27.9%), and cough (27.1%) (244). The most
frequent grade 3/4 AEs were neutropenia (24.8%), diarrhea
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(14.7%), anemia (14.7%), and thrombocytopenia (11.6%) and
similar rates of grade 3 neutropenia (27%) were observed in a
Phase I trial of the PI3K-d selective idelalisib, also in patients
with relapsed non-Hodgkin lymphoma (29).

The combination of a greater understanding of the redundant
and non-redundant functions of PI3K signaling in T-cells, the
systemic toxicities of targeting different isoforms, and the broad
availability of isoform selective agents, has initiated a new wave
of clinical testing, particularly with using PI3K-a inhibitors for
PIK3CA mutated cancers (245, 246), PI3K-b in cancers with
PTEN loss (247, 248), and PI3K-d and -g inhibitors as cancer
immunotherapies and T-cell immunomodulators.

Ongoing Clinical Investigations
Clinical evaluation of PI3K-d and -g inhibitors as
immunomodulators of T-cell activity, metabolism, and the
Frontiers in Immunology | www.frontiersin.org 17
TME is still in the early stages, but multiple efforts are
underway. A search of actively recruiting or pending trials in
ClinicalTrials.Gov related to “PI3K” and “Cancer” was
conducted. 177 studies were identified that were either
recruiting, not yet recruiting, or active/not recruiting.
Attention was given to trials incorporating inhibitors of PI3K-
d and -g with T-cell targeted immunotherapies. We excluded
trials for cancer specific mutations in PIK3CA, PIK3CB, AKT, or
PTEN and trials for inhibitors of PI3K-a and -b (alpelisib,
taselisib, serabelisib, HS-10352, GSK2636771), AKT
(ipatasertib, AZD5363), mTOR (everolimus, TAK-228), or dual
PI3K/mTOR (gedatolisib, samotolisib, HEC68498, paxalisib).

We identified 18 clinical trials combining copanlisib,
duvelisib, eganelisib, idelalisib, parsaclisib, SF1126, and TGR-
1202 with checkpoint inhibitors of PD-1 or PD-L1 in solid and
hematologic malignancies (Table 3). Particularly interesting are
TABLE 3 | Current clinical trials combining PI3K-d and -g inhibitors with T-cell targeted therapies.

Indication PI3K
Inhibitor

Synergy Drug PI3K
Isoform

Trial
Phase

NCT Number Immune
Cell

Biomarker

Solid or
Hematologic

HNSCC, NSCLC, CRC, HCC Copanlisib Nivolumab alpha and
delta

Phase 1 NCT03735628 No Solid

Unresectable or Metastatic MSS Solid Tumors Copanlisib Nivolumab alpha and
delta

Phase 1/2 NCT03711058 No Solid

Indolent Lymphoma Copanlisib Nivolumab +
Rituximab

alpha and
delta

Phase 1 NCT04431635 No Hematologic

R/R DLBCL and R/R PMBCL Copanlisib Nivolumab alpha and
delta

Phase 2 NCT03484819 Yes Hematologic

Richter’s Transformation or Transformed Indolent Non-
Hodgkin’s Lymphoma

Copanlisib Nivolumab alpha and
delta

Phase 1 NCT03884998 Yes Hematologic

Ann Arbor Stage III/IV Lymphoma, Metastatic/Recurrent
Malignant Solid Neoplasm

Copanlisib Ipilimumab +
Nivolumab

alpha and
delta

Phase 1 NCT03502733 No Both

PD-1 refractory unresectable melanoma Duvelisib Nivolumab delta and
gamma

Phase I/2 NCT04688658 Yes Solid

Stage IIB-IVB Mycosis Fungoides and Sezary Syndrome Duvelisib Nivolumab delta and
gamma

Phase 1 NCT04652960 Yes Hematologic

Richter Syndrome or Transformed Follicular Lymphoma Duvelisib Nivolumab delta and
gamma

Phase 1 NCT03892044 Yes Hematologic

Advanced Solid Tumors, NSCLC, Melanoma, HNSCC, TNBC,
Adrenocortical Carcinoma, Mesothelioma, High-circulating
MDSCs

Eganelisib
(IPI-549)

Nivolumab gamma Phase 1 NCT02637531 Yes Solid

ICI naïve, platinum refractory UCC Eganelisib
(IPI-549)

Nivolumab gamma Phase 2 NCT03980041 No Solid

Breast Cancer, RCC Eganelisib
(IPI-549)

Atezolizumab gamma Phase 2 NCT03961698 Yes Solid

NSCLC Idelalisib Pembrolizumab delta Phase 1/2 NCT03257722 Yes Solid
R/R CLL, R/R low-grade B-cell NHLs Idelalisib Pembrolizumab delta Phase 2 NCT02332980 Yes Hematologic
CRC, Endometrial Cancer, Melanoma, Head and Neck Cancer,
Lung Cancer, MMR-deficient Tumors, Breast Cancer, Pancreatic
Cancer, RCC, Solid Tumors, UC

Parsaclisib Pembrolizumab delta Phase 1 NCT02646748
(Group B)

