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Abstract: This paper contributes to a new design of the three-dimensional printable robotic ball joints
capable of creating the controllable stiffness linkage between two robot links through pneumatic
actuation. The variable stiffness ball joint consists of a soft pneumatic elastomer actuator, a support
platform, an inner ball and a socket. The ball joint structure, including the inner ball and the socket, is
three-dimensionally printed using polyamide−12 (PA12) by selective laser sintering (SLS) technology
as an integral mechanism without the requirement of assembly. The SLS technology can make the
ball joint have the advantages of low weight, simple structure, easy to miniaturize and good MRI
compatibility. The support platform is designed as a friction-based braking component to increase
the stiffness of the ball joint while withstanding the external loads. The soft pneumatic elastomer
actuator is responsible for providing the pushing force for the support platform, thereby modulating
the frictional force between the inner ball, the socket and the support platform. The most remarkable
feature of the proposed variable stiffness design is that the ball joint has ‘zero’ stiffness when no
pressurized air is supplied. In the natural state, the inner ball can be freely rotated and twist inside the
socket. The proposed ball joint can be quickly stiffened to lock the current position and orientation
of the inner ball relative to the socket when the pressurized air is supplied to the soft pneumatic
elastomer actuator. The relationship between the stiffness of the ball joint and the input air pressure
is investigated in both rotating and twisting directions. The finite element analysis is conducted to
optimize the design of the support platform. The stiffness tests are conducted, demonstrating that a
significant stiffness enhancement, up to approximately 508.11 N·mm reaction torque in the rotational
direction and 571.93 N·mm reaction torque in the twisting direction at the pressure of 400 kPa, can
be obtained. Multiple ball joints can be easily assembled to form a variable stiffness structure, in
which each ball joint has a relative position and an independent stiffness. Additionally, the degrees
of freedom (DOF) of the ball joint can be readily restricted to build the single-DOF or two-DOFs
variable stiffness joints for different robotic applications.

Keywords: variable stiffness ball joints; selective laser sintering technology; soft pneumatic elastomer
actuators; finite element analysis

1. Introduction

Controllable stiffness is a valued function in various robotic applications, including
surgical robotics [1–3], walking robots [4–6], rehabilitation robotics [7,8] and wearable
robots [9–11]. Although such compliant mechanisms may result in oscillations and make
positioning control of the end effector more difficult, the addition of compliance can offer a
number of valuable advantages, including safe interaction between the robot and human,
the ability to store and release energy, greater shock tolerance and better adaptability to
various unpredictable environments [12,13].
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Controllable stiffness mechanisms have been widely applied to both conventional
rigid-bodied robots and soft-bodied robots fabricated with soft elastomeric materials with
low Young’s modulus. The working principles of the existing variable stiffness designs for
conventional rigid-bodied robots can be divided into four groups, including equilibrium-
controlled stiffness, structure-controlled stiffness, mechanically controlled stiffness and
antagonistic-controlled stiffness [14]. Soft robotics is a rapidly growing research field due to
its inherent advantages, such as soft interaction with surrounding environments and com-
pliance for manipulating objects with unknown geometry [15–18]. The ability to modulate
the stiffness of soft actuators is a highly desirable characteristic that allows soft robots to
have reversible changes between the compliant/flexible state and the rigid state for various
different applications [19–25]. Smart materials (e.g., electrorheological/magnetorheological
fluids [26,27], shape memory polymer [28,29], shape memory alloy [30,31] and low-melting-
point alloy [32]), layer jamming [33–35] and particle jamming [36–38]) have been commonly
applied to realize the stiffness modulation of soft robots.

