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Abstract: Ovarian cancer is the most aggressive and lethal of all gynecologic malignancies. The
high activity of the MEK/ERK signaling pathway is tightly associated with tumor growth, high
recurrence rate, and treatment resistance. Several transcriptional signatures were proposed recently
for evaluation of MEK/ERK activity in tumor tissue. In the present study, we validated the perfor-
mance of a robust multi-cancer MPAS 10-gene signature in various experimental models and publicly
available sets of ovarian cancer samples. Expression of four MPAS genes (PHLDA1, DUSP4, EPHA2,
and SPRY4) displayed reproducible responses to MEK/ERK activity modulations across several
experimental models in vitro and in vivo. Levels of PHLDA1, DUSP4, and EPHA2 expression were
also significantly associated with baseline levels of MEK/ERK pathway activity in multiple human
ovarian cancer cell lines and ovarian cancer patient samples available from the TCGA database.
Initial platinum therapy resistance and advanced age at diagnosis were independently associated
with poor overall patient survival. Taken together, our results demonstrate that the performance of
transcriptional signatures is significantly affected by tissue specificity and aspects of particular exper-
imental models. We therefore propose that gene expression signatures derived from comprehensive
multi-cancer studies should be always validated for each cancer type.

Keywords: ovarian cancer; chemoresistance; MAPK

1. Introduction

Ovarian cancer is the fifth leading cause of death among all cancers in women, with
a mortality rate exceeding 60% [1]. Most ovarian cancers are high-grade serous ovarian
carcinomas (HGSOC), an epithelial tumor subtype that is distinguished by its high ag-
gressiveness, lack of approaches for early diagnosis, and therefore poor prognosis [2–4].
Current HGSOC treatment strategies revolve around the administration of platinum-based
chemotherapeutic agents (cisplatin, carboplatin, etc.) that initially are effective in most
cases. Subsequent relapse and acquired treatment resistance remain a major challenge [5–8].
Other drugs affecting cancer cells in either a systemic (taxanes, doxorubicin) or targeted
way (inhibitors of poly-(ADP-ribose)-polymerase, vascular endothelial growth factor, topoi-
somerase) are used to bypass platinum resistance, but eventually ovarian tumors develop
multi-drug resistance through various molecular mechanisms [9]. It is therefore very
important to establish new treatment approaches that would target either known resistance-
associated genes or new pro-oncogenic regulatory pathways.

While many regulatory circuits involved in ovarian cancer drug resistance were
known for a long time [9], new potentially targetable pathways are being revealed based
on genomic, epigenomic, and transcriptomic data analysis [10]. One of them is the mitogen-
activated protein kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)
branch of the mitogen-activated protein kinase (MAPK) pathway, a crucial proliferation and
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survival regulator in most cells, especially malignant ones [11,12]. While the MEK/ERK
pathway in tumors has been thoroughly studied [12,13], its role in ovarian cancer is just
now being assessed. Hyperactivation of MEK1/2 and ERK1/2 is often caused by activat-
ing mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) and V-Raf murine
sarcoma viral oncogene homolog B (BRAF) genes, and therefore was considered to be con-
fined to low-grade ovarian tumors only [14,15]. However, recent analyses of accumulated
genomic data revealed that HGSOC, while rarely harboring KRAS/BRAF mutations, still
often displays amplifications and overexpression of MEK1/2 pathway elements [16]. High
MEK1/2 activity was experimentally confirmed in HGSOC cell lines and clinical samples
and identified as a negative prognostic factor [17,18]. MEK1/2 activation occurs in response
to cisplatin and may render tumors resistant to platinum treatment [18–20]. Moreover, the
MEK1/2 pathway affects the subpopulation of chemoresistant ovarian cancer stem-like
cells (CSCs) defined by high aldehyde dehydrogenase 1 (ALDH1) levels [18,21–23]. Taken
together, these data clearly support the importance of the MEK1/2-ERK1/2 pathway in
HGSOC and its high potential as a therapeutic target, since it is both a regulator of HGSOC
development and a pathway involved in drug resistance.

The direct detection of total or active (e.g., phosphorylated) protein is a reliable way to
evaluate signaling pathway activity, but is challenging to perform in small samples (for
example, obtained via fine-needle aspiration). Moreover, the detectable level of regulatory
protein itself, its real activity level, and its effects on downstream targets are not always
tightly connected [24,25]. For the MEK1/2 pathway, the response to MEK inhibitors cannot
be reliably predicted based on the evaluation of phosphorylated ERK1/2 alone [26]. It is
therefore useful to define specific signatures of genes/proteins regulated by pathways of
interest as more robust and reliable indicators of signaling pathway activity than single-
molecule biomarkers.

An overwhelming number of genes associated with KRAS/BRAF/MEK/ERK activity
have been reported in the literature (summarized in [26]). Attempts to discern a simpler
and more relevant MEK1/2-specific signature have been made recently. Two 18-gene and
13-gene signatures predicted sensitivity to the selective MEK1/2 inhibitor selumetinib
in a multi-type cancer cell line panel [26] and were independently confirmed in a set
of gastric cancer cell lines [27]. A set of 24 genes encoding MEK1/2 pathway proteins
displayed significant prognostic potential and associations with metabolic aberrations in
hepatocellular carcinoma [28]. In addition, a 20-gene signature that predicted survival was
identified in cisplatin-sensitive HGSOC based on proteomic and transcriptomic data [17].

Recently, a robust 10-gene signature, the MAPK Pathway Activity Score (MPAS), was
described as a potent tool to predict the sensitivity of multiple different tumor cells to MEK
inhibition [29]. Instead of being identified through analysis of large transcriptomic datasets,
this MEK-specific signature was built based on the manual selection of direct MEK/ERK
targets reported in multiple types of cancer. High MPAS was associated with higher
sensitivity to MEK1/2 inhibition by cobimetinib in multiple malignant cell lines, increased
response to the BRAF inhibitor vemurafenib in BRAFV600-positive melanoma patients,
and negative survival prognosis. Earlier, we successfully utilized MPAS genes to confirm
MEK/ERK pathway inhibition by trametinib in HGSOC cell lines and xenografts [18]. In
the present study, we aimed to further refine the MPAS gene signature and improve its
efficiency in HGSOC by functionally linking MEK/ERK activity to background levels of
MPAS genes and changes, using HGSOC cell lines and patient samples from the Cancer
Genome Atlas database.

