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Abstract

Background: Partially methylated domains are extended regions in the genome exhibiting a reduced average DNA
methylation level. They cover gene-poor and transcriptionally inactive regions and tend to be heterochromatic. We
present a comprehensive comparative analysis of partially methylated domains in human and mouse cells, to identify
structural and functional features associated with them.

Results: Partially methylated domains are present in up to 75% of the genome in human and mouse cells
irrespective of their tissue or cell origin. Each cell type has a distinct set of partially methylated domains, and genes
expressed in such domains show a strong cell type effect. The methylation level varies between cell types with a more
pronounced effect in differentiating and replicating cells. The lowest level of methylation is observed in highly
proliferating and immortal cancer cell lines. A decrease of DNA methylation within partially methylated domains tends
to be linked to an increase in heterochromatic histone marks and a decrease of gene expression. Characteristic
combinations of heterochromatic signatures in partially methylated domains are linked to domains of early and
middle S-phase and late S-G2 phases of DNA replication.

Conclusions: Partially methylated domains are prominent signatures of long-range epigenomic organization.
Integrative analysis identifies them as important general, lineage- and cell type-specific topological features. Changes
in partially methylated domains are hallmarks of cell differentiation, with decreased methylation levels and increased
heterochromatic marks being linked to enhanced cell proliferation. In combination with broad histone marks, partially
methylated domains demarcate distinct domains of late DNA replication.
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Background
DNA methylation is an epigenetic hallmark with an
important role in gene and genome regulation. Changes
in the genome-wide landscape of DNA methylation are
extensively studied in the context of small regulatory
regions like CpG islands [1], CpG shores [2], and proximal
and distal regulatory regions [3]. With the first genome-
wide bisulfite-based DNA methylation analyses, a new
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term, partially methylated domains (PMDs), was intro-
duced by Lister et al. [4] referring to long genomic regions
in the range of hundreds of kilo-basepairs (kb) character-
ized by highly disordered methylation levels. They were
initially discovered in the fibroblast cell line IMR90 but
cannot be observed in human embryonic stem cells H1.
It has been shown later that PMDs are enriched

with heterochromatic histone modifications such as
H3K27me3 and that they are gene-poor and less active
[5, 6] than other genomic regions. Several studies have
since reported PMDs in various cell types: medulloblas-
toma [6], adipocyte tissue [7], SH-SY5Y neuronal cells [8],
and human cancers [5, 9–11]. PMDs in cancer cells are
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linked to late replication and nuclear lamina-associated
regions [10]. The first non-cancer primary human tis-
sue type with PMDs has been reported in placenta [12]
and were defined using a hidden Markov model (HMM)
rather than applying a threshold of methylation level.
Recently, we, as part of the DEEP consortium http://www.
deutsches-epigenom-programm.de/, published the first
primary human cells, CD4+ T cells, with PMDs [13]. We
showed that progressive loss of DNA methylation cor-
relates with T cell memory differentiation and happens
predominantly in PMDs. Burger et al. [3] implemented
an HMM-based detection method called MethylSeekR
to define PMDs and separate them from highly methy-
lated domains (HMDs) and short (regulatory) regions
that come in two types (methylation below 50%): lowly
methylated regions (LMRs, CpG poor regions, less than
30 CpGs) and unmethylated regions (UMRs, mostly CpG
islands, more than 30 CpGs). LMRs and UMRs are rela-
tively short (a few hundred to a few thousand basepairs)
and correspond to distal and proximal regulatory ele-
ments, respectively [14]. Tools such as MethylSeekR are
very useful for exploring the methylome landscape on a
large scale and help to discriminate the large domains,
from the small regulatory regions.
In collaboration with our colleagues in the interna-

tional human epigenome consortium IHEC http://ihec-
epigenomes.org/, we contributed to generating a large
epigenome cohort for numerous primary cell types from
human and mouse. WGBS data serve as an invaluable
resource for studying PMDs in primary cells. PMDs rep-
resent a new aspect for studying the DNA methylation
landscape on a genome-wide level apart from the context
of regulatory regions that have been studied extensively
and pose the question whether DNA methylation has an
impact on the genome organization. At the same time, it
has become quite clear that cells in vitro behave differently
from primary cells, for instance regarding methylation
levels. Thus, it is important to compare the methylome
of primary cells and cell lines in order to validate in vitro
systems and afford an appropriate interpretation of the
data.
Here, we investigate the genome-wide organization

of PMDs across a comprehensive spectrum of available
WGBS data generated by IHEC members, DEEP http://
www.deutsches-epigenomprogramm.de/, Blueprint
www.blueprint-epigenome.eu, and Roadmap http://www.
roadmapepigenomics.org/, together with other public
data in order to gain insights into PMDs. In addition,
we integrated WGBS data with other epigenetic data,
ChIP-seq, RNA-seq, Hi-C and Repli-seq, in an attempt
to describe the interaction between DNA methylation
and chromatin formation in order to understand how
they impact cell division, differentiation, and the higher
order chromatin structure. Moreover, we propose a

new integrative approach to exploring and interpreting
methylome topologies using WGBS data, an approach
very much needed as the amount of such data is growing
rapidly.

