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INTRODUCTION: We hypothesised that gene expression in histologically normal (HN) epithelium (NlEpi) would differ between breast
cancer patients and usual-risk controls undergoing reduction mammoplasty (RM), and that gene expression in NlEpi from cancer-free
prophylactic mastectomy (PM) samples from high-risk women would resemble HN gene expression.
METHODS: We analysed gene expression in 73 NlEpi samples microdissected from frozen tissue. In 42 samples, we used microarrays
to compare gene expression between 18 RM patients and 18 age-matched HN (9 oestrogen receptor (ER)þ , 9 ER�) and 6 PM
patients. Data were analysed using a Bayesian approach (BADGE), and validated with quantitative real-time PCR (qPCR) in
31 independent NlEpi samples from 8 RM, 17 HN, and 6 PM patients.
RESULTS: A total of 98 probe sets (86 genes) were differentially expressed between RM and HN samples. Performing hierarchical
analysis with these 98 probe sets, PM and HN samples clustered together, away from RM samples. qPCR validation of independent
samples was high (84%) and uniform in RM compared with HN patients, and lower (58%), but more heterogeneous, in
RM compared with PM patients. The 86 genes were implicated in many processes including transcription and the MAPK pathway.
CONCLUSION: Gene expression differs between the NlEpi of breast cancer cases and controls. The profile of cancer cases can be
discerned in high-risk NlEpi from cancer-free breasts. This suggests that the profile is not an effect of the tumour, but may mark
increased risk and reveal the earliest genomic changes of breast cancer.
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The earliest recognised breast cancers (in situ malignancies)
already harbour many of the genomic aberrations that are
characteristic of invasive disease (Allred et al, 2008; Tamimi
et al, 2008; Kuerer et al, 2009). Attention has focused recently on
alterations in earlier cancer precursors, including hyperplastic
lesions and even histologically normal (HN) epithelium (reviewed
in Simpson et al, 2005; Mastracci et al, 2007; Heaphy et al, 2009).
However, there remains a gap in the current knowledge of the
genomic features of breast cancer precursors. Investigating these
precursors should elucidate important steps in breast cancer
initiation and early progression (Thompson et al, 2008).

Many studies have used microarrays to investigate breast cancer
gene expression (for recent reviews see Bao and Davidson, 2008;
Sotiriou and Pusztai, 2009). Early studies led to the identification
of major breast cancer subtypes: Luminal A, Luminal B, normal
breast-like, ERBB2, and Basal (Perou et al, 2000; Sorlie et al, 2001).
Subsequent work refined and validated the gene expression
signatures of subtypes (Sorlie et al, 2003; Sotiriou et al, 2003;
Calza et al, 2006; Kapp et al, 2006) and developed signatures to
prognosticate patient survival and predict response to therapies
(van de Vijver et al, 2002; van ‘t Veer et al, 2002; Paik et al, 2004;
Ma et al, 2006).

Much less is known about the gene expression in premalignant
breast tissue, and studies that focused on HN epithelium (NlEpi)
are particularly limited (Finak et al, 2006; Grigoriadis et al, 2006;
Tripathi et al, 2008; Chen et al, 2009). This is partly because of the
difficulty in obtaining homogeneous epithelial cell populations
from fresh tissue. Knowledge of gene expression changes in these
tissues could generate novel tools to integrate into existing risk-
assessment models (e.g. the Gail model (Gail et al, 1989, 2007)) to
improve their accuracy. Some evidence already exists suggesting
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that alterations could have clinical significance (Yang et al, 2005;
Chen et al, 2009). In our pilot study, using a different statistical
approach and study design, we identified the differences in gene
expression between microdissected NlEpi of controls (women
undergoing reduction mammoplasty (RM)) and those of cases
(women with oestrogen receptor (ER)þ breast cancers) (Tripathi
et al, 2008). That study, however, could not address whether these
differences were an effect of the existing tumour, a marker of
increased cancer risk, or a profile of early carcinogenesis.

These results led us to hypothesise that altered gene expression
in the NlEpi of breast cancer patients may be a generaliseable
finding that occurs in both ER� and ERþ cases. Further, we
speculated that altered gene expression would be discerned in the
NlEpi of cancer-free breasts from some women at high breast
cancer risk, and would resemble gene expression of breast cancer
patients. If this were true, then the expression changes would not
be an effect of the tumour, but instead may be a marker of
increased breast cancer risk, or an indication of breast cancer’s
earliest gene expression changes. Understanding these early
alterations may help create new prevention agents and risk-
assessment tools.

