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Optimization is the process of achieving the best solution for a problem. LabVIEW based on an SVM model is proposed in this
paper to get the best SVM parameters using the hybrid CS and PSO method. PCA is used as a preprocessor of SVM for reducing
the dimension of data and extracting features of training samples. Also, SVM parameters are optimized for Parkinson’s disease
data by combining CS and PSO. 'e designed system is used to determine the best SVM parameters, and it is compared to PSO
and CS optimization methods and found that the used CS-PSO hybrid optimization method is better. 'e hybrid model shows
that the accuracy of the performance achieved is 97.4359%. Also, the data classification results obtained by using SVM parameters
determined by optimization are measured by precision, recall, F1 score, false positive rate (FPR), false discovery rate (FDR), false
negative rate (FNR), negative predictive value (NPV), and Matthews’ correlation coefficient (MCC) parameters.

1. Introduction

Parkinson’s disease (PD) is a neurological disorder that
affects the standard of life of the patients and their relatives.
PD is more widespread in countries where the pretty old
population is high. According to statistics, in the US, about
one million people will be affected with Parkinson’s disease
(PD) by 2020 and more than 10million people worldwide
will be living with PD. 'e possibility of men with Par-
kinson’s disease is 1.5 times higher than that of women [1].
'e main symptoms of this disease are tremor-trembling,
stiffness in the body, slowness of movements, and impaired
balance. As the disease progresses, patients may experience
difficulty in vital tasks such as walking, speech, swallowing,
and chewing, emotional changes, and sleep disorders. PD
symptoms occur slowly, and in some people, the disease
progresses faster than others. 'e intensity of the symptoms
varies from person to person and does not create the same
effect [2]. Although there is no treatment method to
eliminate this disease completely, drug treatment is applied
to reduce the symptoms seen in the early stages of the
disease. For diagnosis of the disease, walking and vocal
analysis methods are used. Machine learning methods have

been used to diagnose the disease [3]. Among supervised
learning algorithms, support vector machine (SVM) is based
on statistical learning theory and is the most effective al-
gorithm for predicting performance for nonlinear problems.
It has high generalization capabilities. SVM is a powerful
technique for overcoming classification problems, image
processing, and disease diagnosis with excellent
performance.

Before the SVM is applied, a “feature transformation”
operation must be performed, which is the process of
transforming the data into a new set of data at a dimension
that can express less features. With this, dimension of data
reduces and excessive numbers of unimportant features are
removed. In this study, PCA is used for dimension
reduction.

In cases where the difference between the reduced di-
mension data is too high, the normalization process is
performed to handle the data in a single order. In addition,
normalization is also used which makes use of mathematical
functions to move data in different scaling systems to a
common system and make them comparable. In this study,
the Z-score normalization method is used. Z-score is cal-
culated by subtracting the average value from each variable
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value and dividing the obtained difference by the standard
deviation.

Particle swarm optimization (PSO) is an optimization
technique designed to deliver the best solution to the system.
Also, the cuckoo search algorithm (CS) is another optimi-
zation method. It has less parameters, easy to implement,
and efficient. In this paper, both of them are used for op-
timization of SVM parameters.

1.1. Motivation. Accurate and reliable diagnosis is very
important for human health. In this study, different opti-
mization algorithms have been used to obtain the best SVM
parameters for predicting Parkinson’s disease. 'e proposed
hybrid CS-PSO-SVM model provided an accuracy of
97.4359% and is superior to the PSO-SVM and CS-SVM
models.

1.2. Contribution

(i) A different work environment for researchers has
been proposed using LabVIEW, a visual pro-
gramming language instead of only text-based
programming languages

(ii) Hybrid optimization methods are used for obtaining
the best SVM parameters

1.3. Sections. 'e paper is organized as follows: In Section 2,
used data are described. In Section 3, PCA, SVM, PSO, and
CS are explained. In Section 4, the LabVIEW programming
language and information about its features are given. In
Section 5, the proposed model CS-PSO-SVM is described. In
Section 6, experimental results are given. 'e last section of
the study includes discussion and conclusions.

2. Dataset and Features

Appropriate C value parameter is chosen [4]. 'e attributes
of these data which are related to biomedical voice mea-
surements are given in Table 1.

3. Description of Used Techniques

Dimension reduction and normalization procedures were
performed to extract properties from the used data to ensure
that they are in a single order. 'en, optimization methods
are applied to SVM. Figure 1 shows the diagram of the used
techniques.

