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ARTICLE INFO ABSTRACT

Keywords: The enteric virome, comprising a complex community of viruses inhabiting the gastrointestinal
Bocarparvovirus tract, plays a significant role in health and disease dynamics. In this study, the fecal sample of a
Virome

wild snow leopard was subjected to viral metagenomic analysis using a double barcode Illumina

f;il;)::else()pard MiSeq platform. The resulting reads were de novo assembled into contigs with SOAPdenovo2
M . version r240. Additional bioinformatic analysis of the assembled genome and genome annotation
etagenomics

was done using the Geneious prime software (version 2022.0.2). Following viral metagenomic
analysis and bioinformatic analysis, a total of 7 viral families and a novel specie of bocaparvovirus
tentatively named Panthera uncia bocaparvovirus (PuBOV) with GenBank accession number
0Q627713 were identified. The complete genome of PuBOV was predicted to contain 3 open
reading frames (ORFs), contains 5433 nucleotides and has a G + C content of 47.40 %. BLASTx
analysis and pairwise sequence comparison indicated the novel virus genome was a new species
in the genus Bocaparvovirus based on the species demarcation criteria of the International Com-
mittee on the Taxonomy of Viruses. This study provides valuable insights into the diversity and
composition of the enteric virome in wild endangered snow leopards. The identification and
characterization of viruses in wildlife is crucial for developing effective strategies to manage and
mitigate potential zoonotic and other viral disease threats to human and animal health.
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1. Introduction

The gut virome of wild animals are considered reservoirs for emerging and reemerging viruses [1], and the surveillance of viral
pathogens in wildlife is critical for the prevention and control of emerging and reemerging viral infectious diseases in humans and
animals [2,3]. Due to this, there has been a growing effort to employ metagenomic approaches to document the broad spectrum of viral
diversity of wildlife species [2]. One the commonly encountered viruses in the enteric virome of wild animals is Parvoviruses.

Parvoviruses belonging to the Parvoviridae family are small non-enveloped viruses with icosahedral symmetry, and carrying single-
strand negative DNA of 4-6 kilobases (kb) as genetic material [4]. At present, the Parvoviridae family is divided into three subfamilies:
Densovirinae and Parvovirinae, which infect arthropods and vertebrates respectively, and the newly discovered subfamily Hama-
parvovirinae, which can cause infections in both [5,6]. The Parvovirinae subfamily is subdivided into ten genera: Tetraparvovirus,
Protoparvovirus, Amdoparvovirus, Bocaparvovirus, Artiparvovirus, Erythroparvovirus, Aveparvovirus, Dependoparvovirus, Loriparvovirus,
and Copiparvovirus [6]. Bocaparvovirus (BOVs) and other parvoviruses share a number of distinguishing characteristics, but unlike
most parvoviruses, BOVs has three open reading frames (ORFs) in their genome [7]. Bocaparvoviruses are important diseases causing
agents that have a broad host range [8]. The fecal-oral route is a common way for bocaparvoviruses to infect animals. Young animals
and humans can develop respiratory and gastrointestinal symptoms from bocaparvoviruses [9,10], although adults are frequently
asymptomatic [5]. The virus can spread horizontally to other people when it is discharged from the respiratory or digestive system of
an infected host. So far, bocaparvoviruses have been identified from a variety of animal hosts; cats [8,11], pigs [12], California sea
lions [13], gorillas [14], dogs [15] bats [16] and rats [17] which suggested that they have a very broad host range. BOVs are known to
undergo a high incidence of genetic recombination [18,19], and can be disseminated across species to new hosts [20]. Feline boca-
parvovirus was initially discovered in samples collected from stray cats in Hong Kong [21]. Since then, utilizing high-throughput
sequencing technologies, they have been found in cats in various nations.