2. Results
2.1. PHLDA1, SPRY4, EPHA2, and DUSP4 Are the Best MEK/ERK Responders among Ten
MPAS Genes

The expression of the MPAS gene signature is associated with MEK/ERK pathway
activity across various tumors [29]. Therefore, we used it to confirm MEK/ERK inhibition
by trametinib in ovarian cancer [18]. Most MPAS genes displayed prominent downregula-
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tion in response to trametinib, but two genes (DUSP6 and CCND1) displayed inconsistent
results, and EPHA4 expression levels were below reliable levels of detection. The original
MPAS study demonstrated that the contribution of single genes to the final MPAS signature
can be tissue-specific, so we optimized this approach for ovarian cancer samples.

From the functional point of view, the best transcriptional indicators of signaling
pathway activity should be among the genes predominantly controlled by the pathway
of interest. We therefore analyzed the response of MPAS genes to MEK/ERK activity
modulation in PEO4 cells in vitro (Figure 1). We chose PEO4 cells as a primary experimental
model because they display moderate MEK/ERK activity at baseline, and we obtained
data about some of their MEK/ERK-related aspects in our earlier report [18].Int. J. Mol. Sci. 2022, 23, 13365 4 of 20 

 

 

 
Figure 1. Changes in expression levels of MPAS genes induced by MEK/ERK pathway activity mod-
ulation in PEO4 cells. (A) Immunoblotting analysis of phosphorylation of MEK/ERK pathway com-
ponents in response to treatment with FGF4 (100 ng/mL). Numbers under the bands represent rel-
ative intensity normalized to GAPDH levels and control samples. (B) Changes in expression of 
MPAS genes in FGF4-treated cells. Heatmap represents gene expression levels normalized to con-
trol samples. Unsupervised hierarchical clustering was performed using 1-minus Spearman’s rank 
correlation metrics. (C) Experimental design for enrichment of cultured cells in different phases of 
cell cycle (see Methods for details). Aph—aphidicolin. (D) Immunoblotting analysis of ERK1/2 
phosphorylation changes during cell cycle progression in synchronized cells. Numbers under the 

Figure 1. Changes in expression levels of MPAS genes induced by MEK/ERK pathway activity
modulation in PEO4 cells. (A) Immunoblotting analysis of phosphorylation of MEK/ERK pathway
components in response to treatment with FGF4 (100 ng/mL). Numbers under the bands represent
relative intensity normalized to GAPDH levels and control samples. (B) Changes in expression
of MPAS genes in FGF4-treated cells. Heatmap represents gene expression levels normalized to
control samples. Unsupervised hierarchical clustering was performed using 1-minus Spearman’s
rank correlation metrics. (C) Experimental design for enrichment of cultured cells in different phases
of cell cycle (see Methods for details). Aph—aphidicolin. (D) Immunoblotting analysis of ERK1/2
phosphorylation changes during cell cycle progression in synchronized cells. Numbers under the
bands represent relative intensity normalized to GAPDH levels and control samples. (E) Changes in
expression of MPAS genes during cell cycle progression. Heatmap represents gene expression levels
normalized to control samples. Unsupervised hierarchical clustering was performed using 1-minus
Spearman’s rank correlation metrics.
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Fibroblast growth factor 4 (FGF4) binds to its receptors on the cell membrane and stim-
ulates the activation of various signaling pathways, including the MEK/ERK pathway [30].
As expected, the treatment of cells with FGF4 resulted in prominent increases in the phos-
phorylation of MEK1/2, ERK1/2, and their downstream target p90RSK1 within 30 min
after treatment started (Figure 1A). Changes in the expression patterns of MPAS genes in
FGF4-treated cells were diverse. PHLDA1 and SPRY4 were strongly upregulated (up to a 5-
to 6-fold increase after 6 h); DUSP6, EPHA2, and ETV5 levels increased 2-fold; and SPRY2,
DUSP4, ETV4, and CCND1 displayed no substantial changes (Figures 1B and S1). As in our
previous report [18], EPHA4 levels in both the control and treated PEO4 cells were below
the limit of reliable detection with RT-qPCR, so we excluded this gene from further analysis.
PHLDA1, SPRY4, EPHA2, and ETV5 genes responded to MEK/ERK activation relatively
quickly, as their levels were upregulated 2-fold or higher within 2 h after treatment began,
while DUSP6 reached a threshold (2-fold expression increase) after 6 h (Figures 1B and S1).
The changes described above are summarized in Table S1.

MEK/ERK pathway activity in tumors, including HGSOC, is tightly connected to
cell proliferation and is required for G1-to-S-phase transition in the cell cycle [18]. We
therefore hypothesized that changes in MEK/ERK activity and MPAS gene expression
during cell cycle progression may be used as a more physiologically relevant model. We
used aphidicolin treatment with subsequent release to synchronize PEO4 cells and enriched
them in different phases of the cell cycle (Figures 1C and S2). The ERK1/2 activity was
strongly elevated during early and mid-S phase (0–3 h timepoints) and then slowly returned
to original levels while the cells progressed through G2 and M phases (Figure 1D). Similar
to the FGF4 experiment, we could separate the MPAS genes into three groups based on
their response to ERK1/2 changes: strong response (PHLDA1, DUSP4), moderate response
(EPHA2, SPRY2, and DUSP6), and weak/no response (SPRY4, ETV4, ETV5, and CCND1)
(Figures 1E and S3). PHLDA1, DUSP4, EPHA2, and SPRY2 genes exhibited lasting changes,
still displaying more than 2-fold increases in their expression levels 27 h past the release
from S phase arrest (Figures 1E and S3; see Table S1 for the summary).