Results
Partially methylated domains are cell type discriminators
We collected and surveyed 171 public human WGBS
datasets of different primary cell types (hepatocytes, T
cells, B cells, monocytes, macrophages, eosinophils, neu-
trophils, dentritic cells, natural killer cells, endothelial
cells, and thymocytes) and tissues (liver, intestine, spleen,
esophagus, stomach gastric, colon sigmoid, colonmucosa,
heart, and pancreas) for which we identified PMDs with
MethylSeekR (see Additional file 1 for the complete list
of samples). Figure 1 shows methylomes of different cell
types with the corresponding segmentation tracks. The
lengths of PMDs vary broadly, ranging from 100 kb up to
20 Mb (Additional file 2: Figure S1). PMDs cover a large
portion of the genome (50–75%). The average and individ-
ual levels of PMD methylation vary between different cell
types (boxplots in Fig. 2a). While PMD positions in the
genomes are highly conserved across cell types, in general,
only roughly 26% of the genome is annotated as com-
pletely shared PMDs across all cell types (Fig. 2b). Overall,
PMDs are enriched for the broad heterochromatic marks
H3K27me3 and H3K9me3 and depleted for the broad
euchromatic mark H3K36me3. The latter is also reflected
in the low appearance of annotated transcriptional units
within PMDs and an overall low average transcription
of genes located in PMDs (Fig. 1 and Additional file 2:
Figure S2).
To gain a deeper insight into the cell-specific and

genome-wide distribution of PMD methylation pro-
files, we generated and applied a modified ChromHMM
[15] approach, “ChromH3M,” as an abbreviation for
ChromHMMmeta segmentation (see details in the
“Methods” section and Additional file 2: Figure S3). In
brief, we bin the genome into 1 kb tiled windows, labeled
as 1 or 0 according to the presence/absence of PMDs for
each sample. This binarized signal is then processed with
ChromHMM to generate a 15-state model. The emission
probabilities are displayed after hierarchical clustering.
This approach generates PMD clusters discriminating cell
type origin and/or cell-related subgroups (Fig. 2a). Only
five out of 171 samples did not cluster together with
samples of similar origin. This approach is surprisingly
stable even across cells which differ strongly in their over-
all methylation level (shown as box plots in Fig. 2a).
We also used shorter LMR and UMR regions for such
a ChromH3M meta-segmentation and roughly obtained
the main subgroups in hierarchical clusters using 10,000
bootstraps and an “au” threshold of 97 (see Additional
file 2: Figure S4 and the “Methods” section for details).

http://www.deutsches-epigenom-programm.de/
http://www.deutsches-epigenom-programm.de/
http://ihec-epigenomes.org/
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Fig. 1 Genome-wide DNA methylation segmentation across different cell types. IGV snapshot showing DNA methylation profiles of different cell
types (from top to bottom: monocytes, macrophages, naive/central/effector/terminal memory T cells, naive/germinal center/class switched
memory B cells, plasma, GM12878, HepG2, HepaRG, and primary human hepatocytes) with the corresponding MethylSeekR segments: highly
methylated domains (red); HMDs, partially methylated domains (light pink); PMDs, low methylated regions (light blue); LMRs and unmethylated
regions (blue); UMRs (only one track per cell type shown for simplicity). Below the block of methylation data, three broad histone marks and
RNA-seq profiles of hepatocytes are displayed. PMDs can be seen as long regions with highly disordered methylation levels and tend to be largely
overlapping between the different cell types. However, there are cell type-specific PMDs (the highlighted region shows a hepatocyte-specific PMD).
PMDs are gene-poor and transcriptionally inactive regions and have heterochromatic signature (H3K27me3 and H3K9me3). In contrast, HMDs are
transcriptionally active and rich-gene regions with enrichment of active histone mark H3K36me3

We conclude that PMDs are strong cell-type-specific dis-
criminators comparable with regulatory changes in short
UMRs/LMRs.
For 171 available human methylomes of tissues and

primary cells, ChromH3M generates a tree with six
main branches separating myeloid from lymphoid cells,
endothelial tissues, liver tissue, and tissues of the digestive
system and heart. Myeloid cells split into two subclusters:
the granulocytes (neutrophils and eosinophils) and agran-
ulocytes (monocytes, macrophages, and dentritic cells).
Members of both subclusters have similar average PMD
methylation. B cells and T cells form a lymphocyte clus-
ter which branches off into subgroups of memory T and
B cells, i.e., central and effector memory T cells, germi-
nal center and memory B cells, respectively. This indicates
that cell types not only display a distinct overall PMD
topology but also acquire distinct PMD substructures
upon proliferation and differentiation [13].
We furthermore observe that, in general, PMDs have

extended heterochromatic signatures in both primary
cells and permanent cell lines (Fig. 2c). PMDs cover rel-
atively gene-poor regions with mostly lowly/unexpressed
genes (Additional file 2: Figure S2). The ChromH3M
analysis reveals a couple of distinct features of cell-
type-specific PMDs (Fig. 2a). For instance, states 10 and
11 comprise regions that only are HMDs in liver and
endothelial cell types, respectively. State 4 discriminates
myeloid HMDs from PMDs in other cell types. State 3
defines B and T cell-specific PMDs (Fig. 2a, b). The shared

PMDs are defined by states 1, 8, and 9, while states 14 and
15 define shared HMDs.
To explore the biological functions of genes present