3.1. Principal Component Analysis (PCA). PCA is a tech-
nique that has a wide range of uses for reducing the in-
significant features of the data. 'e idea underlying the PCA
is to represent a data plane by separating it into orthogonal
axes to reflect the data in small linear combinations. In other
words, PCA reduces the data dimension to extract features.
Figure 2 shows the used dimension reduction program on
LabVIEW.

3.2. Normalization with Z-Score. Statistical normalization is
performed to treat the data in a single order when there is a
lot of difference between the data. Also, another objective is
to use mathematical functions to translate data from dif-
ferent systems into a common system and make them
comparable. In the Z-score normalization, the numbers are
normalized to the distance of the mean value. In addition,
dividing by standard deviation, the mobility between
numbers (rate of change) normalizes the distance to the
average. In other words, the mean and standard deviation
values are taken into account. Standard deviation, mean, and
Z-score are calculated by using the following equations,
respectively:
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3.3. Support Vector Machine (SVM). SVM is an important
tool for machine learning (ML) derived from statistical

Table 1: Attributes of used data.

Number Attributes Information
1 MDVP:Fo (Hz) Average vocal fundamental frequency

2 MDVP:Fhi
(Hz)

Maximum vocal fundamental
frequency

3 MDVP:Flo
(Hz)

Minimum vocal fundamental
frequency

4 MDVP:Jitter
(%)

Several measures of variation in the
fundamental frequency

5 MDVP:Jitter
(Abs)

6 MDVP:RAP
7 MDVP:PPQ
8 Jitter:DDP

9 MDVP:
Shimmer

Several measures of variation in
amplitude

10 MDVP:
Shimmer (dB)

11 Shimmer:
APQ3

12 Shimmer:
APQ5

13 MDVP:APQ
14 Shimmer:DDA
15 NHR Two measures of ratio of noise-to-

tonal components in the voice status16 HNR
17 RPDE Two nonlinear dynamic complexity

measures18 D2
19 DFA Signal fractal scaling exponent
20 Spread1 'ree nonlinear measures of the

fundamental frequency variation21 Spread2
22 PPE
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learning theory [5–8]. SVM is one of the most used algo-
rithms for classification and regression tasks because it has
high performance and generalization capability [9–14]. 'e
main idea behind SVM is to obtain a linear discriminatory
function that separates classes from each other by a hyper-
plane. SVM finds the hyperplane which maximizes the
margin between samples and the class boundary for linearly
separable data, but for real-world applications, as shown in
Figure 3, the nonlinear transformations with the kernel
functions are essential to move the datasets to spaces that can
linearly separate and classify them [15, 16]. Transfer process of
input data to the property plane is shown in Figure 4.

'eoretically, any linearly separable SVM can be cor-
rectly classified. For a linearly separable dataset, there are n
samples of training data with two classes expressed as

x1, y1( 􏼁, . . . . . . . . . , xn, yn( 􏼁, x ∈ R
d
, y ∈ 1,−1{ }. (2)

'ese data can be separated from each other by the
separator function given by

D(x) � (w × x) + w0. (3)

'e following equations are used for correct
classification:

w × xi( 􏼁 + w0 ≥ +1, yi � +1, (4)

w × xi( 􏼁 + w0 ≤−1, yi � −1. (5)

'e appropriate values of w and w0 are calculated to find
the optimal separator hyperplane. For real-world data, data
samples cannot be distinguished linearly. For this reason,

defining a feature mapping function is needed. 'is
function is called the kernel function. 'e basic idea of
kernel methods is to use nonlinear mapping on the input
plane first and then apply a linear algorithm to the new
input. 'e training phase is the K kernel function of the
data in this plane:

K � φ xi( 􏼁 · φ xj􏼐 􏼑, (6)

which will depend on the inner products. Decision function
is

f(x) � 􏽘
ls

i�1
αiyiφ xi( 􏼁φ(x) + b � 􏽘

ls

i�1
αiyiK xi, x( 􏼁 + b. (7)

In this function, αi values are positive Lagrange multi-
pliers. ls is the number of support vectors, and xi is the
support vector [17].

Data Dimension
reduction Normalization

PSO-SVM

CS-SVM

CS-PSO-
SVM

Optimization
methods

Results

Figure 1: 'e diagram of the used techniques.