Variable stiffness joints are receiving great attention due to rising interest in the
research field of hyper-redundant robotic arms in recent years. Redundant robotic arms
are very useful in a highly constrained space or multi-obstacle environments [39]. The
redundant robotic arms combined with variable stiffness joints can freely move and adapt
to different working environments with low stiffness and withstand external loads with
high stiffness when needed. Ball joints are well-suited to be used as modular parts for
manipulators due to their multiple degrees of freedom (DOF), excellent positional control
characteristic and good structural integrity [40]. Thus, the ball joints with controllable
stiffness functionalities have been applied to hyper-redundant robots. To realize the variable
stiffness in the ball joint-based mechanism, a few methods have been reported in the
literature. Yang et al. [12] proposed a ball joint with variable stiffness based on shape
memory polymer (SMP). The SMP is a kind of smart material and is capable of generating
a large rigidity range between the soft state and the rigid state by controlling the thermal
energy. The ball joints can work with low stiffness when the SMP is heated above its
glass transition temperature and increase the stiffness when the SMP is turned into its
glass state. However, the heat-sensitive function material requires a relatively long heating
time for actuating. Boehler et al. [41] proposed a variable stiffness ball joint for an MR-
compatible robot based on a tendon-driven mechanism. Redundant cables have to be
tensioned to generate antagonistic forces in the cables for providing the ability of variable
stiffness. Additionally, the cables were required to be kept in tension to maintain the
rigidity of the joint. Wei et al. [42] presented a stiffness tunable ball joint based on particle
jamming. Particle jamming is a promising solution for stiffness modulation by controlling
the vacuum pressure because of its simple operation and quick response. Its variable
stiffness mechanism depends on the ball joint friction and the compressive force generated
by the interaction between the particles and the ball joint. The joint can be rotated when
there is no vacuum pressure. When the vacuum pressure is applied, the pressure difference
between the inner space and the atmospheric pressure pressed the particles to the joint,
thereby forming the jamming. The rotation of the joint is restrained by the jammed particles.
However, it is challenging work to choose the suitable particle size. Extra experiments are
required to determine the optimal particle size according to different designs. Additionally,
the unpredictable particle rearrangement under vacuum pressure should be handled in
order to guarantee stability and repeatability.

Different from the currently existing research achievements on the ball joints with
controllable stiffness, a new design of variable stiffness ball joints (VSBJ) is proposed to
realize the ability of stiffness modulation for ball joints based on pneumatic actuation in
this research. A support platform is designed to connect the inner ball to its socket upon
pressurization. When the pressurized air is supplied, the soft pneumatic elastomer actuator
is inflated to push the support platform against the inner ball, thereby restricting the rotation
of the inner ball inside its socket. Thus, the stiffness of the ball joint can be modulated
by the input of pressurized air. The contributions of this research and the key features
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of the proposed VSBJ are summarized as follows: (1) Simple structure: The ball joint is
manufactured as an integral mechanism without the requirements of redundant fastening
components, which allows the miniaturization design owing to the SLS technology; (2) fast
response: The stiffness of the VSBJ can be suddenly enhanced once the pressurized air is
supplied to the soft pneumatic elastomer actuator; (3) ‘Zero’ stiffness: The VSBJ can be freely
rotated with very little force in its natural state when no air pressure is supplied; (4) positive
pressure actuation: Compared with the variable stiffness mechanisms actuated by the smart
materials, the pneumatically actuated stiffness modulation proposed in this research is not
affected by magnetic/electrical fields or temperature fluctuation. Compared to the variable
stiffness mechanisms actuated by vacuum pressure (e.g., particle jamming), the VSBJ
actuated by the positive pressure has a wide range of actuation pressure; (5) MRI (magnetic
resonance imaging) compatibility: The materials for fabricating the components of the VSBJ
(polyamide 12 and silicone elastomer materials) and the actuation mode for the variable
stiffness mechanism possess the feature of MRI compatibility [43]. Thus, the proposed VSBJ
is able to be used to build variable stiffness structures in the MRI environment. The stiffness
variations in both rotating and twisting directions are investigated with respect to different
input air pressures. Additionally, the design of the support platform is optimized using
finite element analysis. We also demonstrate that multiple VSBJs can be easily combined
to build the three-dimensional spatial variable stiffness structures or customized to form
the two-dimensional planar variable stiffness joints by limiting the redundant DOFs of
the VSBJ.