within cell-type-specific HMDs/PMDs, we performed a
functional annotation analysis with DAVID [16, 17] for
genes in state 10 and state 3. For the former, liver-specific
HMDs, the GO terms liver tissue expression, Rotor
syndrom disease (lack of hepatocyte pigment deposits),
and the KEGG pathway for drug metabolism through
cytochrome P450 were obtained. These genes exhibit sig-
nificantly higher expression in liver tissue/hepatocytes
than in other cell types (two-way ANOVA and Tukey
HSD post hoc test, p adj = 0) (Fig. 2d). Furthermore,
these HMDs are largely devoid of heterochromatic marks
and enriched for the transcriptional elongation mark
H3K36me3 across gene bodies (Additional file 2: Figure S5,
left panel). This is exemplified by two hepatocyte-specific
gene loci CYP2B6 and FMO6P (Additional file 2: Figure S6).
The latter state, number 3, marks B and T cell-specific
PMDs. Hence, these regions in B and T cells are enriched
with the repressive mark H3K27me3 and, to a lower
degree, with H3K36me3. Further, the functional analysis
provides cell-type-associated terms, cell differentiation,
inflammatory response, adaptive immune response and
specific surface antigen MHC class I, in addition to the
KEGG pathway for the hematopoietic cell lineage. Inter-
estingly, the expression levels of these genes are downreg-
ulated in accordance with their PMD annotation. How-
ever, regarding only the DNA methylation signal, there is
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Fig. 2 PMD signatures discriminate cell type and global transcriptional control. a Colored representation of the emission probabilities calculated by
ChromH3M. Samples and states were hierarchically clustered forming six main groups: myeloid, lymphoid, endothelial, liver, digestive system, and
heart. Beneath each sample, the corresponding average methylation levels within PMDs is shown as whisker box plots and the percentage of
MethylSeekR segments as stacked bar plots. Samples derived from the same cell type clustered together, although they differ in mean methylation
level, suggesting that they have more similar PMD structure than the other cell types. PMDs comprise about 50–75% of the genome. b Graphical
representation of the relative (percentage) contribution of each state in the 15-state ChromH3Mmodel. Twenty-six percent of the genome shares
the same PMDs across all samples and roughly one third differ between them. c Genome-wide normalized histone mark signals within PMDs
(including 100 kb flanking regions). Note the enrichment of heterochromatic marks H3K27me3 and H3K9me3 across PMDs and a depletion of the
transcription-coupled mark H3K36me3. d Log10-scaled FPKM values of state 10 (Liver-HMDs) associated protein-coding genes. Genes are
significantly more highly expressed in hepatocyte samples (PHH) than in macrophages, monocytes, and T cells, according to two-way ANOVA and
Tukey HSD post hoc test (see details in the “Methods” section). Only samples marked with star in a are used for simplicity and since they belong to
one consortium

a trend to split the B and T cells into naive versus mem-
ory cells. This discrimination can neither be confirmed by
ChIP-seq nor by RNA-seq (see Additional file 2: Figure
S5, right panel). This could be due to the limitation in
detecting the precise boundaries of shallow PMDs in naive
cells.
In summary, the ChromH3M results indicate a domain-

wide transition of cell-type-specific PMDs into HMDs
and vice versa along with transcriptional regulation. The
direction of this transition couples with specific changes
in heterochromatic states.
A ChromH3M analysis on 24 WGBS mouse samples

(Additional file 2: Figure S7) shows a similar classifica-
tion and distribution of PMD states, confirming that our
findings not only hold for human but describe a fea-
ture apparently conserved among mammals. In mouse,
we identify cell-type/tissue-specific PMDs for neuron,
intestine, colon, and mammary epithelial cells. Further-
more, the epithelial cells group into cells of the luminal
and the basal compartment. We conclude that in human

and mouse, PMDs are excellent epigenome classifiers of
cell-type-specific topologies.

Chromatin compaction increases with DNAmethylation
erosion at PMDs in immortalized cells
Immortalized cell lines are widely used for studying
cellular mechanisms including the influence of epige-
netic control. However, it is known that cells in culture
undergo drastic epigenetic alterations linked to passag-
ing and cell replication numbers [18]. To investigate
the epigenome-wide changes occurring between primary
cells and immortal cell lines, we compared the methy-
lomes of primary cells and cell lines of the same ori-
gin. With this comparison, we wanted to monitor the
impact of cultivation and cancer-specific changes on
PMD formation. We generated epigenome data for iso-
lated primary hepatocytes (PHH) and two hepatic can-
cer cell lines: the hepatic progenitor cell line (HepaRG)
and the liver hepatocellular carcinoma cell line (HepG2).
We also include in our comparison results on publicly
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available liver cancer cells and noncancerous liver tissues
(Fig. 3a).
First, we calculated the average methylation across the

samples in 10 Kb bins. We then performed k-means
clustering forming six disjoint clusters which were sub-
sequently annotated by the MethylSeekR segmentation

(Fig. 3b). Cluster 1 defines highly methylated bins across
all samples while the other clusters show progressive loss
of methylation in the order: liver tissue >PHH >liver can-
cer >HepaRG >HepG2. Interestingly, primary liver cancer
was more similar to the non-cancerous liver and PHH
than to the cancer cell lines HepaRG and HepG2. Both