The snow leopard (Panthera uncia) is commonly found in the snow mountain ranges of South and central Asia, and has a distri-
bution range that covers 1.2-1.6 million km?, spanning over 12 countries, and has long been one of the least studied, and hence poorly
understood, of the large cats [22]. The International Union for the Conservation of Nature’s (IUCN) classified it as vulnerable in their
red list of threatened species. The majority of infectious illnesses that are known to infect domestic cats are probably contagious in
snow leopards [23]. The most frequent disease transmission methods in snow leopards are probably direct channels, which involve
both intraspecies contact (mating and socializing) and interspecies interaction with wild and domestic prey, other carnivores, and
scavengers [24]. Disease transmission may also occur through indirect channels such drinking water, animal carcasses, and human
activity [25].

There is a dearth of published information on infectious diseases affecting free-ranging snow leopards, owing to their remote and
inaccessible habitat, in addition to the species’ elusive nature. Due to this, there is very limited information regarding the prevalence
and thus potential threat of infectious diseases to which wild snow leopards are susceptible to, as well as the microorganisms that are
most frequently identified in the species. This study is therefore aimed at evaluating the fecal virome of a wild snow leopard using
metagenomic and bioinformatic tools to determine the viral composition, with a view to identify potential viral pathogens that can
affect this felid.

2. Materials and methods
2.1. Sample collection and viral nucleic acid extraction

The fecal sample of the snow leopard was collected at the mountain range of Heilongjiang province in NorthEast China by wildlife
experts using sterile disposable containers and transported to the laboratory on dry ice. About one gram of the fecal sample was re-
suspended in 2 mL of phosphate-buffered saline (PBS), vigorously vortexed for 5 min, and then centrifuged for 10 min at 15000 g.
To eliminate bacterial and eukaryotic cell-sized particles, the supernatant from centrifugation was collected and filtered through a
0.45-m filter (Merck Millipore, MA, USA). The viral-enriched filtrate was collected and treated with nuclease enzymes (Qiagen) at
37 °C for 60 min to digest unprotected nucleic acids. Viral nucleic acids were extracted by using the QIAamp MinElute Virus Spin Kit
(Qiagen) according to the manufacturer’s protocol.

2.2. Library construction and bioinformatics analysis

cDNA of viral RNA was synthesized by reverse transcription, then Klenow Fragment DNA polymerase (New England Biolabs, USA)
was used to generate the complementary chain of cDNA. A Nextera XT DNA Sample Preparation Kit (Illumina) was then used to create
a 250-bp paired-end cDNA library, and the sample was sequenced using a double barcode Illumina MiSeq platform. The generated
paired-end reads were debarcoded using vendor software from Illumina, and the adaptors removed using VecScreen’s default settings.
The Phred quality score of 10 was used as the threshold to remove tails of low sequencing quality. Bacterial reads were removed by
mapping to the bacterial nucleotide sequences from the BLAST NT database using Bowtie2 v2.2.4. The cleaned reads were de novo
assembled into contigs with SOAPdenovo2 version r240 using Kmer size of 63 [26]. The assembled contigs were matched to an
in-house viral proteome database using BLASTx with an E-value cutoff of <107° [27]. To eliminate false-positive viral reads, the
putative viral reads were then aligned to a custom-made non-virus non-redundant (NVNR) protein database [28]. For obtaining the full
genome sequence, each viral contig was used as a reference for mapping to the raw data using the Low Sensitivity/Fastest setting in
Geneious prime v11.1.2. Prediction of the open reading frames (ORF) was done using the ORF prediction function in Geneious prime
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version 2022.0.2 with default parameters [29].