To select the best MEK/ERK responder genes, we assigned points to each evaluated
gene based on its performance in the experiments described above and in our previ-
ous report (the excerpts of experimental data from our previous study are presented in
Figure S4) [18]. The final score obtained allowed us to identify the most reliable responders
to MEK/ERK signaling changes (Table 1). Most genes we examined responded robustly to
MEK inhibition both in vitro and in vivo, but only some of them displayed reproducible
upregulation upon MEK/ERK pathway activation across different models. We therefore
concluded that the whole MPAS gene signature exhibited clear redundancy in HGSOC
and focused our further analysis on four genes displaying the most robust response to
MEK/ERK activity modulation—PHLDA1, SPRY4, EPHA2, and DUSP4.



Int. J. Mol. Sci. 2022, 23, 13365 5 of 18

Table 1. Summary of MPAS genes’ response to MEK-ERK pathway activity changes across all
analyzed experimental models (including data reported in [18], see also Figure S4). Genes emphasized
with bold text display the highest potential for their use as MEK/ERK pathway responders.

Gene

Response to MEK-ERK Activity Changes
Total
Score

Inhibition by Trametinib [18] a
Activation by

FGF4 b

Modulation during
Cell Cycle

Progression c

Activation in
Cisplatin-Resistant

Cells [18] dIn Vitro In Vivo

PHLDA1 2 2 2 2 2 10

SPRY4 2 2 2 1 0 7

DUSP4 2 1 0 2 2 7

EPHA2 2 1 1 1 1 6

DUSP6 0 2 1 1 1 5

SPRY2 2 0 0 1 2 5

ETV4 2 1 0 0 0 4

ETV5 2 1 1 0 0 4

CCND1 2 0 0 0 0 2
a Scores are calculated as follows: more than 2-fold decrease—2 points, 1.5–2-fold decrease—1 point; b Scores are
calculated as follows: strong response—2 points, moderate response—1 point; c Scores are calculated as follows:
strong response—2 points, moderate response—1 point; d Scores are calculated as follows: more than 4-fold
increase—2 points, 2–4-fold increase—1 point.

2.2. PHLDA1, EPHA2, and DUSP4 Are Associated with Baseline MEK/ERK Activity across
Multiple Ovarian Cancer Cell Lines

A prominent gene expression response to various external or internal stimuli is useful
for tracking pathway modulation in experimental models. On the other hand, gene ex-
pression patterns in clinical samples usually represent either a baseline state or long-term
processes. Thus, gene signatures that reflect baseline levels of pathway activity have much
higher potential for clinical applicability.

We evaluated possible associations between the expression of PHLDA1, SPRY4, EPHA2,
and DUSP4 and MEK/ERK pathway activity in 20 ovarian cancer cell lines (Figure 2).
The phosphorylation levels of MEK1/2, ERK1/2, and p90RSK1 in these cells were eval-
uated using immunoblotting. Three cell lines (Pt152, COV362, and OVSAHO) were ex-
cluded from further analysis based on discrepancies between individual elements of the
MEK/ERK pathway (e.g., high pERK1/2 without pMEK1/2 or high pp90RSK1 with no
pERK1/2) (Figure 2A). Individual cell lines displayed marked differences in both protein-
estimated MEK/ERK pathway activity and expression levels of MEK/ERK responder genes
(Figures 2 and S5). We therefore analyzed possible associations between the expression
levels of MEK/ERK responders, absolute levels of phosphorylated ERK1/2, MEK1/2, and
p90RSK1, and relative levels of pERK1/2 normalized to total ERK1/2 expression, using
unsupervised hierarchical clustering and Spearman’s correlation approaches. Three genes
(PHLDA1, DUSP4, and EPHA2) displayed positive associations with ERK1/2 phospho-
rylation levels in both tests, while SPRY4 exhibited no statistically significant association
(Figure 2B, Table 2). We therefore combined PHLDA1, DUSP4, and EPHA2 genes into
an optimized signature henceforth referred to as “Carcinoma of the Ovary MEK/ERK
Signature” (COMS).
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Figure 2. Baseline MEK/ERK pathway activity and PHLDA1, DUSP4, EPHA2, and SPRY4 expres-
sion levels in ovarian cancer cell lines. (A) Immunoblotting analysis of phosphorylation of 
MEK/ERK pathway components in 20 human ovarian cancer cell lines. The image represents data 
obtained from several separate membranes. An A2780 sample was used in each membrane as a 
reference sample. Numbers under the bands represent relative intensity normalized to GAPDH lev-
els and the A2780 sample. (B) Cluster analysis of associations between baseline expression levels of 
MEK/ERK responder genes and levels of phosphorylated proteins involved in MEK/ERK pathway. 
Seventeen cell lines displaying consistent activity of several MEK/ERK pathway elements were an-
alyzed. Gene expression levels estimated via RT-qPCR and protein levels estimated via immunob-
lotting were subjected to Z-score transformation. Unsupervised hierarchical clustering was per-
formed using 1-minus Spearman’s rank correlation metrics. 

  

Figure 2. Baseline MEK/ERK pathway activity and PHLDA1, DUSP4, EPHA2, and SPRY4 expression
levels in ovarian cancer cell lines. (A) Immunoblotting analysis of phosphorylation of MEK/ERK
pathway components in 20 human ovarian cancer cell lines. The image represents data obtained
from several separate membranes. An A2780 sample was used in each membrane as a reference
sample. Numbers under the bands represent relative intensity normalized to GAPDH levels and the
A2780 sample. (B) Cluster analysis of associations between baseline expression levels of MEK/ERK
responder genes and levels of phosphorylated proteins involved in MEK/ERK pathway. Seventeen
cell lines displaying consistent activity of several MEK/ERK pathway elements were analyzed. Gene
expression levels estimated via RT-qPCR and protein levels estimated via immunoblotting were
subjected to Z-score transformation. Unsupervised hierarchical clustering was performed using
1-minus Spearman’s rank correlation metrics.
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Table 2. Associations between expression levels of the most promising MEK/ERK responders and
relative ERK phosphorylation levels in untreated ovarian cancer cell lines. Positive correlation
coefficients imply that two parameters of interest display conforming trends (“both high” or “both
low”) in the same samples, ranging from “0” (extremely weak association) to “1” (extremely strong
association). Values in “0.5–0.6” interval imply a moderate-to-strong association between parameters.
p-value reflects the statistical significance of correlation coefficient being correctly calculated. Genes
emphasized with bold text display statistically significant associations with ERK1/2 phosphorylation.