Figure 2: Dimension reduction program for PCA on LabVIEW.

Nonlinear separation

Misclassified points

Class 2, y = –1

Class 1, y = +1

Figure 3: Nonlinear SVM.

ΦX φ(X)

Figure 4: Transfer of input data to the property plane.
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Polynomial kernel, sigmoid kernel, and Gaussian kernel
functions are used commonly to find the optimal hyperplane
to distinguish linearly nonseparable data.

(i) Gaussian kernel:
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(ii) Polynomial kernel:

K xi, xj􏼐 􏼑 � xi · xj + a􏼐 􏼑
b
. (9)

xy is the dot product of x and y. nth order of this
product is a polynomial kernel. 'e infinite totaled
expression containing all polynomial kernel from the
0th to the infinite order is Gaussian kernel. 'erefore,
Gaussian is a special kernel and shows good
performance.

In order to classify with SVM, the first thing to do is to
select a kernel function and related parameters that allow
linear separation of the data. For classification of data, the
following equation is obtained:

Kij � yiyjφ xi( 􏼁 · φ xj􏼐 􏼑. (10)

Appropriate C value parameter is chosen and α is found:
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Provided the 0≤ αi ≤C condition, support vectors V are
determined:

b �
1

Nv

􏽘
v∈V

yv − 􏽘
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3.4. Particle SwarmOptimization (PSO). Optimization is the
process of achieving the best solution for a problem. Since
the methods used in optimization problems defined by
mathematical functions are not flexible and the desired
result cannot be achieved, new methods have been de-
veloped with reference to natural phenomena and PSO is the
most common of these algorithms. Inspired by fish and
insects moving in flocks, Kennedy and Dr. Eberhart de-
veloped PSO in 1995 [18, 19]. It has been shown that the
random movements of animals that move in flocks to meet
their vital needs are influenced by the other members of the
flock and are easier to reach for the purpose of the flock.'is
process is done for determining the location of the particle
with the best position in the stream and the other particles to
move in that direction. 'e particles aim to improve their
next position based on their past experience and the indi-
vidual with the best position in the pack. 'e PSO algorithm
is an evolutionary algorithm like genetic algorithm (GA).
However, PSO is faster than GA because there are no op-
erators such as crossover and mutation.

'e basic PSO algorithm: every individual in the swarm
can be a solution, and every individual is represented by the
dimension vector:

xi � xi1, xi2, xi3, . . . , xi D( 􏼁 ∈ S. (13)

'e speed of each individual in the herd is randomly
generated. Each individual has the same speed as in equation
(14):

vi � vi1, vi2, vi3, . . . , vi D( 􏼁 ∈ S. (14)

'e best local and global positions are determined. Here,
the position of each individual is defined as follows:

pi � pi1, pi2, pi3, . . . , pi D( 􏼁 ∈ S. (15)

Each individual in the PSO adjusts its position around
the individual to pbest, global, and gbest. 'e speed and
position information of the individuals are given in the
following equations:

v
(t+1)
i � v

(t)
i + c1rir1 ∗ pbest(t)

i − x
(t)
i􏼐 􏼑 + c2ri2 ∗ gbest−x

(t)
i􏼐 􏼑,

(16)

x
(t+1)
i � x

(t)
i + v

t+1
i , i � 1, . . . , P. (17)

Here, c1 and c2 are two social and cognitive acceleration
parameters. r1 and r2 are random numbers between [0, 1].
Figure 5 shows the pseudocode of the PSO.

3.5. Cuckoo Search Algorithm (CS). CS is a next-generation
optimization method based on the hatching parasitic nature
of cuckoo birds [21–23]. 'e most effective features that
separate cuckoos from other birds and subject them to the
optimization algorithm are aggressive breeding strategies. If
the host bird finds that the eggs are not its own, it shows the
behavior of throwing the egg from the nest or abandoning
the nest. If the eggs are not recognized, the host bird sits on
these eggs and the condition of brood parasitism arises. In
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the CS algorithm, each egg represents a new solution, while
each solution is a cuckoo egg. 'e purpose of this is to use
better new solutions to replace the existing poor solution in
the nest. As with any optimization problem, CS also has
some restrictions that are each cuckoo can leave only one egg
in a randomly selected nest and if the nest has a high-quality
egg, then the egg is transferred to future generations.