2.3. Phylogenetic analysis

To evaluate the evolutionary relationship between PuBOV and other bocaparvoviruses, the reference genomes of 20 bocaparvo-
virus species were extracted from the GenBank database, with reference to the closest viral relatives determined by the best BLASTx hit
and representative members of related viral species or genera.From these genome sequences, the nonstructural protein 1 (NS1) and
viral capsid protein (VP1) nucleotide sequence were translated into amino acid sequences using the Geneious Prime software.
Sequence alignment of the NS1 and VP1 protein sequences was done with Muscle implemented in MEGA-X using the default settings
[30]. Phylogenetic trees of both NS1 and VP1 protein sequences were then generated using MrBayes software (version 3.1.2) [31] with
the parameters “Iset nst = 6 rates = invgamma”. This setting applied the GTR substitution model with gamma-distributed rate vari-
ation across sites and used a proportion of invariable sites (“GTR + I + I'’). Additionally, “prset aamodelpr = mixed” was employed to
enable the program to use the ten built-in amino acid models. The maximum number of generations was set to be ten million, and
sampling occurred at every 50 generations, with the first 25 % of Markov chain Monte Carlo (mcmc) samples being discarded as
burn-in. Convergence was confirmed when the standard deviation of split frequencies was below 0.01 [32]. To visually represent the
phylogenetic tree, it was visualized and edited by Figtree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and Adobe Illustrator
2020 v26.0.1.

2.4. Prediction of spatial structure of PuBOV structural protein VP1

The three-dimensional spatial structure of the viral structural protein of PuBOV was predicted using ColabFold [33]. In order to
predict and compare the similarity between the spatial structure of PuBOV structural protein VP1 and the structure encoded by the
currently known sequences, the sequence with the highest degree of identity to PuBOV structural protein VP1, feline bocaparvovirus
type 3 VP1 protein sequence was downloaded from the GenBank database and converted into the three-dimensional spatial structure
using ColabFold. The resulting spatial structures were imported into PyMOL software v2.0 in PDB format and subjected to pairwise
comparisons.

2.5. Confirmation of the fecal sample

To determine that the fecal sample used in this study is from snow leopard, we downloaded the mitochondrial genome of snow
leopard and mapped to reference with the raw reads of our metagenomic sequencing using the map to reference function on Geneious
prime software. This was done so as to search for any snow leopard mitochondrial contigs using our metagenomic sequencing reads as
reference. The presence of snow leopard mitochondrial contigs in the metagenomic sequencing reads will confirm that the feces sample
is from snow leopard.
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Fig. 1. A pie chart showing the relative abundance and percentage composition of the enteric virome detected in the snow leopard.
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3. Results

A total of 323,62400 reads was generated after sequencing, with an average GC content of 48.80 %, and the average coverage of the
sequencing is 57.326. After bioinformatic analysis, 7 viral families were detected. (Fig. 1). The result showed that the most abundant
virus family was Parvoviridae (92.25 % of the total analyzed virus reads), followed by the virus families of Genomoviridae (3.03 %),
Smacoviridae (1.18 %), Circoviridae (0.79 %), Picobinaviridae (0.56), Anelloviridae (0.39 %), and Adenoviridae (0.06 %). A novel
bocaparvovirus sequence tentatively designated as Panthera uncia bocaparvovirus (PuBOV) was also identified. The complete genome
of PuBOV was 5433 nt long (Fig. 2a), with a G 4+ C content of 47.40 %. Based on BLASTx analysis, the full nucleotide sequence of
PuBOV was most similar to feline bocaparvovirus 3 (accession number: ON595887) with which it shares 81.58 % sequence identity.
The genome organization of PuBOV was predicted to contain 3 open reading frames (ORFs) flanked by 5’ and 3’ untranslated regions
(UTRs). ORF1 (nt 269-2666) encodes a putative nonstructural protein, NS1 with 798 amino acids. The NS1 in PuBOV had less than 85
% amino acid identity with the NS1’s of other known members of Parvoviridae. ORF2 encodes a putative structural protein, VP1, of
1811 amino acids. The capsid protein VP1 had less than 85 % amino acid identity with that of other known members of Parvoviridae.
ORF3 encodes a highly phosphorylated nonstructural protein (NP1) of 231 aa and which shares a short overlapping sequence with NS1
and VP1.