cb

a

Fig. 3 Heterochromatization accompanied by DNA methylation erosion at PMDs in cancers. a A snapshot of 14 Mb of chr3 showing the relevant
epigenetic marks. Top: distinct DNA methylation tracks and the MethylSeekR segmentation of liver tissue, isolated hepatocytes (PHH), liver cancer
tissue, HepaRG, and HepG2 cell lines, respectively. PMDs of primary cells and normal and cancerous tissues are extensively and selectively less
methylated in cancer cell lines (largely converted into unmethylated regions). Middle: histone marks H3K27me3, H3K9me3, and H3K36me3 in the
same samples. Bottom: ChromHMM segmentation based on these three histone modifications in addition to H3K4me3, H3K4me1, H3K27ac, and
Input (see details in the “Methods” section). b K-means clustering (k = 6) based on the averaged methylation in 10 Kb bins. Cluster 1 represents the
most (almost fully) methylated bins across all samples, while the other clusters are ordered according to the progressive erosion of methylation in
PMDs. Bar plots (left) beside the heatmap show the percentage of the annotated bins as HMD, PMDs, and UMR for each sample in each cluster.
c Progressive change of DNA methylation in PMDs across cancer cell lines. The top of the figure shows classified and grouped PMDs (three classes)
based on the average PMDmethylation levels in PHH and their corresponding overall levels in HepaRG and HepG2, respectively. Note the
intermediate status of HepaRG, e.g., with a higher similarity to PHH in class_I (most highly methylated), an intermediate status in class_II and a
higher similarity to HepG2 in class_III (lowest methylation level). The bottom shows the PMD wide changes in heterochromatic marks across the
clusters defined by DNA methylation. The inverse correlation to DNA methylation is most obvious for HepaRG (class_I and class_III)
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cancer cell lines have lower methylation levels compared
to the primary cells, as seen in clusters 4 and 5. This indi-
cates a different epigenomic pattern in cultivated cancer
cells in comparison to primary cancer cells. To gain deeper
understanding of the features governing the development
and changes in cell-type-specific PMDs, we focused on
the analysis of liver PMDs that exhibit changes in the aver-
age methylation level in the cancer cell lines. We first
extracted PMDs of PHH cells, which exhibit large overlap
with PMDs of liver tissue and liver cancer tissue (data not
shown). Such primary liver cell PMDs split into three sub-
classes, with respect to changes in DNA methylation in
HepaRG and HepG2 (Fig. 3c). In the first subclass (class_I,
red), PHH andHepaRG exhibit the same average degree of
methylation (65%), but show a very low methylation state
in HepG2. In the second class (class_II, green), HepaRG
methylation levels are intermediate between PHH and
HepG2, while in the third class (class_III, blue) both Hep-
aRG and HepG2 show the same low average methylation
as compared to the primary cells.
Along with the progressive loss of DNA methylation

in these three subclasses, we observe a distinct gain of
heterochromatic marks (Fig. 3c), suggesting a compen-
satory effect. The effect is most obvious in the HepaRG
cell line which shows an intermediate level of PMDmethy-
lation. Moreover, H3K36me3 is positively correlated with
DNA methylation across the gene body in the three sub-
classes (Additional file 2: Figure S8). We confirmed this
observation by calculating the average methylation across
ChromHMM segments of HepaRG (Additional file 2:
Figures S9 and S10). PMDs associated with stronger tran-
scription are higher methylated, on average, and marked
by lower levels of heterochromatic marks.
We conclude that in immortalized cells, a progres-

sive erosion of DNA methylation mainly in PMDs is
linked to a substantial gain of heterochromatic marks.
This is likely to be accompanied by differences in
chromatin compaction and regulation in the immor-
talized cells with a prolonged proliferation. The con-
version of PMDs and sometimes of HMDs, found in
cancer tissues, into low methylated domains as seen
for HepG2 indicate that epigenetic changes found in
model cell lines should be interpreted with great care,
as they may reflect the properties more of the cell’s
proliferation history and less of the cancer state or
cell-specific origin.

Distinct heterochromatic signatures of PMDs predict
replication timing
It has been shown that during cell division, late-replicating
regions can become gradually demethylated [19] and
long PMDs show widespread H3K9me3 marks bordered
by H3K27me3, whereas shorter PMDs are enriched by
H3K27me3 only [6]. So far, these features have not been

deeply investigated and analyzed in an integrated fash-
ion, i.e., combining DNA methylation and chromatin
marks. Using replication timing data for HepG2 from
the ENCODE project [20, 21], we clustered HepG2
hypomethylated/PMDs regions (longer than 300 kb),
by the k-means algorithm, into three clusters (see the
“Methods” section and Fig. 4a). We observe that these
clusters display distinct combinations of histone modi-
fication and DNA methylation (Fig. 4b and Additional
file 2: Figure S11). Cluster of early/mid S phase (dark
blue) is associated with shortest PMDs, and the chro-
matin is enriched for the two repressive marks H3K27me3
and H3K9me3. Mid/late S phase cluster (light blue)
comprises longer PMDs which are less highly enriched
for H3K27me3 compared to the previous cluster. In
very late S/G2 phase cluster (yellow), PMDs extend
over very long regions making up roughly 50% of the
total PMDs/hypomethylated regions (Additional file 2:
Figures S12 and S13). These PMDs are strongly enriched
for H3K9me3, bordered by H3K27me3. We confirm our
clustering by using the three broad histone modifica-
tion signals in PMDs as predictors and observe a high
average prediction accuracy of 0.77 for HepG2 (0.81
for IMR90) (notice that this is a three-class prediction,
details in the “Methods” section). The very late repli-
cating regions S/G2 phase have the highest prediction
accuracy, suggesting a distinct chromatin signature in this
phase. These findings extend previous results [19] indi-
cating that combinations of heterochromatic marks and
DNA methylation define early and middle S-phase and
late S-G2 phase (Fig. 4b).