To test our hypothesis, we compared gene expression in 73
NlEpi samples microdissected from snap-frozen primary tissues
from three groups of women: (1) women at usual breast cancer risk
undergoing mammoplasty reduction (RM); (2) women with breast
cancer undergoing surgery for either an ERþ or ER� breast
tumour (HN); this group was tightly age matched to the RM; and
(3) high-risk patients, consisting of women undergoing prophy-
lactic mastectomy (PM) of a cancer-free breast because of cancer
in the contralateral breast, with a strong family history of breast
cancer, or positive status as a BRCA mutation carrier.

MATERIALS AND METHODS

Breast tissue acquisition and sample preparation

All samples were obtained using an IRB-approved protocol for
collection of de-identified breast tissue not required for histo-
logical diagnosis. Tissue preparation, microdissection, RNA
extraction and amplification, array hybridisation, and data
normalisation were performed as described earlier (Tripathi
et al, 2008). Briefly, tissues were snap frozen, embedded in optimal
cutting temperature embedding medium, sectioned at 10 mm,
stained with diluted haematoxylin and eosin (H&E) (see Figure 1),
and then NlEpi – both TDLUs and ducts – was microdissected (see
Supplementary Figure S1). Most HN samples were ‘tumour-
adjacent’ (i.e. located 1–2 cm from the tumour) on blocks lacking
malignant cells. Some HN lay further away, but still in the same
quadrant as the tumour, as most surgeries were lumpectomies.
Great care was taken to avoid microdissecting any proliferative
cells, even simple hyperplastic lesions. The RNA was extracted
from microdissected cells using the PicoPure extraction kit
(Molecular Devices, Sunnyvale, CA, USA). For samples undergoing
microarray, RNA was amplified after extraction and gene
expression was measured using the HU133A chip (Affymetrix,
Santa Clara, CA, USA), a technique that yields reliable and
reproducible results (King et al, 2005). cel files were processed with
MAS 5.0 using standard procedures for quality control, and
normalisation was limited to re-scaling each sample to a mean
intensity of 200. The microarray data from these samples are
available from the NCBI Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo) under accession GSE20437.

Patient groups

Gene expression in NlEpi was examined by microarray in 42
samples (see Table 1). The primary analysis was between two

groups: the control group of women undergoing RM who lacked
any personal or strong family history of breast cancer and whose
resected breast tissue was diagnosed as benign (RM, n¼ 18); and
the case group of women with breast cancer undergoing surgery
for their cancer, who had not undergone chemotherapy or
radiation treatment before tissue acquisition (HN, n¼ 18, 9
ERþ , 9 ER�). Controls and cases were tightly age matched – no
pair differed by more than 2 years – to adjust for age-associated
changes and generate age-independent data. Data from 11 RM and
5 HN samples were reported earlier (Tripathi et al, 2008). The
third, the high-risk group, consisted of women with a personal
history or with a strong family history of breast cancer, or who
were known BRCA mutation carriers, who were undergoing
PM of a cancer-free breast (PM¼ 6). If a patient had a personal
breast cancer history, tissue was obtained from the uninvolved
breast. The ages of PM cases fell within the range of the RM and
HN groups.

Gene expression was examined by quantitative real-time PCR
(qPCR) in a prospective validation of NlEpi in an independent set
of 31 samples, defined using the same criteria as above. These
samples included 8 RM, 17 HN (9 ERþ , 8 ER�), and 6 PM cases
(Supplementary Table S1).

Identification of differentially expressed genes between
RM and HN

A total of 9321 probe sets with o20% detectable hybridisation
were removed, leaving 12 962 probe sets for analysis. Gene
expression data of the probe sets that passed quality control filters
were analysed by principal component analysis, and by a robust
version of Bayesian Analysis of Differential Gene Expression
(BADGE) (Sebastiani et al, 2006) to identify genes that were
differentially expressed between RM and HN. The BADGE uses a
model-averaging approach to identify probe sets with a different
expression in two biological conditions and scores the evidence of
differential expression by the probability that the fold change of
expression is 41 or o1. The P-value is then calculated as 1 minus
this probability, so that the smaller the P-value the stronger the
evidence of differential expression. The method has a very large
sensitivity but low specificity with small sample sizes – we showed
(Sebastiani et al, 2006) that with 20 samples per group, the
sensitivity to detect a fold change of 2 or larger can be 100%, but
specificity can be o70%. Therefore, to reduce the chance of false
positives, we used an extrinsic leave-one-out cross-validation
implemented in BADGE to select those probe sets that showed
robust changes of expression between groups (Singh et al, 2002).
The leave-one-out cross-validation consisted of removing one case
at a time from the data set and using the remaining samples to
detect the probe sets with differential expression with a false
discovery rate o6%. This threshold on the false discovery rate was
chosen to trade off sensitivity and specificity. Probe sets selected at
least 80% of the time were included in the final list of differentially
expressed genes and the final P-values and fold changes are based
on all samples (Table 2). For robustness, P-values from the
traditional t-test of log-transformed gene expression data were also
calculated. Heat maps were generated using the package HeatPlus
from Bioconductor and simple hierarchical clustering was used to
cluster samples on the basis of their expression profiles. To test the
likelihood that the same cluster results are obtained by chance, we
performed a Monte Carlo simulation in which we randomly
permuted the sample labels 10 000 times, and computed the
frequency of cluster results matching the observed one.