2. Materials and Methods
2.1. Design and Working Principle of the VSBJ

The design of the proposed VSBJ is schematically illustrated in Figure 1. The proposed
VSBJ includes an inner ball, a socket, a soft pneumatic elastomer actuator, a support plat-
form and a connector. The inner ball and the socket are 3D printed as an integral structure
based on PA2200 Nylon material (EOS GmbH, Krailling, Germany) using an EOS P396
3D printer. Polyamide−12 is one of the most well-known and resourceful thermoplastic
polymer materials used by SLS technology in the field of additive manufacturing. PA2200
is a kind of thermoplastic semi-crystalline polymer material developed based on PA12 by
EOS Company, which possesses a high level of biocompatibility and physical, chemical
and mechanical properties [44–47]. During the SLS process, the inner ball and socket are
manufactured in one piece and the powders in the clearance between them are not sintered,
just supporting the printed parts. The powders can be cleared after printing and then the
inner ball can be freely rotated inside the socket. This fabrication technology effectively
simplifies the structure of the VSBJ because redundant fixtures are not required. In conven-
tional ball joint designs, the socket is commonly fabricated into two or more subparts. The
subparts and the inner ball are then assembled together to form the ball joint structure by
the fastening components. Additionally, we investigated the minimum clearance between
the inner ball and its socket, which can ensure the success of manufacturing. It is difficult
for the support powders to be cleared with a clearance of smaller than 0.5 mm, which
negatively affect the performance of the VSBJ. Thus, the clearance of 0.5 mm is selected in
our case.

The socket of the VSBJ is designed with three channels, allowing the support platform
to linearly move inside the socket, while limiting the rotation of the support platform
(illustrated in Figure 2). The support platform is designed with a groove structure on top
and three equally spaced legs positioned in a radial arrangement. The support platform
is employed to enhance the stiffness of the ball joint structure by increasing the frictional
force between the socket and the inner ball. Three legs of the support platform match the
three channels in the socket of the VSBJ. The support platform can be inserted into the
socket along the channels from the bottom. The groove structure is employed to contact
the inner ball with one stress concentration edge. In the initial state, the inner ball is not
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pinched by the support platform and the socket. The VSBJ works in its ‘zero’ stiffness state.
It can be rotated as the conventional ball joint.
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Figure 2. The schematic illustration of the assembly of the socket and support platform.

The connector is used to close the socket of the VSBJ. It can be redesigned to connect
to other VSBJs or links and is rigidly fixed to the socket. The pneumatic elastomer actuator
is positioned between the support platform and the connector. It is made of Ecoflex
0030 (Smooth-On Inc., Macungie, PA, USA, 1:1 parts A:B) that is a very soft platinum
cure silicone elastomer with a durometer hardness of Shore 00–30 and high elongation
at break (approximately 900%) [48]. The soft pneumatic elastomer actuator is placed in
the fully closed space created by the socket, the connector and the support platform. Its
expansion can be limited by these three rigid parts. Thus, the soft elastomer actuator can
be inflated with much higher air pressure without burst risk compared to the unrestricted
soft pneumatic actuators. Although pneumatic actuation is applied to operate the VSBJ,
hydraulic actuation is also feasible to inflate the soft elastomer actuator.

The working principle of the proposed VSBJ is illustrated in Figure 3. In Figure 3a,
the VSBJ works in the free state (no pressurized air) and can be freely rotated or twisted.
When the pressurized air is supplied, the soft pneumatic elastomer actuator is inflated to
compress the support platform against the inner ball (shown in Figure 3b). The stiffness of
the VSBJ can be suddenly enhanced due to the fast response of the soft pneumatic elastomer
actuator upon pressurization. As illustrated in Figure 3b, the VSBJ works in the locked
state, in which the inner ball is pinched by the upper edge of the socket and the support
platform, due to the compressing force generated by the inflated soft pneumatic elastomer
actuator. The inner ball is restrained from moving by the friction between the inner ball and
the socket and the friction between the inner ball and the support platform. The friction is
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dependent on the input pressurized air. Thus, the higher the air pressure is supplied, the
greater is the stiffness that can be obtained.

The dimensions of the proposed VSBJ are illustrated in Figure 4. The width, height and
diameter of the hollow cylinder of the socket are 24 mm, 29.5 mm and 22.8 mm, respectively.
The height of the rod and diameter of the inner ball are 17.2 mm and 9.5 mm, respectively.
The heights of the support platform and the soft pneumatic elastomer actuator are 16 mm
and 3 mm. The weight of the whole VSBJ is 17.3 g. The inner ball can be rotated around
the X and Y axis ranging from −41.5 degrees to 41.5 degrees, respectively, and its twisting
motion is unlimited.
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2.2. Finite Element Analysis of the Support Platform