PMDs organization and topologically associated domains
(TADs)
To analyze the overall relationship between PMDs and
TADs (topologically associated domains), we generated
Hi-C data for HepG2 and used available liver Hi-C data
[22]. Using HiCExplorer tool [23], we identified 3217 and
4021 TADs in liver and HepG2, respectively. As a conse-
quence, TADs of HepG2 are shorter than those in liver
(Additional file 2: Figure S14). This finding is in agreement
with Taberlay et al. [24], who showed that cancer cells
in general form smaller TADs and establish new bound-
aries. We find that TAD borders are significantly closer
to PMD borders as compared to randomized test bor-
ders (p value<2.2e−16, Wilcoxon test) (Additional file 2:
Figure S15). Moreover, 94% of base pairs within PMDs,
in HepG2 and liver, are also annotated as heterochro-
matic TADs (Additional file 2: Figure S16) (details in
“Methods” section). The light red box in Fig. 4c highlights
a typical example of a region in which several TADs exist
in HepG2 and primary liver that are belonging to one
PMD. In HepG2, we observe the formation of an extra
TAD (marked in red) but not the formation of an addi-
tional PMD boundary. This extra TAD shows a strong
enrichment of H3K9me3.
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Fig. 4 Distinct heterochromatin signatures of PMDs predict replication timing. a HepG2 PMDs are classified into three classes according to
replication timing signals: cluster 1 represents the early/mid S phase associated with PMD boundaries, cluster 2 represents the middle/late S phase
(S3/S4), and cluster 3 represents the very late S phase (S4) and G2. b Epigenetic mark signatures across clusters in a; H3K27me3 is highly enriched in
cluster 1 and in the PMD boundaries of cluster 3 and less so in cluster 2. H3K9me3 enrichment is similar in cluster 1 and cluster 2 and become more
prominent in cluster 3. The elongation mark H3K36me3 is depleted in all clusters. PMDs in cluster 3 have the lowest methylation level among the
other two clusters and encompass the transcriptionally inactive genes. c Different epigenomic data tracks from chr2 shown in the following order:
DNA methylation profiles, H3K9me3, H3K27me3, and H3K36me3 histone marks of HepG2 and PHH, replication timing signals (G1-G2) of HepG2,
clustered HepG2-hypomethylated/PMDs according to a, Hi-C contact matrices of HepG2, and liver with the corresponding called TADs, tRNA, and
RefSeq genes. The highlighted region shows one long PMD, roughly 3Mb, extends over three TADs which are splitting according to H3K9me3 signal
enrichment. Two of these TADs, marked in red, fuse into one TAD in the liver sample in agreement with the H3K9me3 signature
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Discussion
Our comprehensive integrated analysis of primary human
cells adds valuable novel insights into the structure and
function of PMDs in human and mouse epigenomes.
Building on our first report of PMD changes in pri-
mary T cells [13], we here integrated publicly available
WGBS datasets fulfilling high-quality standards to sys-
tematically analyze the features of PMDs in primary
cells, primary tissues, and immortalized cells from human
and mouse. We apply a new integrative “ChromH3M”
approach which combines existing tools and represents an
easy and straightforward method for analyzing and inte-
grating a large cohort of WGBS datasets. This allowed us
to define and compare PMDs across hundreds of WGBS
samples, revealing a couple of intriguing newDNAmethy-
lation properties with respect to genome organization,
timing of DNA replication and cell-type-specific gene
regulation.
We find that PMDs comprise up to 75% of all

epigenomes. However, only roughly 26% of the genome
consists of PMDs that are shared across all investigated
cells (shared PMDs). These common/shared PMDs have
also been a focus of a recent analysis by Zhou et al.
[25] confirming some of our findings. As a major dif-
ference, we also find that PMDs serve as excellent cell
type classifiers as cells with functional similarities show
a more similar PMD arrangement and topology, argu-
ing for a shared developmental origin of lineage-specific
PMDs. Finally, we observe that PMDmethylation changes
in some cells when they proliferate and show strong
methylation decreases in immortal cell lines.
Analyzing the PMD topology in more detail, we observe

that the epigenomes of cells are partitioned into long
regions of PMDs interspersed with HMDs. These two
classes of epi-domains show contrasting chromatin signa-
tures. While PMDs are more heterochromatic and gene-
poor regions, HMDs show strong transcriptional activity
and enrichment of genes. This finding generalizes previ-
ous isolated observations reported by [4, 8, 10, 13, 26]
to a number of different cancer types and cell lines. We
also find cell-type-specific changes from PMD to HMD,
and vice versa, occurring in genomic regions that contain
genes functionally enriched for cell-type-specific proper-
ties. This finding points towards a developmental control
of PMD and HMD formation. The complete understand-
ing which partitioning of HMDs and PMDs defines a
precursor ground state of a cell type needs more investi-
gation. Such knowledge will help understanding the role
of epigenetic domains in cell differentiation.
We find that long PMDs have a lower density of protein-

coding genes, lincRNA, and pseudogenes relative to the
shorter PMDs. In general, protein-coding genes are less
highly expressed in long PMDs than in shorter PMDs
and HMDs (Additional file 2: Figures S17 and S18).

We hypothesize that this is also reflected in the more
pronounced constitutive heterochromatic nature of long
PMDs as compared to the more facultative heterochro-
matic nature of shorter PMDs [27]. Shorter PMDs retain
more epigenomic plasticity with more pronounced cell-
type-specific features.
PMDs can also be divided into different subclasses

which are observed in different stages of DNA replica-
tion. A hallmark of the late stages of replication (S4 and
G2) is their length and the presence of the constitutive
heterochromatic mark H3K9me3 together with a charac-
teristic enrichment of H3K27me3 at the boundaries. On
the other hand, the early/middle S phases (S1-3) PMDs
are shorter and exhibit a higher overall proportion of
H3K27me3. The length-dependent histone modification
pattern is in agreement with previous findings in medul-
loblastoma [6]. The differences are strong enough to be
used as predictors of the replication phases. Our results
are consistent with a previous report [19] and extend its
results by providing a detailed characterization of chro-
matin state and DNA methylation at PMDs in relation to
cell cycle. Moreover, the long PMDs associated with the
late S4-G2 phases overlap with 56% of the bases within
shared PMDs. The shorter PMDs retain a greater variabil-
ity, confirming our hypothesis that shorter PMDs possess
epigenetically more less rigid heterochromatic structures
than longer ones. This characteristic could be relevant for
differentiation, cell-fate determination, and/or cell matu-
ration processes.
To deeper understand the cell-type-specific changes