Gene expression in PM samples

The expression data of the 98 probes selected in the comparison of
HN and RM samples were examined in the six PM samples. We
examined the Spearman correlation of fold change between RM
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and HN samples, and between RM and PM samples, and then
performed hierarchical clustering to examine how PM samples
cluster relative to RM and HN samples. We conducted a similar
Monte Carlo simulation to test the likelihood of observing cluster
results by chance.

Validation of microarray data through qPCR

Genes were selected for validation on the basis of consistent
expression among samples in the RM and HN groups, a strongly
significant P-value, and biological relevance to cancer. On the basis
of these criteria, six test genes were selected: AHNAK, ATF3, BTG2,
CLU, EGR1, and FOS. We also selected an endogenous control
gene, CPSF6, with consistent expression between groups. For each
gene, we selected intron-spanning TaqMan primers (ABI, Foster

City, CA, USA) that overlapped with the Affy probe set target on
the HU-133A chip and generated amplicons o110 nucleotides.

For each qPCR reaction, 2 ng of unamplified RNA was reverse
transcribed using random hexamers with the TaqMan Multiscript
RT reagent kit (ABI). For each sample, the dCT value for each test
gene was calculated by subtracting the CT value of the reference
gene, CPSF6, from the CT value of the test gene. For each group
(RM, HN, and PM), each test gene’s mean dCT value and the
standard error of the mean were calculated using the data analysis
package in Microsoft Excel. To assess validation for each test gene,
the dCT value of each HN and PM sample was compared with the
mean RM dCT value. For each comparison, validation was defined
as expression in the direction predicted by microarray analysis.
The mean ddCT values for each gene were calculated by
subtracting the mean dCT value of the reference group (RM)
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Figure 1 Representative histologically normal epithelium. Representative examples of 10 mm H&E-stained guide sections showing histologically normal
epithelial cells identified for microdissection.
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from the mean dCT value of each test group (HN or PM). Data
were plotted as 2�ddCT (i.e. mean fold change) using Graph Pad
Prism software. To determine whether dCTs differed between
groups (RM vs HN and RM vs PM), we used a one-tailed two-
sample t-test assuming equal variances to compare the dCT values
for individual samples between groups.

Annotation and analysis of differentially expressed genes

The 98 probe-set list was uploaded into DAVID (http://
david.abcc.ncifcrf.gov/home.jsp) and analysed using the functional
annotation enrichment analysis to determine overrepresented GO
terms and PANTHER functions. Gene set enrichment analysis
(GSEA) (Mootha et al, 2003; Subramanian et al, 2005) and
ingenuity pathway analysis (http://www.ingenuity.com) were also
used to identify biological functions, canonical pathways, and
functional gene classification terms overrepresented in the 98
probe sets.

RESULTS

Gene expression by microarray in RM and HN samples

Table 1 presents summary information for the 42 RM, HN, and PM
samples investigated by microarray analysis. The initial analysis
was conducted between the RM group (n¼ 18, mean age¼ 51.4 -
years) and the HN group (n¼ 18; nine from patients with ERþ
tumours and nine from patients with ER� tumours, mean age 52.8
years). The RM and HN samples were directly age matched by not
more than 2 years, as age is known to influence gene expression
(Yau et al, 2007; Anders et al, 2008; Euhus et al, 2008). Thus, this
comparison generates an age-independent gene expression profile.