In addition to the input air pressure, the support platform also plays an important role
in VSBJ stiffness when the ball joint structure is determined and manufactured. The design
of the support platform was optimized based on finite element analysis by investigating the
relationship between the VSBJ stiffness and the intersection angle (θ) (illustrated in Figure 5).
Five support platform models with increasing intersection angles, including 35.3 degrees,
40.3 degrees, 45.3 degrees, 50.3 degrees and 55.3 degrees, were built using Solidworks
(Dassault Systèmes SolidWorks Corp., Waltham, MA, USA). The 3D models of the VSBJ
were imported into ABAQUS/Standard (Dassault Systèmes Simulia Corp., Johnston, RI,
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USA) to analyze the stiffness enhancement in both rotational and twisting directions using
these five support platforms at the air pressure of 100 kPa. In the simulation, the ball joint
structure was modeled using hexahedral hybrid elements (Abaqus element type C3D8H)
which is an 8-node hybrid element. Since the focus of the simulation was to analyze the
behavior of the inner ball and the influence of different platform designs with different
intersection angles, the model was simplified by removing the soft pneumatic elastomer
actuator and unimportant features, and the actuation pressure was directly applied on the
bottom surface of the platform. For this simplified model, ENCASTRE boundary condition
was employed on the socket to fix the entire device. The element size is around 0.25 mm,
yielding a total number of ~390 K elements for the entire model. Two contact pairs were
defined for describing the contact behavior between the inner ball surface and two edges
on the socket and the support platform, respectively. During the simulation, the platform
was first actuated in the first step, and pushed the inner ball to the stable state where it
closely contacted with both the socket and the support platform. This step was followed
by actuating the inner ball with either a rotating or twisting force to make the inner ball
rotate/twist. For all the loading steps, the dynamic analysis was adopted to consider the
effect of sliding friction. The reaction force on the loading point is recorded at different
rotating/twisting angles to evaluate the performance of the VSBJ. The initial and final states
for rotating and twisting tests were illustrated in Figure 6.
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The simulation results were shown in Table 1, demonstrating that the stiffness of the
VSBJ in both rotational and twisting directions was dependent on the intersection angle
when the same air pressure was supplied. The smaller the intersection angle, the larger



Polymers 2022, 14, 3542 7 of 15

stiffness enhancement the VSBJ obtained. Therefore, taking into consideration the material
strength and the size of the groove structure, the support platform with the intersection
angle of 40.3 degrees was determined in our final design of the VSBJ.

Table 1. The simulation results of the reaction force in both rotating and twisting directions with
respect to different intersection angles.

θ 35.3◦ 40.3◦ 45.3◦ 50.3◦ 55.3◦

Rotation 7.76 N 7.57 N 7.28 N 7.15 N 7.02 N
Twist 8.21 N 7.59 N 7.16 N 6.75 N 6.46 N

2.3. Fabrication of the Soft Pneumatic Elastomer Actuator

The soft pneumatic elastomer actuator should be capable of withstanding much higher
air pressure to achieve better stiffness enhancement. Thus, the body of the soft pneumatic
elastomer actuator is required to be fabricated in one piece without any seams, which may
be structurally weak and are prone to delamination. Ecoflex 0030 is chosen to fabricate
the soft pneumatic elastomer actuator because it is highly extensible with low actuation
pressure. The molding method was applied and the fabrication process was illustrated in
Figure 7. The mold consisted of two parts: the base part for achieving the actuator bodies
and the T-shape pins for obtaining the pressure chambers. The T-shape pins were first
inserted into the holes of the base part, ensuring that the bottom of the pins was aligned
to the bottom of the base part. Scotch tapes were then applied to the bottom of the base
part to avoid the leakage of the liquid silicone elastomer through the clearance between the
pins and holes. Next, parts A and B of the liquid silicone elastomer were dispensed into a
container according to 1A:1B by weight. The silicone elastomer in the container was mixed
well by using a planetary centrifugal mixer. After that, the mixed silicone elastomer was
slowly poured into the mold, making sure that all the gaps between the base part and pins
were filled up. Vacuum degassing was applied to eliminate the entrapped air in the liquid
silicone elastomer. A piece of acrylic sheet with the straight edge was used to sweep off the
excess liquid silicone elastomer on the mold while the silicone elastomer inside the gaps
remained intact. Finally, the mold was placed in the oven at the temperature of 70 degrees
Celsius until the silicone elastomer was cured.
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Figure 7. The fabrication process of the soft pneumatic elastomer actuators.