occuring at PMDs (and HMDs), in cancer and cancer cell
lines, we compared the DNA methylation landscape of
primary human hepatocytes (PHH) to liver cancer tis-
sue and hepatocellular carcinoma cell lines (HepaRG and
HepG2). Notably, the methylome of primary liver can-
cer retained a PMD structure highly similar to primary
cells. PMDs in cancer tissue show a mild but clearly
reduced level of methylation. In cancer cell lines, however,
the DNA methylation in PHH-specific PMDs strongly
decreases. The regions with lower methylation still retain
the typical PMD histone marks even if they are completely
unmethylated. So far, we have no explanation to how this
aligns with models suggesting that global demethylation
is caused by a global loss of heterochromatic marks such
as H3K9me2/3 and consequently a lack of UHRF1 activ-
ity during replication by deregulation of DNMT1 [28].
When counting the unmethylated regions as PMDs, the
overall PMD structure of cell lines is hepatocyte-like.
It is likely that the strong erosion of DNA methylation
is the consequence of extensive cultivation leading to a
proliferation-dependent loss of methylation while main-
taining or even enforcing heterochromatic marks such as
H3K9me2/3. An alternative hypothesis is that the loss of
PMD methylation is caused by the selection/expansion
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of cell subpopulations with lower methylation. To better
understand the generation of increased demethylation in
PMDs as a consequence of cell proliferation (cell division),
we performed an experiment outlined in Additional file 2:
Figure S19A. Human T memory cells were obtained from
three different donors, and from each, such “bulk” sample
single cells were isolated and clonally expanded follow-
ing TCR stimulation. After proliferative expansion, single
clonal cultures were analyzed and compared to the start-
ing “bulk” samples (mixed T cells) by RRBS. We observe
a preferential loss of methylation in PMDs (Additional
file 2: Figure S19B, confirming our results reported in
Durek et al. [13]). We calculated the percentage of fully
methylated, fully unmethylated, and mixed patterns of
four consecutive CpGs within single read (see Additional
file 2: Supplementary methods for details). Interestingly,
the fraction of mixed patterns within PMDs remains con-
stant in all three single cell clones while the fraction of
fully unmethylated patterns expands and the fraction of
fully methylated patterns diminishes (Additional file 2:
Figure S19C). Moreover, 20–35% of CpGs in the fully
methylated fraction loses methylation in all three clonally
expanded populations. This strongly argues for a gradual
loss of methylation coupled to cell division rather than a
clonal selection considering that the analyzed cell pop-
ulations arise from three independent single cells/donor.
Overall, our findings are in agreement with result of a
recent paper [29] which suggested that at least in cancers,
hypomethylation is unlikely to be the result of a “popula-
tion level effect” only and the extent of hypomethylation
is proportional to the cell division rate of the tissue.
A genome-wide decrease of methylation is also seen

in early human and mouse embryos [30–34]. Schroeder
et al. [35] reported that PMDs can be detected in the
oocyte and early embryos of several species but that they
are not detectable in placentae, a tissue that shows a low
level of overall DNA methylation. Upon differentiation,
the genome-wide DNA methylation levels (also in PMDs)
increase in somatic cells probably to prevent genomic and
transcriptional instability that is observed in fast prolifer-
ating cancer cells that usually show a pronounced erosion
of PMDs [11]. These findings are in line with our analysis
suggesting that while PMDs are general features of (adult)
somatic cells, proliferation, differentiation, and develop-
ment have an impact on PMD topology and genome-wide
epigenetic memory.
In general, levels of PMD methylation should be con-

sidered when comparing local epigenetic states in vitro
particularly when comparing healthy and cancerous tis-
sues to immortal cell lines. In our recent study [13], we
suggested a way to consider such global demethylation
effects for the detection of differentially methylated region
(DMR). Here, we screened for DMRs based on their devi-
ation from the global methylation change rather than

applying a fixed cutoff (for more details, see [13]). DMRs
were stratified over PMDs and HMDs such that many
DMRs simply following the global change of methyla-
tion could be excluded. In B cells, this procedure reduced
the number of DMRs within PMDs tremendously (from
28,014 to 8338 using adaptive filtering when comparing
naive B cells with plasma cells). On the other hand, DMRs,
within PMDs, that gain DNA methylation upon differen-
tiation are increased (2811 DMRs in comparison to 95
retrieved by basic thresholding method) (Additional file 2:
Figure S20). Genomic region enrichment analysis for such
DMRs using GREAT [36] provides cell differentiation and
development relevant as major terms (Additional file 2:
Figure S20). These findings demonstrate the advantage of
stratifying DMRs according to increasing and decreasing
of DNA methylation in HMDs and PMDs, affording more
insight into the biological role of the genes associated with
these DMRs.
A very important observation is that PMD and HMD

prediction can be used as a proxy for and/or support Hi-C
data when detecting and classifying TADs. When over-
laying TAD and PMD predictions, we observe that they
largely co-localize and often share the same boundaries.
Specifically, PMDs almost completely overlap with hete-
rochromatic TADs. However, we also observe that multi-
ple TADs can overlap with one single PMD. This suggests
that either PMDs cover domains larger than TADs or
indicates that Hi-C data provide a more fine-grained res-
olution for domain boundaries. Overall, we observe that
there are commonalities as well as differences when align-
ing TADs and PMDs, and their topological organization
and functional relation will have to be further investigated
to better understand their dependencies. A recent study
by Nothjunge et al. [37] showed that the establishment
of heterochromatic (B) compartments precedes PMD for-
mation. As this study only focused on DNA methylation,
it remains an open question if B compartments are indeed
established prior to a heterochromatic domain formation
which we see as one feature of cell-type-specific PMDs.