To determine how well the 18 RM and 18 HN samples separated
using the entire microarray data set, we performed a principal
component analysis. The results indicated that these groups may
be distinguishable – a fraction of the RMs (5 out of 18) clustered
together away from the other samples (see Supplementary Figure
S3). Next, we used BADGE to identify 98 probe sets (reflecting 88
independent transcripts or 86 identified genes) that were

significantly differentially expressed between groups (see Table 2).
Of the 98 probe sets, 66 (67%) had a higher gene expression in RM
samples, and 32 of the 98 (33%) had a higher gene expression in
HN samples. In all, 36 of the 98 probe sets (37%) were among the
127 probe sets identified in our initial report, which compared
NlEpi between RM and HN samples only from ERþ breast cancer
patients (Tripathi et al, 2008). A clustering analysis of RM and HN
samples using these 98 probe sets shows that the two groups
generally separate, although five HN samples cluster with RMs (see
Supplementary Figure S2). In the Monte Carlo procedure, only 1 in
10 000 simulations produced the same cluster result, hence the
probability that our results are due to chance is minimal. We
reviewed the clinical and pathological features of these HN samples
(patient age and tumour grade, ER and human epidermal growth
factor receptor-2 (HER2) expression status, lymph node involve-
ment, and NlEpi’s distance from tumour). These features did not
differ between clusters, although 80% of the HN samples that
clustered with RMs were ERþ (4 out of 5) and 100% were HER2�
(4 out of 4), whereas only 38% of the remaining HN samples were
ERþ (5 out of 13) and only 42% were HER2� (5 out of 12). This
trend is suggestive, but the differences were not statistically
significant. In contrast, we did find a difference between the two
groups of RM samples, using the only clinico-pathological feature
of the RM samples that could be evaluated, which was age. The
eight RMs clustering with the HNs were older than the remaining
10 RMs: mean ages were 56 years (range 44–75) vs 48 years (range
36–60) (P¼ 0.04).

Gene expression using qPCR in RM and HN samples

We used qPCR to validate the microarray-generated gene
expression data. First, we examined unamplified RNA remaining
from samples used for microarray (technical validation, see
Figure 2A), and then we examined unamplified RNA from
independent samples (prospective validation, see Figure 2B). We
selected six test primers (AHNAK, ATF3, BTG2, CLU, EGR1, and
FOS) and one endogenous control primer (CPSF6). For the
technical validations, unamplified RNA from 24 of the original
36 samples was available (13 HN and 11 RM). Three to seven HN
samples were tested with each primer and compared with four to

Table 1 Characteristics of 42 cases whose NlEpi was analysed by microarray

HN RM PM

Sample
Age

(years)
Distance

from tumour
ER/PR/
HER2a Stageb Sample

Age
(years) Sample

Age
(years)

Breast cancer
historyc

319H 34 o2 cm �/�/� IIIA 360Rd 36 395P 35 +
316Hd 39 o2 cm +/�/� IIA 352Rd 41 276P 36 �
379H 43 o2 cm +/+/+ I 347Rd 43 451P 43 +
251Hd 45 o2 cm +/+/� 0 278Rd 44 242P 46 +
289H 47 o2 cm �/�/� IIA 373R 44 446AP 54 +
364H 47 42 cm �/�/+ IIIA 350Rd 47 249P 57 �
342H 48 o2 cm �/�/� IIA 309Rd 49
304BHd 49 o2 cm +/+/+ I 357Rd 49
273H 49 o2 cm �/�/+ III 368Rd 49
380H 53 o2 cm +/+/+ IIA 288Rd 52
446BH 54 42 cm +/+/� IIIA 402R 55
237Hd 55 ? +/�/� I 383R 55
322H 58 o2 cm �/�/� I 406R 56
272H 58 42 cm �/�/+ IIIC 396R 57
388AH 58 o2 cm +/�/� I 361Rd 57
232H 59 42 cm +/+/na 0 419R 57
226Hd 61 o2 cm �/�/na IIIA 310Rd 60
333H 76 42 cm �/�/+ IIB 305R 75

Abbreviations: ER¼ oestrogen receptor; HER2¼ human epidermal growth factor receptor-2; HN¼ histologically normal; PM¼ prophylactic mastectomy; PR¼ progesterone
receptor; NlEpi¼ histologically normal breast epithelium; RM¼ reduction mammoplasty. ana¼ not available. bStage using AJCC stage criteria. c+¼ previous breast cancer in the
contralateral breast, but no history of ipsilateral cancer. 451P is a BRCA2 mutation carrier. dUsed in Tripathi et al (2008).
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seven RM samples. Overall, 27 out of 31 (87%) reactions validated
the microarray data. Each of five primers (AHNAK, ATF3, BTG2,
EGR1, and FOS) validated 100% of the time, and one primer (CLU)
did not confirm the microarray data.

We next tested gene expression prospectively using RNA from
an independent set of 25 NlEpi samples (8 RM and 17 HN; 9 ERþ
and 8 ER�) Supplementary Table S1 presents summary informa-
tion for these samples. All 17 HN samples were tested with each of
the six primers (except AHNAK for which 16 HNs were tested) and
compared with eight RM samples. Overall, 85 out of 101 (84%)
reactions validated the microarray data. All primers validated at
about the same rate (76–88%), and no HN sample seemed to be an
outlier. Fold changes for each primer’s technical and prospective

validations were similar (see Figure 2). Summary information for
the validations is presented in Supplementary Table S2.