MEK/ERK-Responding Gene Correlation Parameters Correlation to Relative ERK1/2
Phosphorylation Level

PHLDA1
Spearman’s correlation coefficient 0.600

p-value 0.014

DUSP4
Spearman’s correlation coefficient 0.588

p-value 0.017

EPHA2
Spearman’s correlation coefficient 0.550

p-value 0.027

SPRY4
Spearman’s correlation coefficient 0.144

p-value 0.594

2.3. COMS Genes Are Suitable for Monitoring Long-Term, but Not Short-Term Transient Changes
in MEK/ERK Activity

The level of MEK/ERK pathway activity (defined either via direct protein assessment
or biomarker signatures) may define the response of cancer cells to MEK inhibition [26,29].
We therefore tested whether the modulation of MEK/ERK activity and COMS genes during
cell cycle progression is associated with the effects of trametinib on cell proliferation. PEO4
cells were enriched in different phases of the cell cycle and subsequently treated with
100 nM trametinib (the lowest concentration providing complete inhibition of MEK/ERK
pathway [18]) for 72 h. Cells displaying high pERK1/2 levels (Figure 1C,D) at the moment of
trametinib administration demonstrated significantly stronger suppression of their growth
(Figure 3A). While phosphorylated ERK1/2 levels exhibited strong negative correlations
with the number of viable cells after trametinib treatment, we observed no significant
correlation between the expression levels of COMS genes and either pERK1/2 levels or cell
number changes (Table S2).

To examine more complex connections between these parameters, we compared the
kinetic curves of sensitivity to trametinib treatment and pERK1/2, PHLDA1, DUSP4, and
EPHA2 levels during the course of cell cycle progression (Figure 3B). As described above,
the sensitivity to trametinib peaked within 1.5–3 h after aphidicolin release (early and mid-S
phase), when the cells displayed highest pERK1/2 levels prior to trametinib administration.
Both effects then gradually decreased. In contrast, the upregulation of COMS genes peaked
at 6 h and the PHLDA1 and DUSP4 levels remained high even at the 10 h timepoint. Due to
such a postponed response, we concluded that COMS responder genes are more suitable for
estimating lasting activation of the MEK/ERK pathway (due to either prolonged external
stimulation or long-term internal effects) than for monitoring rapid transient modulations
in MEK/ERK activity.
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Figure 3. Temporal dynamics of sensitivity to MEK inhibition, ERK1/2 phosphorylation, and
MEK/ERK responders’ expression during cell cycle progression. (A) Numbers of viable PEO4
cells enriched in different cell cycle phases after subsequent treatment with trametinib. Data are
normalized to control samples and presented as mean ± SD. n = 3. * p < 0.05, Kruskal–Wallis H
test). Aph—aphidicolin. (B) Dynamics of cell number reduction (after trametinib treatment), ERK1/2
phosphorylation (prior to trametinib addition), and COMS genes expression (prior to trametinib
addition) across different stages of cell cycle. Data are normalized to “0 h” samples and presented as
mean values. Relative pERK1/2 levels were calculated by normalization to total ERK1/2 levels.

2.4. COMS Genes Are Overexpressed in HGSOC Samples with High pERK1/2 Levels

To evaluate the potential of COMS genes to predict baseline MEK/ERK activity in
clinical samples, we used proteomic and transcriptomic data for large sets of HGSOC cases
available from the “Nature 2011” [16] and “PanCancer Atlas” [31] datasets in The Cancer
Genome Atlas (TCGA). First, we analyzed 414 samples with RPPA-based proteomics data
using an unsupervised hierarchical clustering algorithm and identified three cohorts of
patients exhibiting low (n = 72), moderate (n = 128), and high (n = 214) levels of pERK1/2
protein (Figure 4A). Kaplan–Meyer analysis revealed that low pERK and moderate pERK
cohorts displayed no significant differences, while the high pERK group had worse overall
survival prognosis (Figure 4B). This difference was even more prominent when we merged
the low and moderate pERK cohorts into one group (Figure 4C).

Transcriptomic microarray-based gene expression values are available in the “Nature
2011” dataset for 337 cases of 414 “PanCancer Atlas” cases with proteomic data. High pERK
samples exhibited statistically higher expression of PHLDA1, DUSP4, and EPHA2 compared
to samples from the Low + Moderate pERK cohort (Figure 4D). SPRY4 expression patterns
followed a similar trend, but the differences between cohorts did not reach statistical
significance, confirming our previous statement about the inferior potential of SPRY4 as a
marker of MEK/ERK response and baseline activity (Figure S6). We next combined the
Z-score values for COMS genes into “COMS score” in the same way as “MPAS score” was
calculated [29]. The evaluation of “COMS score” and “MPAS score” indices in the same
patient cohorts demonstrated that COMS displays higher statistical power than the single
genes (Figure 4D) or full MPAS gene combination (Figure S6). We therefore concluded that
estimating the expression of COMS genes may be used as an additional approach for the
more reliable evaluation of MEK/ERK pathway functional activity in clinical samples of
HGSOC.
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phorylated ERK1/2 protein levels in samples from TCGA “PanCancer Atlas” dataset (n = 414). Un-
supervised hierarchical clustering was performed using Euclidean distance metrics. (B) Kaplan–
Meyer analysis of overall patient survival differences between three pERK1/2-defined cohorts from 
TCGA “PanCancer Atlas” dataset (n = 414). Statistical significance was evaluated using log-rank 
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dataset. Statistical significance was evaluated using log-rank test. (D) Expression levels of COMS 
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tailed T-test with Welch’s correction. 