Several conserved domains were identified in the NS1, these includes a replication start off domain (xxHxHxxxxx), located at amino
acid 543-552, an SF3 helicase domain with a binding Walker A loop (GxxxxGKT) which plays a critical role in DNA replication [34],
and Walker B’ loop (KxxxxGxxxxxxxK) (Fig. 2a). VP1 was found to contain a calcium-binding loop (YLGPF) at amino acid position
1057 to 1061 and the phospholipase catalytic residue (DxxAxxHDxxY) of a phospholipase A2 (PLA2) domain (Fig. 2b), which in
parvoviruses, is necessary for infectivity and viral particle release [35,36]. The VP1 also contains a glycine-rich (G-rich) at amino acid
position 170-181. Conserved polyadenylation signals were absent downstream of the putative NS1 and the VP1 protein-coding
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Fig. 2. The genome organization of PuBOV. The NS1 ORF is shown in brown, the NP1 ORF is shown in pink, while the VP1 is shown in purple. (A)
Identification of the replication initiator domain and SF3 helicase domain in the NS1 protein. (B) Identification of the phospholipase A2 (PLA2)
domain in the N-terminal portion of the VP1 protein. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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regions. PuBOV was most closely related to feline bocaparvovirus 3 according to Bayesian phylogenetic trees created based on the
amino acid sequences of the NS1 and VP1 proteins (Figs. 3 and 4). In this study, the VP1 protein structure comparison of PuBOV and
feline bocaparvovirus 3 gave a root mean square distance (RSMD) of 0.354 (Fig. 5). The result of the bioinformatic analysis for the
confirmation of the fecal sample revealed that 134 raw sequence reads can be mapped to the mitochondrial genome, and these 134
sequences reads produced the largest contig with sequence length of 677bp. A BLASTn analysis using this contig as a reference showed
that it has the highest sequence identity (98.82 %) to Panthera uncia isolate PUN mitochondrion, complete genome accession number
(KP202269).

4. Discussion

Next-generation sequencing (NGS) technology has been widely applied in virology, including the metagenomic characterization of
viruses in humans and animal [37]. Viral Metagenomics sequencing has radically changed our understanding of the diversity, structure
and evolution of the animal virome because of its ability to identify multiple viruses simultaneously and detect novel viruses [38]. In
this study, we utilized NGS to discover a novel bocaparvovirus, designated as Panthera uncia bocaparvovirus (PuBOV) in the fecal
sample of a snow leopard living in the mountain range of Heilongjiang province in NorthEast China. BOVs infect a wide range of hosts,
and often cause diseases of the gastrointestinal and respiratory tract [39]. In bocaparvoviruses, NS1 is the major nonstructural protein,
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Fig. 3. Bayesian consensus trees based on the NS1 amino acid sequences of bocaparvoviruses. The novel bocaparvovirus (PuBOV) is marked with a
red rhombus. The names of reference sequences, that contain both the GenBank accession number, the virus name and the percentage of sequence
identity to PuBOV are shown in black. Bootstrap values for the branches are shown. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 4. Bayesian consensus trees based on the VP1 amino acid sequences of bocaparvoviruses. The novel bocaparvovirus (PuBOV) is marked with a
red rhombus. The names of reference sequences, that contain both the GenBank accession number, the virus name and the percentage of sequence
identity to PuBOV are shown in black. Bootstrap values for the branches are shown. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

and is essential for DNA replication. As a relatively conserved protein, NS1 divergence is a common standard for species definition.
According to the current criteria of the International Committee on Taxonomy of Viruses (ICTV) (https://ictvonline.org/
virusTaxonomy.asp), a novel bocaparvovirus specie is defined as one that shares <85.0 % amino acid identity in the NS1 gene
with other species. The NS1 gene in PuBOV had less than 85 % amino acid identity with the NS1’s of other known members of
Parvoviridae and Based on these criteria, we propose that PuBOV should be classified as a member of a novel specie in the genus
Bocaparvovirus.