Gene expression in PM samples

To test whether the gene expression changes in HN NlEpi are
also present in the NlEpi of patients at high breast cancer risk,
we examined gene expression in 12 PM samples. In six PM
samples, we performed microarray analysis and qPCR. In another
six PM samples, we performed qPCR only. The ages of PM patients
fell within the age range of RM and HN patients (mean PM
age¼ 45 years).

Table 2 Comparison of gene expression fold change for 98 probe sets: RM : HN and RM : PM

Symbola
RM : HN

foldb
Probability

scorec P-valued
RM : PM

folde Symbola
RM : HN

foldb
Probability

scorec P-valued
RM : PM

folde

ATF3a 5.72 1.52E�07 1.22E�06 3.39 NEDD4L 2.11 8.35E�05 1.15E�04 2.13
FOSa 4.62 1.23E�04 2.69E�05 2.81 ARL4C 2.11 4.00E�05 3.43E�04 1.83
FOSBa 4.32 6.33E�04 7.99E�05 1.76 AQP3 2.11 1.46E�03 1.01E�02 2.15
NR4A2a 4.02 5.80E�07 4.57E�07 3.21 AHNAK 2.11 2.59E�04 1.54E�03 1.74
HIST1H2BG 3.99 5.15E�04 1.99E�01 4.40 LEPROT 2.10 1.05E�03 1.93E�03 3.10
CDH19a 3.94 2.45E�04 1.73E�02 1.66 MCL1 2.10 2.20E�04 6.17E�04 1.98
HIST1H2BBa 3.85 7.53E�09 2.43E�08 4.21 CHN1 2.10 9.45E�04 5.86E�03 1.67
NR4A2a 3.83 2.76E�06 1.09E�05 3.43 SEMA5A 2.10 6.21E�04 4.38E�03 1.86
IER2a 3.77 1.08E�08 1.82E�08 3.52 RGS5 2.10 1.02E�03 3.52E�03 2.75
BTG2a 3.69 3.04E�07 2.15E�06 3.92 IER3 2.09 3.00E�04 6.81E�04 1.76
NAa 3.68 1.37E�05 1.62E�05 4.57 TIMM23 2.08 8.16E�06 1.41E�05 2.29
NR4A2a 3.46 6.02E�07 1.34E�06 3.33 NSF 2.08 5.52E�04 7.69E�03 2.50
EIF1a 3.27 1.18E�07 5.47E�07 2.92 PTP4A1a 2.08 6.24E�04 3.98E�03 1.81
JUNa 3.26 1.32E�08 6.70E�09 1.87 FHL1 2.08 1.50E�03 3.17E�02 1.46
ZFAND5 3.10 2.37E�05 1.21E�03 4.03 BAG5 2.08 6.01E�04 6.49E�03 2.29
NAa 2.92 3.15E�05 2.44E�04 2.13 EIF5a 2.05 5.40E�05 4.01E�04 1.97
DUSP1a 2.87 1.07E�05 4.37E�06 2.17 NIPBL 2.04 1.01E�04 3.74E�04 1.74
NR4A3a 2.85 3.72E�06 3.48E�05 3.07 GMPPA 0.48 6.45E�04 8.71E�03 0.58
CD69a 2.84 1.38E�04 8.07E�04 4.85 TROa 0.48 1.27E�03 8.30E�04 0.37
SPRY1 2.70 3.26E�04 2.37E�03 3.19 GNB2 0.48 2.13E�04 1.04E�03 0.49