Dropped eggs can be familiarized by the host with a
probability of Pa. 'e probability of Pa changes in the range
[0, 1], and the number of host nests is fixed. Heuristic
optimization algorithms perform global and local searches
while approaching the best solution. 'e CS algorithm is an
algorithm that is used in combination with global random
walk and local random walk approaches.

'e global random walk performed with a Levy flight is
performed with equation (18). Here, the value produced by
the Levy flight is weighted by the variable α and is summed
to its old position. 'us, new locations are found. s and λ are
control parameters:

x
t+1
i � x

t
i + αL(s, λ). (18)

Local random walk is performed with equation (19).
Here, xt

j and xt
k are the random permutations, H(u) the

Heaviside function, s the step length, and α a random real
number from the Gaussian distribution:

x
t+1
i � x

t
i + αs⊗H Pa −∈( 􏼁⊗ x

t
j − x

t
k􏼐 􏼑. (19)

4. LabVIEW

'e emerging technology needed the development of object-
oriented programming languages instead of text-based
programming languages. 'us, visual programming was
possible without writing code. With National Instruments’
development of the LabVIEW program, it was possible to
program the model graphically with ready-made functions,
and there was no need to write code. With LabVIEW
(Laboratory Virtual Instrument EngineeringWorkbench), it
was possible to make programs more quickly and to avoid
time loss. LabVIEW generally uses a data flowmodel instead
of text codes. Also, LabVIEW has an ability of multiple
parallel processes [24].

LabVIEW consists of two components: the first one is
the front panel that is the user interface and the second one is
the block diagram in which graphical codes are shown. Both
of them are shown in Figures 6 and 7, respectively. Inputs
connected to the virtual instrument on the front panel are
called controls, while the outputs are called indicator. 'e
control palette is used in the front panel, and the function
palette is used in the block diagram. 'e control palette
allows access to various controls and indicators and is
displayed only on the front panel. In the same way, the
function palette also allows access to blocks with various
functions to design a system and is displayed only in the
block diagram. With LabVIEW, subVI can be created just
like a VI. Also, a subVI can be created from code already
within another VI. 'e created subVI, with the customized
icon and the configured terminals, is used within other VIs
repeatedly. 'e subVI prevents the program from appearing
too crowded. As a matter of fact, subVI was used in this
study.

5. The Proposed Methods

In this study, PSO-SVM, CS-SVM, and CS-PSO-SVM
methods are compared with each other. 'e created hy-
brid program in the LabVIEW environment is shown in
Figure 8. Optimization algorithms are used to find the best
SVM parameters. To get these parameters, subVI is created
for each optimization method. subVI is frequently used in
LabVIEW such as in other programming languages. With
subVI, the created program is simplified and is prevented
from appearing crowded.

'e classification performance results obtained by using
SVM parameters determined by optimization are measured
by accuracy, precision, recall, F1 score, false positive rate
(FPR), false discovery rate (FDR), false negative rate (FNR),
negative predictive value (NPV), and Matthews’ correlation
coefficient (MCC) parameters. 'ese parameters are ob-
tained by the confusion matrix. A confusion matrix is shown
in Table 2.

5.1. Accuracy. Accuracy is the correct classification ratio:

accuracy �
(TP + TN)

(TP + TN + FP + FN)
. (20)

5.2. Precision. Precision is a situation that shows success in a
positively predicted situation:

precision �
TP

(TP + FP)
. (21)

5.3. Recall. Recall shows how well the positive cases are
estimated:

recall �
TP

(TP + FN)
. (22)

Step 1: Create starting swarm, speeds and positions.

Step 2: Calculate the fitness value of all the particles in the swarm. 

Step 3: Compare all the particles to the best of the previous generation. Change

the place if it’s better.

Step 4: Compare best local values amongst themselves and assign the best one 

as the best of the global.

Step 5: Refresh speed and position values.