Phylogenetic analysis of both the NSI and VP1 amino acid sequence showed that PuBOV had the most evolutionary similarity with
Feline bocaparvovirus 3 (Figs. 3 and 4). The major capsid protein VP1 of bocaparvovirus is a protein that is essential for viral capsid
assembly and cell attachment during viral infection. Small RMSD values (0-2 A), shows that the percentage of protein structural
similarity is very high [40]. The low RMSD obtained in this study suggests that PuBOV and feline bocaparvovirus 3 may cause similar
infections, infect the same or closely related hosts, and share very similar conformational transitions in mediating cell attachment
during infectious entry. Feline bocaparvovirus 3 has been frequently detected in cases of Feline panleukopenia, which is a highly
contagious, life-threatening infectious disease in cats. characterized by high fever, vomiting and diarrhea [41]. Feline bocaparvovirus
3 can also infect cats sub-clinically [42] and have also been detected in healthy cats [41].

The genome analysis of PuBOV revealed that similar to other bocaparvoviruses, it expresses 3 ORFs namely NS1, NP1 and VP1. The
NS1 protein contains an N-terminal origin-binding domain, a helicase domain, and a C-terminal transactive domain, and is essential for
effective viral replication and generation of infectious virus [43]. NP1 is a small nonstructural highly phosphorylated protein encoded
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Fig. 5. Viral VP1 protein structural model visualization. PDB files were visualized and pairwise aligned using PyMOL v2.0 software.

by an ORF in the center of the viral genome, and is crucial in viral DNA replication and pre-mRNA processing [44]. NP1 is produced
from an ORF that coincides with the C-terminus of the NS1 and is conserved among all bocaparvoviruses. Although the amino acid
sequence of the NP1 of many bocaparvoviruses differs by just about 48 %, NP1’s functions are conserved [44]. The icosahedral capsid
protein (VP1) of PuBOV is 80 kDa and consists of 717 aa. The N terminal portion of the VP1 protein includes around 40 amino acids
that are conserved in most parvoviruses, but the remaining sequences of VP1 are very variable; this conserved domain has been
demonstrated to have secreted phospholipase A2 (sPLA2)-like enzymatic activity [45,46]. This activity has been suggested to be a key
for the efficient transfer of the viral genome from late endosomes/lysosomes to the nucleus to commence viral replication in parvo-
viruses, and amino acid substitution in the active site of the SPLA2 motif would inactivate enzymatic activity, disabling viral infectivity
[47,48].

The most striking feature of the fecal sample is the high prevalence (92.25 %) of Parvoviridae which are usually associated with
feline diarrhea [49]. Feline bocaparvovirus has been frequently detected in cases of Feline panleukopenia, which is a highly conta-
gious, life-threatening infectious disease in cats. characterized by high fever, vomiting and diarrhea [41]. However, the stool sample
collected for this study is not a diarrheal stool. This maybe because Feline bocaparvovirus can also infect cats sub-clinically [42], and
have also been detected in healthy cats [41]. In this study, the virome was found to include numerous other virus families, such as
Adenoviridea and Anelloviridae that have been reported to affect the health of felids, but whether any of them are associated with
disease in the snow leopard was not established. Because of their low relative abundance, we hypothesize that these other viral families
detected in the fecal sample may be existing as part of the normal gut flora of the snow leopard, or causing only inapparent or sub-
clinical infections.

The major limitation of the study is the limited sample size, largely due to the sparse population of snow leopards in the wild, and
their elusive nature. Nevertheless, this study provides a strong foundation for future efforts to understand the fecal virome of wild snow
leopards, which can aid in developing effective strategies to mitigate potential viral disease outbreaks and improve the overall con-
servation of endangered wild snow leopard populations. Although the novel bocaparvovirus identified in this study have not been
conclusively linked to any infections, early detection of such viruses in wild animals provides an opportunity to investigate potential
threats to wildlife, domestic animals and humans, and implement preventive measures to reduce spillover events. It is important to
continue the sampling in our study area and to expand into other regions of the snow leopard distribution range. Future studies are
needed to elucidate the possible etiologic role of PuBOV in feline diseases, prevalence, host range, cross-species transmission potential
and epidemiological significance.
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