IL6 2.66 5.84E�04 7.09E�03 2.56 CST3 0.47 1.49E�03 7.13E�03 0.41
PTP4A1a 2.65 2.12E�07 1.01E�06 2.69 PDXDC2 0.47 8.07E�04 2.90E�03 0.35
TRIM37 2.60 3.61E�04 3.88E�03 3.63 ZYX 0.47 3.92E�04 7.60E�04 0.38
RGS2a 2.60 1.24E�03 1.28E�03 1.37 UBA1 0.47 1.32E�03 3.54E�03 0.41
KLF4a 2.59 2.54E�04 6.69E�04 1.56 MARCKS 0.47 1.41E�03 2.02E�02 0.35
CX3CR1 2.58 1.69E�04 2.14E�02 2.65 RARA 0.46 3.51E�04 5.48E�04 0.47
NR4A1a 2.56 4.63E�04 7.42E�04 1.98 PELP1 0.46 2.85E�05 8.64E�05 0.48
H3F3Ba 2.53 1.04E�07 7.24E�08 1.93 PRDX2 0.46 1.32E�03 6.95E�04 0.41
DUSP2a 2.53 4.35E�04 4.81E�03 1.25 RPL28 0.45 1.35E�04 1.47E�04 0.42
TXNIP 2.50 3.17E�04 5.90E�04 2.96 COL16A1 0.44 1.41E�03 9.05E�04 0.40
PTGS2a 2.47 7.16E�04 3.11E�03 1.87 BAT2 0.44 4.61E�04 1.46E�02 0.45
EGR1a 2.47 3.83E�04 2.34E�04 3.64 PLTP 0.44 5.35E�04 1.65E�03 0.39
SNF1LKa 2.37 2.84E�05 4.52E�05 2.55 CLU 0.44 2.13E�04 5.33E�04 0.52
EGR1a 2.37 7.45E�05 4.98E�05 2.63 PIB5PA 0.43 3.66E�04 1.21E�04 0.35
PTP4A1a 2.34 2.92E�05 7.13E�04 2.62 TNC 0.42 4.90E�04 6.46E�03 0.56
CD93 2.33 2.54E�04 4.60E�03 2.58 IFI6 0.42 2.74E�04 5.88E�03 0.65
MAFF 2.31 5.29E�04 1.04E�03 2.86 INTS3 0.42 6.59E�04 9.70E�04 0.46
SAV1 2.29 6.26E�04 1.00E�02 2.94 H2AFX 0.42 2.56E�04 4.63E�04 0.41
EIF4A1a 2.28 2.92E�06 9.00E�06 2.38 FLJ11292 0.42 9.81E�04 1.83E�01 0.71
JUNa 2.25 3.43E�08 7.17E�08 3.39 RPS26 0.42 9.31E�04 1.40E�03 0.36
ZFP36a 2.23 1.29E�04 4.28E�04 2.04 IFI35 0.40 7.07E�04 4.10E�04 0.43
RGS5 2.23 1.34E�03 1.97E�03 2.49 ZFP36L2 0.40 1.38E�03 5.99E�02 0.45
YWHAZa 2.22 5.60E�04 4.32E�03 1.93 C17orf101 0.38 3.20E�04 4.73E�04 0.39
PNMAL1 2.20 1.05E�03 1.18E�02 1.88 LRRC14 0.37 1.08E�03 9.10E�04 0.32
JUNa 2.19 2.34E�05 1.20E�05 2.13 NPIPL3 0.34 1.10E�03 3.59E�03 0.78
MCL1a 2.17 5.52E�05 3.24E�04 2.47 BST2 0.31 9.68E�05 9.65E�03 0.33
FRZB 2.15 1.36E�03 2.02E�02 2.44 SEC14L1 0.30 4.14E�05 6.00E�03 0.42
ITGBL1 2.15 1.67E�03 2.23E�02 1.85 CALD1 0.27 7.01E�06 5.90E�05 0.21
ABLIM1 2.13 7.96E�05 1.29E�04 2.07 CSN2 0.10 9.09E�05 1.52E�01 1.30