Figure 4. Associations between MEK/ERK pathway activity, patient survival, and MEK/ERK respon-
der genes’ expression in HGSOC patient samples from TCGA. (A) Cluster analysis of phosphorylated
ERK1/2 protein levels in samples from TCGA “PanCancer Atlas” dataset (n = 414). Unsupervised hi-
erarchical clustering was performed using Euclidean distance metrics. (B) Kaplan–Meyer analysis of
overall patient survival differences between three pERK1/2-defined cohorts from TCGA “PanCancer
Atlas” dataset (n = 414). Statistical significance was evaluated using log-rank tests. (C) Kaplan–Meyer
analysis of overall patient survival differences between the “High pERK” cohort and combined “Low
pERK”+”Moderate pERK” cohort from the TCGA “PanCancer Atlas” dataset. Statistical significance
was evaluated using log-rank test. (D) Expression levels of COMS genes in samples from the TCGA
“Nature 2011” dataset with available pERK1/2 protein data (n = 337). Boxes represent median and
quartile values, whiskers represent minimum and maximum values, and squares represent sample
mean values. Statistical significance was evaluated using two-tailed T-test with Welch’s correction.
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2.5. COMS Genes Do Not Display Potential to Predict Patient Survival

Since high pERK levels in the HGSOC samples were associated with poor overall
survival prognosis, and PHLDA1, DUSP4, and EPHA2 were overexpressed in High pERK
cases, we evaluated the prognostic potential of these genes and other available clinical
parameters using the Cox regression model (Table 3). Neither single COMS genes nor
COMS and MPAS signatures displayed significant associations with overall patient sur-
vival in a univariate Cox analysis. Initial platinum resistance was identified as a major
negative predictor of overall survival, with residual disease and advanced patient age
at diagnosis being significant, but minor negative factors. Multivariate Cox regression
analysis confirmed the independent prognostic potential of platinum resistance status and
demonstrated that residual tumor volume has no independent prognostic value when
it is analyzed together with other characteristics. Based on these results, we conclude
that the predictive potential of well-established risk factors (advanced age and platinum
resistance) for HGSOC patients is superior to examined MEK/ERK responder genes or
gene signatures.

Table 3. Cox proportional hazards analysis of associations between clinical parameters of HGSOC
cases, COMS and MPAS gene expression levels, and overall survival of HGSOC patients from TCGA
datasets. Hazard ratios higher than “1” indicate that the clinical parameter of interest is associated
with poor survival, while hazard ratios less than “1” define parameter of interest as a factor of
favorable prognosis. Clinical parameters emphasized with bold text display statistically significant
associations with patients’ survival.

Clinical Parameters Hazard Ratio p-Value

Univariate Cox Model Estimation

Platinum resistance 3.7224 <0.0001

Tumor residual disease 1.2603 0.0015

Age at diagnosis 1.0216 0.0064

Aneuploidy score 1.0183 0.0856

Neoplasm histologic grade 1.3342 0.2017

Fraction of genome altered 0.6311 0.2711

PHLDA1 expression 1.0599 0.4097

DUSP4 expression 1.0776 0.3085

EPHA2 expression 1.0433 0.5708

COMS score 1.0664 0.2662

MPAS score 1.0115 0.7515

Multivariate Cox model estimation

Platinum resistance 2.9851 <0.0001

Age at diagnosis 1.0277 0.0041

Tumor residual disease 1.0438 0.6766

3. Discussion

MEK/ERK pathway activation is one of the most common molecular events occurring
in cancer cells (including, but not limited to, ovarian cancer) and is directly connected
to malignant cell proliferation and survival [12,18]. While MEK/ERK signaling is often
assessed via the immunochemical detection of ERK phosphorylation, accumulating evi-
dence suggests that this approach may not always correctly represent MEK/ERK pathway
activity [25,26]. The detection of transcripts regulated by pathways of interest is a vi-
able alternative due to the high sensitivity and specificity of PCR- and sequencing-based
methods. Several transcriptional signatures associated with the functional activity of the
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MEK/ERK pathway in various tissues were reported in the literature [17,26–29], and a
10-gene “MPAS” signature displayed a highly robust MEK inhibition response across mul-
tiple tumor types [29]. We hypothesized that MPAS signature may be further optimized for
ovarian cancer cases and performed detailed evaluations of the expression of MPAS genes
in several experimental models and sets of clinical samples of ovarian cancer. Only three
out of ten MPAS genes (PHLDA1, EPHA2, and DUSP4) displayed reproducible associations
with baseline levels and changes in MEK/ERK activity across most ovarian cancer model
systems and clinical samples. Based on these data, we conclude that the MPAS signature
is significantly impacted by tissue specificity, model specificity, and the temporal and
technical details of experiments.

The identification of universal molecular signatures associated with pathological pro-
cesses is a goal in biomarker research. Prominent tissue heterogeneity affects the functional
properties of even the most ubiquitous genes, and therefore should be considered when
evaluating any biomarker signature. Genes are usually considered tissue-specific if they
are only expressed in selected tissues due to unique combinations of genetic, epigenetic,
and protein-related factors [32,33], but such genes are rarely included in universal signa-
tures. On the other hand, factors involved in the tissue-specific loss of gene expression,
including gene silencers [34], alternative transcript variants [35,36], and transcriptional
repression [37] may drastically impact the performance of such signatures by rendering
their important components unusable. We observed such a situation with the EPHA4 gene,
which was expressed below reliable detection levels in all examined ovarian cancer cell
lines. According to the original MPAS report, EPHA4 contributes significantly to MPAS in
lung cancer and melanoma, but is virtually without effect in colorectal cancer, confirming
its tissue-specific nature [29]. We therefore suggest that MPAS or any other signature
characterized in non-ovarian samples should be verified based on specific patterns of gene
expression in ovarian cancer. This statement is further supported by the idea of assigning
tissue-specific weights to commonly used gene sets to improve the statistical power of gene
set enrichment analyses [38].

While all of our data were obtained from ovarian cancer samples, we utilized several
experimental models to investigate the different aspects of MEK/ERK pathway activity
changes. On one hand, we performed activation or inhibition of MEK/ERK pathway
activity with FGF4 or trametinib treatment, respectively—these model systems reproduce
prolonged action of external factors that cause long-term shifts in signaling regulation. On
the other hand, we evaluated the temporal dynamics of MEK/ERK activity during cell cycle
progression—these recapitulate more short-term, intricate, and physiologically relevant
regulatory changes. Lastly, we investigated stable differences in baseline MEK/ERK activity
induced by development of platinum resistance, representing lasting changes that are still
present after the initial stimulus (cisplatin treatment) is withdrawn.