Step 6: Stopping criteria

YES Results

If NO go to step 2

Figure 5: 'e pseudocode of the PSO [20].
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5.4. F1 Score. F1 score is the harmonic average of precision
and recall:

F1 score �
2(precision∗ recall)
(precision + recall)

. (23)

5.5. FalsePositiveRate (FPR). FPR, sometimes called the fall-
out, is the ratio of misclassified events (FP) to all actual
negative events:

FPR �
FP

(FP + TN)
. (24)

5.6. FalseDiscovery Rate (FDR). FDR is the expected percent
of false predictions in a set of predictions:

FDR �
FP

(FP + TP)
. (25)

5.7. False Negative Rate (FNR). FNR, sometimes called the
miss rate, is the proportion of individuals with a known
positive condition for which the test result is negative:

FNR �
FN

(FN + TP)
. (26)

5.8. Negative PredictiveValue (NPV). NPV is the proportion
of individuals with a negative test result for which the true
condition is negative:

NPV �
TN

(TN + FN)
. (27)

5.9. Matthews’ Correlation Coefficient. MCC is a reliable
metric used to assess the quality of binary classifiers by
taking into account TP, TN, FN, and FP. In fact, MCC is a
correlation coefficient between the actual and predictor
labels. 'is parameter takes a value between −1 and +1. 'e
+1 coefficient means an excellent estimate, 0 indicates that
the classifier is not better than random estimates, and −1
means a discrepancy between the actual and predicted values
[25]:

MCC �
(TP × TN)−(FP × FN)

�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

􏽰 .

(28)

6. Experimental Results

'e dataset used in the study is obtained from [4] and has
195 instances and 22 attributes. It is composed of a range of
biomedical voice measurements from 31 people. 'e dataset
information is listed in Table 3. Table 4 lists the appropriate
values of the parameters for PSO-SVM, CS-SVM, and CS-
PSO-SVM, and the comparison of the models is given in
Table 5.

'e Pa parameter in Table 4 is usually selected in the
range [0, 1]. In this study, the program was run for different
Pa parameters, and more successful results were obtained for
Pa � 0.262.

As can be seen in Table 5, the performance of the
proposed hybrid model is more superior to that of others.

'e population average fitness value for the used dataset
is shown in Figure 9 for each method. Also, error rates are
shown in Figure 10.

7. Discussion and Conclusion

Accurate and reliable diagnosis is very important for human
health. Different optimization algorithms have been used for
optimizing the SVM parameters in this paper. 'e aim of
this paper is to find the best SVM parameters with the hybrid
CS-PSO optimization method and obtain best classification
accuracy. For this, to analyze the performances of the used
methods, the programs were run several times, and the
results are presented as tables. Table 4 shows the appropriate

Figure 6: LabVIEW front panel.

Figure 7: LabVIEW block diagram.
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Table 3: Dataset information.

Number of instances Number of attributes Normal PD
195 22 8 23

Table 4: Parameter settings.

Method Population size Iteration c1 c2
PSO-SVM 18 120 1.3 1.87
CS-SVM (Pa � 0.262) 18 120 — —
CS-PSO-SVM (Pa � 0.262) 18 120 1.3 1.87

Table 5: Obtained results.

Method Accuracy (%) Precision (%) Recall (%) F1 measure (%) FPR FDR FNR NPV MCC
PSO-SVM 82.05 88.89 57.14 69.57 0.04 0.1111 0.4286 0.80 0.6051
CS-SVM 92.3077 83.33 90.91 86.96 0.0714 0.1667 0.0909 0.9630 0.8167
CS-PSO-SVM (Pa � 0.262) 97.4359 100 90.91 95.24 0 0 0.0909 0.9655 0.9369

Figure 9: Population average fitness value.

Figure 8: 'e created hybrid program.

Table 2: Confusion matrix.

Prediction
Actual

Positive Negative
Positive TP FP
Negative FN TN

Parkinson’s Disease 7



algorithm parameters of different methods used for classi-
fication. 'e performances of the used models are shown in
Table 5, and the results show that the best result is obtained
by the hybrid model (CS-PSO).

'e proposed model achieves a classification accuracy of
97.4359%, while this rate is 92.3077% in CS-SVM and
82.05% in PSO-SVM. 'e MCC contains all parameters in
the confusion matrix. 'e higher value of MCC proves that
the proposed classification method is successful. As shown
in Table 5, the highest MCC value was obtained with the
proposed hybrid algorithm.

As results of this study, hybrid models created by
combining the good characteristics of different optimization
algorithms can be used to find the parameters of the clas-
sification methods, and the success rate of the model can be
increased.

In an increasingly widespread LabVIEW environment, it
is possible to quickly create subprograms and to obtain
results quickly.
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'e data that support the findings of this study are available
from the authors upon reasonable request.
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