During the demolding process, the pins enclosed with the soft actuator bodies were
detached from the base part. After that, the pin was removed from the actuator body by
enlarging the opening owing to the feature of the high elongation at break of Ecoflex 0030.
Finally, a pressure-supply silicone tube was inserted into the opening and glued with the
actuator body by the Sil Poxy adhesive (Smooth-On, Macungie, PA, USA).



Polymers 2022, 14, 3542 8 of 15

3. Results

The stiffness of the VSBJ indicates the ability to maintain the position and orientation of
the inner ball against the external force. The variable stiffness feature of the VSBJ is a result
of the change of the frictional force that is dependent on the inflation of the soft pneumatic
elastomer actuator. To investigate the stiffness variation of the VSBJ in both rotating and
twisting directions at different input air pressures, including 100 kPa, 200 kPa, 300 kPa
and 400 kPa, for the soft pneumatic elastomer actuator, a series of stiffness measurement
experiments were conducted. A compressor was employed to supply the air pressure and a
precision regulator (IR2020–02B-A, SMC Corporation, Tokyo, Japan) was used to modulate
the supplied air pressure to the soft pneumatic elastomer actuator.

3.1. Rotating Stiffness Evaluation

The experimental setup for evaluating the rotating stiffness of the VSBJ was shown in
Figure 8. The VSBJ was fixed to the aluminum beam structure and a cylindrical rod with
two colored markers was inserted into the hole on top of the inner ball. A force gauge
(SI-65–5, ATI Industrial Automation Inc., Apex, NC, USA) was fixed on a motorized linear
module to measure the pulling force. A short bolt was inserted through the rod of the
inner ball and a pulling cord was introduced to connect the short bolt to the force gauge.
A high-definition camera was employed to capture the rotational movements of the inner
ball and an image processing algorithm was implemented to detect and track the colored
markers for obtaining the rotational angles. The pulling cord was pretensioned with 0.2 N
and the force gauge was zeroed before each test. In the free state of the VSBJ, the inner
ball can be freely rotated inside the socket. It contacted the bottom edge of the socket at its
original position when no air pressure was supplied due to its gravity and the existence
of the ball joint clearance. Thus, an initial pressure of 11 kPa was provided to inflate the
soft pneumatic elastomer actuator, making the upper surface of the inner ball contact the
upper edge of the socket. In this situation, the VSBJ had the same rotational center in
both the free state and locked state. Therefore, the stiffness of the VSBJ at the pressure of
11 kPa was obtained as the reference value in the free state. The inner ball was positioned
at 0 degrees with the assistance of a 3D printed part (3DP-Part-R shown in Figure 8) before
each measurement.
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Figure 8. The experimental setup for testing the rotational stiffness of the VSBJ.

During the experiments, the soft pneumatic elastomer actuator was inflated with
different constant pressures (6 kPa, 100 kPa, 200 kPa, 300 kPa and 400 kPa, respectively).
For each input air pressure, the inner ball of the VSBJ was rotated ranging from 0 to
20 degrees by the force gauge through the linear motorized module at 1.25 mm/s constant
speed. Fr was the applied pulling force along the X-axis perpendicular to the rod of the
inner ball in the initial state, as illustrated in Figure 9a. The distance from the point of
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application of the pulling force to the center of the ball was 18 mm. The test for each input
pressure was repeated five times. The pulling force with respect to the rotational angles
was recorded and the obtained data were converted into torque by Equation (1). The mean
value (solid line) and standard deviation (shaded area) of the external torque that the VSBJ
can withstand in the rotational direction at different input air pressures were illustrated in
Figure 9b.

Tr = Fr·d· cos α (1)

As illustrated in Figure 9b, sudden increments in force were observed at the beginning
in all the measurement experiments due to the fact that the stiffness of the VSBJ was
enhanced by the static friction. After that, the pulling force evidently decreased to a lower
value than the peak force because the stiffness of the VSBJ was maintained by the kinetic
friction instead of the static friction. Fluctuations in force corresponding to the stick-slip
phenomenon were observed during the following rotation. In our study, we defined the
maximum torque provided by static friction as the highest stiffness enhancement that the
VSBJ can provide. We considered that the VSBJ failed to resist the external load when
turning into fluctuations. Experimental results demonstrated that the proposed VSBJ was
capable of changing stiffness in the rotational directions within a large range by controlling
the supplied air pressure. In the free state of the VSBJ (at the pressure of 11 kPa), the ball
joint was able to resist approximately 0.2 N external force around the center of the ball
with the moment arm length of 18 mm. Thus, the VSBJ can resist the maximum external
torque of 3.6 N·mm in its free state. With the increase in the supplied air pressure, a higher
stiffness enhancement can be obtained. At the input pressure of 400 kPa, the VSBJ was
capable of resisting the external force of approximately 28.25 N that can lead to the torque
of 508.11 N·mm.
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different air pressures.