We observed significant variability between the different experimental models used.
CCND1, ETV4, and ETV5 responded prominently to pharmacologic MEK/ERK inhibition in
cell cultures, but their changes in trametinib-treated HGSOC murine xenografts or different
cell line models of MEK/ERK activation were much weaker or even completely absent. On
the other hand, DUSP6 displayed a moderate response to MEK/ERK activity modulations
in all tested experimental models except trametinib-treated cells in vitro (Table 1). Such
effects, known as model specificity, can be divided into two groups based on the unique
effects of: (1) the same stimulus observed in different cells/tissues/animals and (2) similar
stimuli observed in the same in vitro/ex vivo/in vivo model system. Both aspects should
be considered when analyzing the impact of supposedly similar treatments (e.g., drugs
that share a common structure or target the same molecule) performed in different systems
(cell lines, organoids, tissue explants, or animals). For example, the treatment of colorectal
cancer cells with thalidomide and its derivatives pomalidomide and lenalidomide results
in markedly different transcriptomic changes in vitro and in vivo [39]. Moreover, while the
tested agents were expected to act in a similar way, Gene Ontology analysis revealed no
common categories affected by all three drugs in either in vitro or in vivo models, indicat-
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ing clear differences in their mechanism of action [39]. Another recent study compared
the gene expression response to the proteasome inhibitors ixazomib and bortezomib in
human myeloma cell lines and primary patient-derived cells [40]. While in vitro and ex
vivo ixazomib treatment models shared more than 200 commonly affected genes, further
comparison to effects caused by bortezomib treatment identified only 10 common genes,
although both agents selectively target the same 20S proteasome [40,41]. Due to such
model specificity, multiple different gene signatures were described for the same drugs
or regulatory pathways, resulting in redundancy and decreased reliability [42]. In our
comparison of five different experimental models of ovarian cancer, only 4 of 10 MPAS
genes displayed consistent and uniform response to MEK/ERK activity modulations, and
only 3 (PHLDA1, EPHA2, and DUSP4) were significantly associated with baseline ERK1/2
activity in both cell lines and patient tissue samples, thereby emphasizing the need to
validate gene expression signatures for each type of pathology or condition.

The applicability of biomarker signatures for the evaluation of both baseline levels of
pathway activity and changes during therapy or disease progression greatly improves their
usefulness. While many reported signatures are derived from tumor samples obtained
prior to treatment, the signatures based on treatment-induced changes in gene expres-
sion displayed superior prognostic potential, most likely due to the association of such
signatures with acquired aggressiveness and resistance [43,44].

Platinum resistance is an important prognostic factor for HGSOC patients, and its
development is tightly associated with MEK/ERK pathway hyperactivation, which also
manifests itself in the overexpression of COMS genes [18,45]. On the other hand, COMS
genes displayed no associations with survival among HGSOC patients (Table 3). This fact
may be explained by the nature of TCGA samples used in our study, since “Nature 2011”
and “PanCancer Atlas” datasets are almost exclusively composed of primary HGSOC cases
not treated before sample acquisition. We therefore hypothesize that the evaluation of
MEK/ERK responder genes may be more useful in recurrent ovarian tumors for choosing
optimal second-line treatment regimens. Moreover, assessing the dynamic changes of
MEK/ERK responders may be theoretically used for monitoring the patient response to
treatment. Current PCR-based methods are sensitive enough to reliably estimate gene
expression levels using extremely low amounts of material, e.g., isolated circulating tumor
cells (CTCs), which are detected in 90% of epithelial ovarian cancer patients [46]. The
evaluation of COMS genes expression in CTCs may provide a non-invasive way of in vivo
tracking of drug efficiency, disease progression, and chemoresistance development.

Increase in MEK/ERK activity (and expression levels of COMS genes) observed in
cisplatin-resistant cells was associated with increased sensitivity to MEK inhibition [18],
which is consistent with the increased impact of trametinib upon ERKhigh cells enriched in
the S-phase of the cell cycle (Figure 3). Adding MEK/ERK inhibitors to various chemother-
apeutic agents [47], including ALDH1A inhibitor [18] and Src inhibitor [22], has been
suggested as a way to overcome ovarian cancer therapy resistance. What is even more
important is that a number of recent studies reported that MEK inhibition therapy may
sensitize ovarian cancer cells to the cytotoxic action of platinum drugs both in vitro and
in vivo [45,48,49]. We did not observe significant associations between COMS genes ex-
pression and initial platinum sensitivity in clinical cases from TCGA. Nevertheless, we
suppose that HGSOC patients with high MEK/ERK activity and COMS genes expression
in tumor tissue may benefit from MEK1/2 inhibition, as it may prevent platinum resistance
development in the course of initial treatment. Earlier, we reported that trametinib treat-
ment suppresses ERK1/2 phosphorylation and the expression of MEK/ERK-responding
genes in ovarian cancer xenografts [18]; it is possible that the efficiency of MEK/ERK-
targeting therapy in ovarian and other cancers may be monitored via the detection of
COMS genes (or other optimized transcriptional signatures) in fine-needle aspiration
biopsy or CTC samples.