Conclusions
We provide a comprehensive analysis of PMDs for 195
human and mouse methylomes including more than 157
primary cell samples. Our analysis adds a new dimension
to studying DNA methylation on a large scale extending
beyond the context of cis-regulatory elements that has
been studied extensively. Our results show that PMDs are
an excellent classifier of cellular origin and confirm that
they are indicators of the cellular proliferation history. In
addition, PMD heterochromatic histone mark signatures
serve as an effective classifier for distinguishing early from
middle and late replication domains. ChromH3M is an
easy and straightforward framework for integrated anal-
ysis of large-scale WGBS data and can highlight specific
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combinatorial patterns of PMDs across large number
of samples. PMDs are also a useful adjusting tool for
detecting functional DMRs in highly proliferative cells.
We believe that PMDs are a crucial epitopological sig-
nature beside their role in gene regulation. Our analysis
reveals an important limitation in using cultivated cells
for disease-associated epigenetic studies as they undergo
strong changes in their epigenetic topology.

Methods
WGBS
Coverage and methylation fraction of human sam-
ples were downloaded from the Roadmap Epigenomic
Project http://egg2.wustl.edu/roadmap/data/byDataType/
dnamethylation/WGBS. Blueprint data was downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data/
homo_sapiens/GRCh38/ and then mapped to hg19 using
liftOver from UCSC [38]. DEEP data was taken from pre-
vious studies [13, 39]. Bed files containing the coverage
and methylation levels at CpG resolution from [40] were
directly used in the analysis. We list all samples with the
relevant sources in the Additional file 1.

MethylSeekR segmentation
All samples were segmented into partially methylated
domain (PMDs), lowly methylated regions (LMRs), and
unmethylated regions (UMRs) using the MethylSeekR
tool [3]. The rest of the genome, excluding gaps as
annotated by UCSC [38], was denoted as highly methy-
lated domains (HMDs). We ran MethylSeekR with default
parameters: a coverage cutoff at five reads per CpG,
methylation level threshold at 0.5, and maximum FDR of
0.05 for detection of hypomethylated regions, resulting
in a threshold of at least four CpGs per LMR, 101 CpGs
per sliding window nCGbin = 101, and smoothing over 3
CpGs. Methylation levels of both strands were aggregated
and weighted average methylation levels were plotted as
box plots across PMDs.

ChromH3M segmentation
In order to explore PMDs and find combinatorial pat-
terns across samples, we binned the genome into 1 kb
windows and annotated each of them with 1 if the
bin overlaps with a PMD and 0 otherwise across all
samples. We used ChromHMM [15] to train this bina-
rized signal with a 15-state HMM. We termed this
method “ChromH3M.” The emission probabilities and
states were hierarchically clustered using Euclidean dis-
tance and ward.D2 as an agglomeration method in the
R environment [41]. The very same analysis was per-
formed for LMRs and UMRs, respectively. To assess the
uncertainty in the hierarchical clustering, we calculated
an unbiased p value (AU p value) via multiscale boot-
strap resampling (n = 10,000). The two cell line samples

HepaRG and HepG2 were not included in ChromH3M
analysis.
The normalized mean coverage of three broad histone

marks (H3K27me3, H3K36me3, and H3K9me3), gener-
ated by the DEEP pipeline http://doi.org/10.17617/1.2W
[42], were plotted genome-wide across the PMDs with
proper flanking regions using deepTools [43]. The number
of protein-coding genes falling within PMDs was calcu-
lated, demanding a minimum of 80% of the gene length to
be overlapping with the segment. A pseudocount of 1 was
added to FPKM to avoid zeros in the box plots.
The heatmap in Fig. 3b was generated by binning the

genome into 1 kb windows and averaging the methyla-
tion levels across all samples resulting in roughly 280,000
windows which then were clustered by k-means into
six clusters and annotated with methylSeekR segments.
Samples were hierarchically clustered with ward.D2 and
Euclidean distance. Sex chromosomes were excluded from
the aforementioned analyses.

Clustering of PHH PMDs and cancer cell lines
PHH PMDs shorter than 20 kb were filtered, and a matrix
of methylation levels in 1 kb windows across PHH, Hep-
aRG, and HepG2 was calculated after normalizing all
PMDs to the same length of 150 kb using deepTools [43].
The windows were clustered with k-means method into
three clusters. H3K27me3, H3K9me3, and DNA methyla-
tion signals were plotted along PMDs of each cluster using
deepTools [43].

Analysis of replication domains
Replication timing signals were downloaded from
ENCODE project and used directly (details about this
data are available from https://www.encodeproject.org/
documents/50ccff70-1305-4312-8b09-0311f7681881/@@
download/attachment/wgEncodeUwRepliSeq.html.pdf).
A two-state HMM was used to segment the HepG2
methylation profile into highly methylated and
PMDs/hypomethylated regions using the “Hidden-
Markov” R package [44], assuming that each CpG may
have one of the two states: foreground state with high
methylation level and background state with low methy-
lation level. Regions shorter than 300 kb were filtered.
The mean coverage of replication signals (G1, S1-S4, and
G2) was calculated in 1 kb bins across normalized (to
500 kb length) and flanked PMDs (250 kb up and down-
stream) using deepTools [43]. PMDs were then clustered
using k-means into three classes: early/middle S phase,
middle/late S phase, and late S/G2 phase. The mean cov-
erage signals of H3K27me3, H3K9me3, and H3K36me3,
and DNA methylation levels were plotted across the
PMDs of each class using deepTools. The number of
protein-coding genes falling into each class was calcu-
lated, demanding 80% of the gene length to be within the