3.2. Twisting Stiffness Evaluation

The experimental setup for evaluating the twisting stiffness of the VSBJ was illustrated
in Figure 10. The methods of measuring the pulling force and twisting angles were the
same as that used in the measurement experiments for rotating stiffness. A 3D printed
part (3DP-Part-T shown in Figure 10) was used to allow the inner ball of the VSBJ to twist
around the Z axis while limiting its rotations around the X and Y axis. The relationship
between the stiffness of the VSBJ in the twisting direction and the supplied air pressure
was investigated. Similar to the experiments on rotational stiffness measurement, an initial
pressure of 11 kPa was supplied to the soft pneumatic elastomer actuator and the twisting
stiffness of the VSBJ at the pressure of 11 kPa was determined as the reference value in the
free state.
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Figure 10. The experimental setup for measuring the twisting stiffness of the VSBJ.

During the experiments, the VSBJ was twisted ranging from 0 to 20 degrees by the
force gauge through the linear motorized module at 1.25 mm/s constant speed. Ft is the
applied pulling force along the Y-axis perpendicular to the short bolt inserted through the
rod of the inner ball, as illustrated in Figure 11a. The distance from the point of application
of the pulling force to the twisting center was 18 mm. The test for each input pressure was
repeated five times. The pulling force with respect to the twisting angles was recorded and
the obtained data were converted into torque by Equation (2). Figure 11b illustrated the
mean value (solid line) and standard deviation (shaded area) of the external torque that the
VSBJ can withstand in the twisting direction at different input air pressures from 100 to
400 kPa with an interval of 100 kPa. From the experimental results, sudden increments and
fluctuations in force were also observed. Similarly, the maximum torque in the twisting
direction provided by the static friction was defined as the highest stiffness enhancement
that the VSBJ can provide. The situations that fluctuations happened were considered as the
failure for the VSBJ to resist the external load. In the free state, the VSBJ was with the ability
to resist approximately 0.32 N external force around the Z axis with the moment arm length
of 18 mm. As expected, supplying a higher air pressure led to an increase in the twisting
stiffness of the VSBJ. At the input pressure of 400 kPa, the VSBJ was capable of resisting the
external force of approximately 31.84 N that can lead to the torque of 571.93 N·mm.

Tt = Ft·d· cos β (2)
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3.3. Customizations of the VSBJ

The proposed VSBJ can be modularized by redesigning the connectors (illustrated in
Figure 12a). As illustrated in Figure 12b, four VSBJs and three links were employed to build
a passive robot arm. The arm can be lengthened or shortened by modulating the number
of joints and links according to different applications. It was capable of being manually
moved to the target position in the free state and being quickly stiffened by triggering the
variable stiffness mechanisms. Additionally, the stiffness of each VSBJ of the arm allowed
to be independently controlled. The manipulation of the passive robot arm was shown in
the Supplementary Video S1.
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Figure 12. The modularization of the VSBJ: (a) Schematic illustration of the redesigned connectors;
(b) assembled passive robot arm with variable stiffness including four VSBJs and three links.