Considering the strong association between ERK1/2 phosphorylation modulation
and the trametinib sensitivity changes observed during cell cycle progression, it may seem
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counterintuitive that COMS genes display no significant correlations with either parameter
(Table S2). However, our experimental model demonstrates that changes in transcript levels
are delayed in comparison to protein changes: the peak level of ERK1/2 phosphorylation
level is achieved at 1.5 h after trametinib administration, while gene expression levels reach
their maximum values 4.5 h later (Figure 3B). This delay most likely arises from the inherent
difference between protein-to-protein signaling (phosphorylation, cleavage, etc.) and the
regulation of gene transcription activity. The former is relatively fast as it does not require
the synthesis of new molecules, while the latter takes more time because of transcription
complex assembly, mRNA synthesis, and transcript processing. On the other hand, the
magnitude of the gene expression response may be much higher than the magnitude of
the protein changes (PHLDA1 and DUSP4 in Figure 3B) due to the accumulation of newly
synthesized transcripts over time. Transcript accumulation is strongly connected to lasting
response to stimuli (see Table S1), which manifests in the detection of significantly elevated
transcript levels long after the MEK/ERK pathway activity returns to baseline levels
(Figures 1D,E and S3). Our results suggest that the most potent MEK/ERK responders
have a lasting response that is useful for detecting long-term changes in pathway activity,
especially in terms of MEK/ERK activation. Due to the same reason, the potential of COMS
genes for tracking short-term MEK/ERK activity modulations is limited, since they cannot
demonstrate rapid downregulation upon decreased ERK1/2 activity. Several MEK/ERK-
regulated genes termed “immediate early response genes” (FOS, BTG2, and KLF4) display
prominent, but transient, upregulation within 1–2 h after pathway activation [50]. These
genes may be a better choice for monitoring short-term MEK/ERK activity fluctuations,
but their expression levels decline over time even with constitutive MEK/ERK pathway
activation, rendering their usefulness for possible clinical applications questionable.

4. Materials and Methods
4.1. Cell Cultures

We used 20 different human ovarian cancer cell lines, including Type I and Type II
ovarian cancer cells (see Table S3 for details). The OVCAR8, PEO4, and A2780 cells were
provided by Dr. S. Murphy (Duke University, Durham, NC, USA). The OVCAR3, OVCAR5,
OVCAR7, OVCAR10, OVSAHO, and ES2 cell lines were provided by Dr. V. Shridhar
(Mayo Clinic, Rochester, MN, USA). The Pt152 and Pt486 cells were provided by Dr. R.
J. Buckanovich (University of Pittsburgh, Pittsburgh, PA, USA). The Kuramochi cell line
was purchased from the Japanese Collection of Research Bioresources Cell Bank (Osaka,
Japan). The CAOV3, SKOV3, NIH-OVCAR3, TOV112D (also known as TOV21D), HEY,
and TOV21G cells were purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The COV362 and PEO1 cells were purchased from the European
Collection of Authenticated Cell Cultures (Millipore Sigma, Burlington, MA, USA).

All cell lines were cultivated in RPMI-1640 medium (Corning, Tewksbury, MA, USA)
supplemented with 5% FBS (Thermo Fisher Scientific, Waltham, MA, USA) and 100 U/mL
penicillin/100 µg/mL streptomycin (Corning, Tewksbury, MA, USA). The PEO1 cells were
cultivated in medium with the addition of 1 mM sodium pyruvate (Corning, Tewksbury,
MA, USA). The cells were tested for mycoplasma monthly.

4.2. Drug Treatment of Cultured Cells

FGF4 (STEMCELL Technologies, Vancouver, Canada) was dissolved in sterile water.
Aphidicolin (Cayman Chemical, Ann Arbor, MI, USA) and trametinib (Selleck Chemicals,
Houston, TX, USA) were dissolved in DMSO (Fisher Scientific, Waltham, MA, USA). The
cells were seeded to the culture dishes and allowed to adhere to the surface overnight. The
cell growth media were aspirated and replaced with treatment media containing the drug
of interest. The control samples in all experiments performed were treated with vehicle
only. The vehicle concentration in growth medium did not exceed 0.2%.
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4.3. Synchronization of Cultured Cells in Different Phases of Cell Cycle

The cells were cultured in FBS-free growth medium for 24 h and subsequently treated
with 2 µg/mL aphidicolin in full growth medium for 20 h to induce cell cycle arrest at the
early S-phase. Aphidicolin-treated cells were washed twice with sterile DPBS (Corning,
Tewksbury, MA, USA) and either harvested immediately or cultivated in full growth
medium for 1.5, 3, 6, 10, or 27 h before harvesting.

4.4. Cell Cycle Assays

The cells were harvested by trypsinization, washed once with ice-cold full growth
medium, and centrifuged at 200× g for 5 min. The cells were resuspended in 300 µL of ice-
cold PBS and fixed by the addition of 700 µL of ice-cold 70% ethanol in a dropwise manner
with constant mild vortexing. Fixed samples were incubated at −20 ◦C overnight. The
fixed cell samples were washed with ice-cold PBS (Genesee Scientific, El Cajon, CA, USA)
twice, treated with 0.2 mg/mL RNAse A (Thermo Fisher Scientific, Waltham, MA, USA) in
PBS for 60 min at 37 ◦C, and stained with 10 µg/mL propidium iodide (Millipore Sigma,
Burlington, MA, USA) in PBS. The stained samples were analyzed using an FACSCalibur
flow cytometer (BD Biosciences, San Jose, CA, USA) and ModFit LT software (Verity
Software House, Topsham, ME, USA).

4.5. RT-qPCR Analysis of Gene Expression

The cells were harvested by trypsinization, washed with ice-cold PBS, and centrifuged
at 200× g for 5 min. The total RNA was isolated from the cell pellets using TRIzol reagent
and a PureLink RNA Mini Kit (Thermo Fisher Scientific, Waltham, MA, USA) with on-
column DNAse treatment. A RevertAid RT Reverse Transcription Kit (Thermo Fisher
Scientific, Waltham, MA, USA) with a combination of oligo(dT)18 and random primers was
used to generate cDNA from 1 µg of the total RNA. Quantitative PCR analysis of gene
expression was performed in a CFX96 Touch thermocycler (Bio-Rad Laboratories, Hercules,
CA, USA) using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific, Waltham,
MA, USA) and primers listed in Table S4. A three-step amplification program (15 s at 95 ◦C,
45 s at 62 ◦C, 30 s at 72 ◦C) was run for 40 cycles and reaction specificity was checked by
melt curve analysis and agarose gel electrophoresis. The reaction efficiency was evaluated
using a standard curve approach and was within 98–102% for all primers. The transcript
abundance was estimated using Pfaffl’s approach [51]. TBP was used as a housekeeping
normalization gene.