http://egg2.wustl.edu/roadmap/data/byDataType/dnamethylation/WGBS
http://egg2.wustl.edu/roadmap/data/byDataType/dnamethylation/WGBS
ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data/homo_sapiens/GRCh38/
ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data/homo_sapiens/GRCh38/
http://doi.org/10.17617/1.2W
https://www.encodeproject.org/documents/50ccff70-1305-4312-8b09-0311f7681881/@@download/attachment/wgEncodeUwRepliSeq.html.pdf
https://www.encodeproject.org/documents/50ccff70-1305-4312-8b09-0311f7681881/@@download/attachment/wgEncodeUwRepliSeq.html.pdf
https://www.encodeproject.org/documents/50ccff70-1305-4312-8b09-0311f7681881/@@download/attachment/wgEncodeUwRepliSeq.html.pdf
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PMD. FPKM values were plotted as box plots in log scale
with pseudocount of 1 to avoid zeros. For the prediction
of replication domains, we built a multiclass classification
model using the counts of reads of each histone mark in
1 kb bins as predictors and the three aforementioned clus-
ters as response at each PMD. We split the data into 75%
training set and 25% test set. We trained the model with
a random forest classifier and selected the model using
10-fold CV repeated five times. The prediction accuracy
was calculated based on the confusion matrix between
the predicted and the reference values. One-versus-all
accuracy was calculated and then the average accuracy
was calculated. This analysis was performed using the
caret package https://github.com/topepo/caret/ in the R
environment. The analysis of genomic regions regarding
DMRs, with and without adjusting for the global DNA
demethylation, was carried out using the GREAT tool
[36]. GO analysis was done using DAVID [16, 17].

Chromatin state segmentation
All Chip-Seq samples, listed in Additional file 2, were pre-
processed starting from raw BAM files as follows: dupli-
cate reads were removed using samtools version 1.3 with
the filter “-F 1024.” Regions of known artifacts (“blacklist
regions”) taken from the ENCODE project https://www.
encodeproject.org/ [20], which we adapted to account for
differences between ENCODE’s hg19 and DEEP’s hs37d5
assembly, were filtered out using bedtools version 2.20.1
with the subcommand “pairtobed” and the option “-type
neither.” After preprocessing, the filtered BAM files for
all six histone marks plus Input were used as input for
the chromatin state segmentation using ChromHMMver-
sion 1.11 (Java 1.7) with default parameters. We did not
train a dedicated ChromHMMmodel for our dataset, but
used the available ROADMAP 18-state model [45] to ben-
efit from its biologically meaningful state labeling, which
enabled us to immediately interpret the chromatin state
maps in the context of this work.

HepG2 Hi-C
HepG2 cells have been fixed for 10 min using 1%
formaldehyde in D-MEM and quenched for 5 min in
125 mM glycine. After two PBS washes, cells have been
collected by scraping them off the plate and snap-frozen
in liquid nitrogen. Hi-C experiments have been conducted
as previously described [23], with the following modi-
fications. Nuclei from cell pellets containing about four
million of cells have been extracted by sonication [46]
using the following parameters: 75 W peak power, 2%
duty factor, 200 cycles/burst, and 180 s, using Covaris
milliTubes and Covaris E220 sonicator. After nuclei per-
meabilization, chromatin has been digested overnight at
37 ◦C using HindIII high fidelity (80 units per million
cells; R3104S, NEB). Biotin incorporation has been car-
ried out at 37 ◦C for 1 h in 300 μl volume using these

reaction conditions: 50 mM of each nucleotide (dATP,
dTTP, dGTP, biotin-14-dCTP, from Life Technologies,
19518-018) and 8 U of Klenow (NEB, M0210L). Ligase
mix has been added to each sample followed by 4 h of
incubation at room temperature under rotation. After
nuclei lysis, protein digestion and overnight de-crosslink,
DNA has been precipitated and sonicated to 100–600
bp. Biotinylated DNA has been pulled down as previ-
ously described. One hundred nanograms of DNA bound
to beads have been used for library preparation using a
modification of the NEBNext Ultra DNA library prepa-
ration workflow (NEB, E7370). DNA bound to beads has
been end-repaired, A-tailed, adaptor-ligated, and USER-
treated following manufacturer’s instruction. After a bead
wash, DNA has been eluted from the beads by incubat-
ing at 98 ◦C for 10 min. Adaptor-ligated DNA has been
PCR amplified using 7 PCR cycles. Libraries have been
sequenced paired-end, with a read length of 75 bp, on the
Illumina NextSeq 500 instrument.

Hi-C data processing
Reads were mapped to the human reference genome hg19
(37d5) using bowtie2 [47], and then samtools [48] was
used to convert the reads to BAM format. A matrix of
read counts over the bins in the genome, considering
the sites around the restriction site AAGCTT was built
using the hicBuildMatrix function fromHiCExplorer [23].
Ten bins were merged with hicMergeMatrixBins and then
the matrix was corrected for GC bias and very low/high
contact regions. To compute the TADs we first calcu-
lated the TAD scores by “hicFindTADs TAD_score” com-
mand with the following parameters “–minDepth 300000
–maxDepth 2000000 –step 70000” and then TADs were
identified by “hicFindTADs find_TADs” command. The
interaction matrix and other signal tracks were also visu-
alized using HiCExplorer.

Comparison between TADs and PMDs
To test the consistency between TAD borders and PMD
borders, we generated an equally sized set of random-
ized borders and calculated the shortest distance between
TAD borders and (i) PMD borders and (ii) the random-
ized borders. A Wilcoxon test was carried out between
the two distance distributions. To calculate the overlap
between PMDs and heterochromatic TADs (generated as
described above), we classified TADs using histone marks
into two classes by k-means from deepTools. One class
is enriched by heterochromatic marks and the other by
euchromatic mark. We counted the number of overlap-
ping base-pairs between PMDs and the heterochromatic
TADs and then plotted the results as venn diagrams. The
comparison was done for liver and HepG2. In this analy-
sis, PMDs within a distance of 50 kb were fused and only
those longer than 300 kb were included. This was done to
exclude intersecting LMRs and UMRs.

https://github.com/topepo/caret/
https://www.encodeproject.org/
https://www.encodeproject.org/
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