Yes Solid

Unresectable or Metastatic Solid Tumors Parsaclisib Retifanlimab
(anti-PD-1)

delta Phase 1 NCT03589651 No Solid

Advanced HCC SF1126 Nivolumab alpha, beta,
delta, and
gamma*

Phase 1 NCT03059147 No Solid

CLL, B-cell NHL TGR-1202 Pembrolizumab delta Phase 1 NCT03283137 No Hematologic
August 2021 |
 Volume 12 |
NSCLC (Non-small Cell Lung Cancer); HNSCC (Head and Neck Squamous Cell Carcinoma; TNBC (Triple negative breast cancer); CLL (Chronic Lymphocytic Leukemia); CRC (Colorectal
Cancer); HCC (Hepatocellular Carcinoma), RCC (Renal Cell Carcinoma); UC (Urothelial Carcinoma), NHL (Non-Hodgkin’s Lymphoma), MSS (Microsatellite Stable), R/R (relapsed/
refractory); DLBCL (diffuse large B-cell lymphoma); PMBCL (primary mediastinal large B-cell lymphoma).
*Bromodomain-4 and PI3K inhibitor.
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trials incorporating expression of biomarker to clinically assess
immune cell changes following PI3K-d and -g inhibition. Of
note, 7 trials utilize PI3K-a or -a/-b targeting inhibitors. Of these
trials, 4 are in solid tumor indications, and in the absence testing
for mutations, amplifications or gene loss in PI3K or PTEN, the
primary motive for these is to investigate the -d and -g effects.

NCT04688658 is a phase I/II trial in melanoma studying
changes in immune cell function from tumor and peripheral
blood prior to and while on duvelisib therapy. MARIO-3
(Macrophage Reprogramming in Immuno-Oncology)
(NCT03961698) incorporates pre- and on-treatment tissue
biopsies to correlate the effects of eganelisib on PD-L1
expression in tumor-infiltrating immune cells. In hematologic
malignancies, NCT03484819 will characterize the effects of the
copanlisib and nivolumab combination regimen on tumor cells,
tumor microenvironment and the immune response in relapsed/
refractory DLBCL and Primary Mediastinal Large B-cell
Lymphoma. NCT03502733 will report changes in PD-1, PD-
L1, PD-L2, and immune cell profiles and markers of immune-
modulation in CLL and low-grade B cell NHL patients with
copanlisib and combination ICI.

Two trials (NCT02646748 and NCT03257722) are combining
the PI3K-d inhibitors parsaclisib and idelalisib, respectively, with
pembrolizumab to assess the effects on Tregs. In NCT02646748,
pre- and post- therapy changes in the total number of tumor
infiltrating lymphocytes and ratio of CD8+/FoxP3+ Tregs will be
measured. NCT03257722 will use Treg suppression (target of
80% suppression in 80% of patients) to calculate the optimal
idelalisib immunomodulatory dose. The latter trial design raises
an important consideration of incorporating meaningful
biomarker driven correlates into clinical trials to facilitate
identification of the optimal immunomodulatory dose versus
maximally tolerated dose.

Macrophage remodeling with PI3K-g inhibitors is also of
interest. NCT03795610 is a window of opportunity study in
HNSCC to determine whether 3 weeks of the PI3K-g inhibitor
eganelisib prior to surgery is sufficient to drive macrophage
phenotype switching in tumors. NCT02637531 is a multi-
Frontiers in Immunology | www.frontiersin.org 18
group study combining eganelisib with nivolumab, in which
one group is stratified by the presence of high-circulating
p e r i ph e r a l b l o od MDSCs . S im i l a r l y , Ma r i o - 2 75
(NCT03980041) evaluates eganelisib with nivolumab in
patients with advanced urothelial carcinoma and incorporates
MDSC levels as a part of its randomization process.

Taken together, our current knowledge combined with the
results of these trials and future studies has the potential to
drastically change how we re-purpose PI3K inhibitors, in
particular PI3K-d and -g inhibitors, as immunomodulatory
agents. While current focus heavily remains on T-cell
activation, differentiation, and anti-tumor activity persistence
and memory in developing immunotherapies, we anticipate
future investigations focusing on immune cell metabolism and
other immune cell suppressive functions in the TME will yield
biologically meaningful and clinically significant changes in the
field of immuno-oncology.
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11. Miller TW, Hennessy BT, González-Angulo AM, Fox EM, Mills GB, Chen
H, et al. Hyperactivation of Phosphatidylinositol-3 Kinase Promotes Escape
From Hormone Dependence in Estrogen Receptor–Positive Human Breast
Cancer. J Clin Invest (2010) 120:2406–13. doi: 10.1172/JCI41680
August 2021 | Volume 12 | Article 718621

https://doi.org/10.1200/JCO.18.02079
https://doi.org/10.1016/j.tmrv.2019.01.005
https://doi.org/10.1158/0008-5472.CAN-16-1839
https://doi.org/10.1146/annurev.immunol.22.012703.104721
https://doi.org/10.4049/jimmunol.173.4.2236
https://doi.org/10.1038/nature19834
https://doi.org/10.1158/2159-8290.CD-16-0716
https://doi.org/10.1158/2159-8290.CD-16-0716
https://doi.org/10.1038/nrd4204
https://doi.org/10.1038/nrd4204
https://doi.org/10.1038/s41580-018-0015-0
https://doi.org/10.1038/nrm3330
https://doi.org/10.1172/JCI41680
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chandrasekaran et al. PI3K Inhibition in T-Cell Immunotherapies
12. Abramson VG, Cooper Lloyd M, Ballinger T, Sanders ME, Du L, Lai D, et al.
Characterization of Breast Cancers With PI3K Mutations in an Academic
Practice Setting Using SNaPshot Profiling. Breast Cancer Res Treat (2014)
145:389–99. doi: 10.1007/s10549-014-2945-3

13. Marquard FE, Jücker M. PI3K/AKT/mTOR Signaling as a Molecular Target
in Head and Neck Cancer. Biochem Pharmacol (2020) 172:113729.
doi: 10.1016/j.bcp.2019.113729

14. Samuels Y. High Frequency of Mutations of the PIK3CA Gene in Human
Cancers. Science (2004) 304:554–4. doi: 10.1126/science.1096502
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