4.6. Immunoblotting

The cells were harvested by scraping in ice-cold PBS and centrifuging at 200× g for
5 min. The total protein extracts were obtained from cell pellets using Pierce RIPA buffer
(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with Halt Protease and
Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific). Protein concentrations were
estimated using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Then, 40 µg of
the total protein was separated in Bolt 4–12% Bis-Tris Plus Gels (Thermo Fisher Scientific)
and transferred to Hybond P 0.45 PVDF membranes (GE Healthcare, Chicago, IL, USA).
The membranes were blocked with 5% BSA (Thermo Fisher Scientific) in Tris-buffered
saline with 0.1% Tween-20 (TBST) (Fisher Scientific) and probed overnight at 4 ◦C with the
following primary antibodies diluted in 5% BSA in TBST: pMEK1/2 (Cell Signaling Tech-
nology, Danvers, MA, USA, 41G9, 1:1000), pERK1/2 (Cell Signaling Technology, D13.14.4E,
1:1000), total ERK1/2 (Cell Signaling Technology, 137F5, 1:1000), pp90RSK1 (R&D Systems,
Minneapolis, MN, USA, 1024A, 1:1000), and GAPDH (ProteinTech, Rosemont, IL, USA,
1E6D9, 1:10,000). Secondary antibodies were HRP-conjugated anti-rabbit IgG (Jackson
Immunoresearch, West Grove, PA, USA, 1:10,000) or anti-mouse IgG (Jackson Immunore-
search, 1:10,000) diluted in 5% skim milk (Millipore Sigma, Burlington, MA, USA) in TBST.
Protein bands were developed using Luminata Classico or Luminata Forte HRP substrate
(Millipore Sigma) and detected using an Amersham Imager 600 (GE Healthcare, Chicago, IL,
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USA). After the band detection, every membrane was incubated in Restore PLUS Western
Blot Stripping Buffer (Thermo Fisher Scientific) for 30 min at room temperature and re-
probed. The membranes previously stained for pERK1/2 were re-probed for tERK1/2, and
other membranes were re-probed for GAPDH. The densitometric analysis of immunoblot
images was performed using Image Lab V 6.1.0 software (Bio-Rad Laboratories, Hercules,
CA, USA). The raw band intensity values obtained for proteins of interest were divided
to corresponding intensity values of GAPDH bands detected using the same immunoblot
membrane. The resulting values were additionally normalized to one of the samples, with
the relative band intensity level for this sample being equal to 1.00 (see Figure Legends for
detailed descriptions of each immunoblot experiment).

4.7. Cell Viability Assays

The cells were plated in 12-well plates (Olympus Plastics, El Cajon, CA, USA) at
50,000 cells/well and synchronized in different phases of the cell cycle as described above.
Cells enriched in the cell cycle phase of interest were treated with 100 nM trametinib for
72 h. The treated cells were harvested by trypsinization, pelleted, and resuspended in PBS.
The numbers of viable and dead cells were assessed by direct counting using a Countess II
automated cell counter (Thermo Fisher Scientific) in the presence of 0.4% Trypan Blue.

4.8. Analysis of TCGA Datasets

Two publicly available datasets from the TCGA project (https://www.cancer.gov/
tcga (accessed on 10 November 2021)) were used: the “Nature 2011” dataset [16] and
the “PanCancer Atlas” dataset [31]. The latest versions of both datasets were accessed
through cBioPortal website (https://www.cbioportal.org (accessed on 10 November 2021)).
The “PanCancer Atlas” dataset contains the highest number of cases with proteomic
data (n = 414) obtained via the RPPA approach that includes data for phosphorylated
protein forms. These proteomic data (median-centered normalized values) were utilized
for the stratification of the patients into cohorts based on pERK1/2 level. Transcriptomic
microarray data (Z-scores) were obtained from the “Nature 2011” dataset that has the most
prominent overlap with 414 “PanCancer Atlas” cases with proteomic data. The clinical data
were combined from information available in both the “PanCancer Atlas” and “Nature
2011” datasets, aiming to compile the most up-to-date information for each case. The
aim of transcriptomic and clinical data analysis was to investigate whether COMS genes
are associated with the MEK/ERK pathway activity in vivo and to evaluate the ability of
COMS genes to predict patient survival.

4.9. Statistics

The statistical tests used for the evaluation of differences between the experimental
groups are mentioned in the corresponding Figure Legends. Z-score values were calculated
after the logarithmic transformation of the data by subtracting the sample mean values
from the individual sample values and then dividing the result to the sample standard devi-
ation. Unsupervised hierarchical cluster analysis was performed using Morpheus software
(https://software.broadinstitute.org/morpheus (accessed on 17 January 2022)) with the
“furthest neighbor” algorithm and either 1-minus Spearman’s rank correlation or Euclidean
distance metrics (mentioned in the corresponding Figure Legends). Correlation analysis
was performed in OriginPro 2016 software (OriginLab Corporation, Northampton, MA,
USA) using a Spearman’s rank correlation approach. Survival analysis was performed in
OriginPro 2016 software (OriginLab Corporation) using either the Kaplan–Meyer estimator
model with log-rank test or the Cox proportional hazards model. Graphs were plotted
using Prism 8 software (GraphPad Software, San Diego, CA, USA) and OriginPro 2016
software (OriginLab Corporation).

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.cbioportal.org
https://software.broadinstitute.org/morpheus
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5. Conclusions

Only 3 of 10 MPAS genes (PHLDA1, DUSP4, and EPHA2) reflect MEK/ERK pathway
activity significantly and consistently across multiple experimental models and clinical tis-
sue samples of ovarian cancer. We therefore term this gene signature “COMS” and propose
them as preferred targets for the indirect evaluation of MEK/ERK pathway activity in ovar-
ian cancer. The upregulation of PHLDA1, DUSP4, and EPHA2 together with MEK/ERK
activity is associated with acquired platinum resistance, a crucial negative prognostic factor,
thus emphasizing that transcriptional signatures should be preferentially developed with
consideration of both baseline and treatment-induced gene expression patterns. Altogether,
we conclude that any transcriptional signature, regardless of its robustness and flexibility,
should always be validated and optimized for tissue type, tumor type, and the experimental
model of interest due to the prominent tissue and model specificity of gene expression
in general.
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