Abbreviations: BADGE¼ Bayesian Analysis of Differential Gene Expression; HN¼ histologically normal; PM¼ prophylactic mastectomy; RM¼ reduction mammoplasty.
aIdentified in Tripathi et al (2008). bFold change calculated in BADGE. The sample type on the right is the reference (e.g. ATF3 is overexpressed in RM compared to HN).
cProbability score calculated in BADGE. dP-values from two-sided t-test using log-transformed data. eFold change calculated by dividing mean RM expression value by mean PM
expression value.
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As we had only six PMs on which microarray analysis could be
performed, we analysed the gene expression of these six samples
using only the 98 probe sets that significantly differed between RM
and HN samples. We found that expression of 97 out of 98 (99%)
probe sets in PM samples resembled their expression in HN
samples: relative to RM expression, the expression of probe sets
was in the same direction and approximately of the same
magnitude in both PM and HN (Table 2). Further, using these
98 probe sets, analysis of all 42 RM, HN, and PM samples showed
that five out of six PM samples clustered with HN, but not with RM
samples. The outlier PM clustered in a region composed of both
HN and RM samples (Figure 3). In the Monte Carlo procedure,
none of the 10 000 simulations produced the same cluster result,
hence the probability that our results are due to chance is minimal.

We validated these microarray results using qPCR with primers
for the same six genes as in the RM–HN comparison (see
Figure 2). With unamplified RNA remaining from the six PM
samples and eight of the RM samples used for microarray, we
found that 16 out of 21 (76%) reactions validated the microarray
data. Each of the four primers (ATF3, BTG2, EGR1, and FOS)
validated 100% of the time, and two primers (CLU and AHNAK)
did not validate (rates were 60 and 25%, respectively). The
validating primers displayed larger fold changes between RM and
HN, and between RM and PM (B3– 4-fold), than the non-
validating primers (Btwo-fold) (see Table 2).

We next tested gene expression prospectively, using NlEpi RNA
from an independent set of six PM cases (see Figure 2B). Overall,
21 out of 36 (58%) reactions validated the microarray data.
However, validation rates varied not only among primers but also
among cases. Four primers (BTG2, EGR1, FOS, and ATF3)
validated the microarray data well (rates were 67–100%), and
two primers, CLU and AHNAK, did not validate (rates were 33 and
17%, respectively). Among the four validating primers, the mean
dCT values differed significantly between the PM and RM groups
for BTG2 (P¼ 0.03), and approached significance for the others
(FOS: P¼ 0.08, EGR1: P¼ 0.09, ATF3: P¼ 0.15). This may reflect a
small sample size. Considering these four primers, we examined
whether some of the six prospective PM samples validated better
than others. Five samples validated well (X75%) and one validated
poorly (25%). This last sample came from the only patient who
underwent PM solely because of family history, she was neither a
known BRCA mutation carrier nor did she have a personal history
of breast cancer. Summary information for the validations is
presented in Supplementary Table S2.

Analysis and annotation of the 98 probe sets

The 98 probe-set list was analysed with DAVID, Ingenuity,
Panther, and GSEA. All four programmes identified similar
functional categories, including cellular metabolism, transcription,
stress response, development, apoptosis, and signal transduction.
More specifically, DAVID and GSEA identified an overrepresenta-
tion of the MAPK signalling pathway using the KEGG pathway
annotation component in both analyses. As the 98 probe-set list
contained transcription factors specific to p38MAPK, we con-
sidered the functions of differentially expressed genes in the
context of the p38MAPK pathway (Figure 4).

DISCUSSION

We aimed to better understand the molecular changes that are
present in breast epithelium before clinical or pathological
evidence of breast cancer. Therefore, we examined gene expression
in 73 snap-frozen microdissected NlEpi samples. We used
microarray (and qPCR) in 42 samples (18 RM, 18 HN, and 6
PM), and qPCR alone in 31 independent samples (8 RM, 17 HN,
and 6 PM). The microarray analysis identified an age-independent
profile consisting of 98 probe sets (corresponding to 86 genes)
differentially expressed in the NlEpi of breast cancer cases (HN),
compared with controls (RM). Using these 98 probe sets, PM
samples clustered with HN and away from RM samples.
Prospective validation by qPCR was high (84%) and uniform in
the independent HN –RM comparison. Prospective validation was
lower on an average (58%), but more heterogeneous among
samples, in the independent PM–RM comparison, as might be
expected when dealing with cases at variable risk. The 98 probe
sets included many transcription factors and were implicated in
cancer-related pathways, in particular MAPK. These results
suggest that the HN expression profile is not an effect of tumour.
Instead, it may be a marker of increased risk of breast cancer
development (e.g. field cancerisation), or may reveal some of
breast cancer’s earliest genomic alterations. Further study of early
alterations may identify new preventive agents and risk-assess-
ment tools.

Our findings raise several points for consideration. First, this
study differs in fundamental ways from our initial report (Tripathi
et al, 2008). The sample size is considerably larger. As age
influences gene expression (Yau et al, 2007; Anders et al, 2008;
Euhus et al, 2008), we tightly age-matched RM and HN subjects,
permitting us to identify an age-independent profile. HN samples
were balanced for ERþ and ER� tumour status to make our
results more generaliseable. We used a novel statistical approach,
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Figure 2 qPCR validation of microarray data. (A) depicts results using
RNA from original samples (technical validation) and (B) depicts results
using RNA from independent samples (prospective validation). Each panel
shows qPCR results for six test genes. Test genes are listed on the x axis,
and the mean fold change in expression in each sample group (HN or PM),
compared with expression in the reference group (RM), is shown on the
y axis. Fold changes were calculated using the ddCT method, in which
fold change data are represented as 2�ddCT. Error bars depict the
standard error of the mean dCT values. Significant differences (Po0.05)
are denoted with an asterisk.
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well suited to a small sample size, to identify differentially
expressed genes. We prospectively validated the microarray
findings in independent samples. Finally, we examined a rarely
studied type of sample – cancer-free breasts from patients
undergoing PM because of high breast cancer risk. We are
unaware of any earlier reports of gene expression in PMs. Existing
papers identify histological and clinical characteristics of PM
samples, leading some to advocate for more attention to the
genetics of PM (Scott et al, 2003; Goldflam et al, 2004; Yi et al,
2009). Thus, our samples and study design are unique.