The VSBJ is with three rotational degrees of freedom around the coordinate axis and
it can be easily customized to form the variable stiffness revolute joints with one or two
degrees of freedom, as illustrated in Figure 13. Figure 13a showed the twisting joint with
variable stiffness. A 3D printed part was positioned on top of the inner ball and fixed
with the socket of the VSBJ. It was able to allow the inner ball to twist around the Z axis
and restrict the rotational movements around the X and Y axis. Figure 13b presented the
variable stiffness revolute joint with one degree of freedom. The rotational movements
around the X and Z axis were limited by the 3D printed parts. The revolute joint can only
be rotated around the Y axis. Figure 13c illustrated the variable stiffness revolute joint with
two degrees of freedom. The revolute joint allowed the inner ball to rotate around the Y axis
while rotating around the Z axis. Only the rotation around the X axis was limited in this
design. All these joints mentioned above possessed the same variable stiffness mechanism
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with the VSBJ. The operations of the variable stiffness joints mentioned above were shown
in the Supplementary Video S2.
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the socket of the VSBJ. It was able to allow the inner ball to twist around the Z axis and 
restrict the rotational movements around the X and Y axis. Figure 13b presented the vari-
able stiffness revolute joint with one degree of freedom. The rotational movements around 
the X and Z axis were limited by the 3D printed parts. The revolute joint can only be ro-
tated around the Y axis. Figure 13c illustrated the variable stiffness revolute joint with two 
degrees of freedom. The revolute joint allowed the inner ball to rotate around the Y axis 
while rotating around the Z axis. Only the rotation around the X axis was limited in this 
design. All these joints mentioned above possessed the same variable stiffness mechanism 
with the VSBJ. The operations of the variable stiffness joints mentioned above were shown 
in the Supplementary Video S2. 

 
Figure 13. The customized variable stiffness joints based on the VSBJ: (a) The variable stiffness twist-
ing joint; (b) the variable stiffness revolute joint with one degree of freedom; (c) the variable stiffness 
revolute joint with two degrees of freedom. (The right image in each subfigure shows the sectional 
view of its corresponding variable stiffness joint). 

4. Conclusions and Future Work 
Departing from the existing approaches to ball joints with tunable stiffness function-

alities, a new design of the ball joint with variable stiffness is proposed in this research. 
Owing to the selective laser sintering (SLS) technology, the ball joint structure can be 3D 
printed as an integral mechanism without the need of assembly, thereby avoiding fas-
tening components. Therefore, the proposed VSBJ can be miniaturized. A support plat-
form was designed and combined with the socket to form the variable stiffness mecha-
nism for resisting the rotational movements of the inner ball. The stiffness of the VSBJ was 
dependent on the friction force between the socket, the inner ball and the support 

Figure 13. The customized variable stiffness joints based on the VSBJ: (a) The variable stiffness
twisting joint; (b) the variable stiffness revolute joint with one degree of freedom; (c) the variable
stiffness revolute joint with two degrees of freedom. (The right image in each subfigure shows the
sectional view of its corresponding variable stiffness joint).

4. Conclusions and Future Work

Departing from the existing approaches to ball joints with tunable stiffness function-
alities, a new design of the ball joint with variable stiffness is proposed in this research.
Owing to the selective laser sintering (SLS) technology, the ball joint structure can be 3D
printed as an integral mechanism without the need of assembly, thereby avoiding fastening
components. Therefore, the proposed VSBJ can be miniaturized. A support platform
was designed and combined with the socket to form the variable stiffness mechanism
for resisting the rotational movements of the inner ball. The stiffness of the VSBJ was
dependent on the friction force between the socket, the inner ball and the support platform.
The design of the support platform was optimized by using finite element analysis. A
soft pneumatic elastomer actuator was used to enable the variable stiffness mechanism
to be actuated by pneumatic actuation. The stiffness of the VSBJ was dependent on the
air pressure supplied to the soft pneumatic elastomer actuator. Experimental results have
demonstrated a significant variation in stiffness at different pressure values. The higher
stiffness of the proposed VSBJ can be obtained by increasing the supplied air pressure.
The proposed VSBJ possessed the key features, including simple structure, fast response,
‘zero’ stiffness, positive pressure actuation and MRI compatibility. The stiffness of the VSBJ
was independent on the position of the inner ball relative to its socket. Additionally, the
proposed VSBJ can be used as a module for building the variable stiffness arm. It can
also be customized to form the variable stiffness revolute joints with one or two degrees
of freedom.

The limitation of the proposed VSBJ is the abrasion between the inner ball and the
socket due to friction. As for such friction-based stiffness variable mechanisms, abrasion is
inevitable. The proposed VSBJ can be connected with links to form a positioning arm as
described above. A future extension of this research will be adding the actuation mechanism
based on pneumatic actuation for this passive robotic arm.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14173542/s1, Video S1: the manipulation of the passive
robot arm including four VSBJs and three links; Video S2: the operations of the customized variable
stiffness joints based on the VSBJ.
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