Second, despite the important expansions and refinements to
the initial study, the RM–HN differences we report here are
consistent with those from the earlier study. Even though only 35
(approximately 1 out of 3) probe sets overlap, in both studies,
we identify genes belonging to multiple biological and

molecular categories, with transcription factors and the p38MAPK
pathway apparently overrepresented. This suggests that gene
expression differences between the NlEpi of RM and HN
samples is a generaliseable finding, applicable to a heterogeneous
set of breast cancer samples. Clustering analyses (Supplementary
Figures S2 and S3) suggest that the NlEpi of ERþ cases resembles
control epithelium (RM) more closely than does the NlEpi
of ER� cases.

Investigations of gene expression in HN breast epithelium are
limited (Finak et al, 2006; Grigoriadis et al, 2006; Tripathi et al,
2008; Chen et al, 2009). Our results contrast with one study that
did not find a different gene expression between morphologically
normal epithelium microdissected from RM and HN samples
(Finak et al, 2006). The discrepancy may be explained by
differences in study design and analysis. Our results are consistent
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with those of another study (Grigoriadis et al, 2006), although that
study had no samples comparable with our HN samples, and with
our own earlier findings (Tripathi et al, 2008). Another study
(Chen et al, 2009) found a proliferative gene expression signature
in morphologically benign tissue (not necessarily HN) of patients
with invasive carcinoma, but no controls were reported.

Third, evaluation of the RM–HN gene list leads to several
speculations. One speculation emerges from the observation that
the RMs that co-cluster with HNs using the 98-probe-set list are
significantly older than the RMs that do not cluster with HNs. As
the 36 RM and HN samples were tightly age matched, and all RM
cases lacked a personal or strong family history of breast cancer,
this age-related clustering of RMs is consistent with the hypothesis
that ageing itself is associated with genomic changes resembling
changes of early cancer. Another speculation relates to the function
of transcription factors. We found multiple transcription factors,
the expression of which decreased in HN samples (e.g. ATF3,
MAFF, and TXNIP). Transcription factors may be preferentially

regulated by methylation (Bloushtain-Qimron et al, 2008) and
methylation (and other epigenetic events) is believed to contribute
to the early stages of carcinogenesis (Tommasi et al, 2009). Thus,
early epigenetic events could lead to the decreased expression of
transcription factors that we see in HN. These epigenetic changes
may in some manner determine the subtype of tumour that may
arise from a particular cell or TDLU. A final speculation relates to
the potential function of the p38MAPK pathway. We found that
MAPK pathway gene expression was decreased in HN compared
with RM samples, but was less decreased in PM samples. Thus,
MAPK pathway deregulation may be implicated early in breast
cancer development, and may differentiate PM from HN
epithelium. The MAPK functions in cell cycle and transcriptional
regulation and in the immune response may thus inhibit
tumourigenesis (Bradham and McClay, 2006; Cuenda and
Rousseau, 2007), Therefore, it is not surprising to see a higher
expression of genes in this pathway in NlEpi from women without
breast cancer (RM and perhaps PM samples). Alternatively, a
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decreased expression of MAPK in the epithelium may reflect signals
arising from the microenvironment surrounding the epithelium. If
so, it is consistent with the view that the microenvironment has a
crucial function in suppressing malignant transformation or
behaviour (Spencer et al, 2007; Hu and Polyak, 2008).

Finally, our analysis of PM gene expression shows that, in
general, PM samples resemble HN rather than RM samples. As the
PM breast does not contain cancer, the HN-like changes cannot be
an effect of the tumour. Instead, they may be a marker of increased
breast cancer risk – the concept of mammary field cancerisation is
longstanding, and has recently been reviewed (Heaphy et al, 2009).
Alternatively, the HN-like changes could reflect breast cancer’s
earliest gene expression changes. The variable validation rate
among PM samples would be expected in a heterogeneous group
composed of high-risk women. Low validation of specific genes
could reflect splice variants. If future studies confirm these
findings, then evaluation of gene expression in NlEpi could
improve risk assessment and affect clinical decision making with
regard to this controversial procedure (Borgen et al, 1998;
Hartmann et al, 1999, 2004; Eisinger, 2007; Giuliano et al, 2007;
Briasoulis and Roukos, 2008). These findings could also identify
new prevention agents, by finding drugs or interventions that
modify or reverse this transcriptional signature.

The primary limitation of our study is the sample size, which is
relatively small because of the nature of our samples: fresh,
microdissected primary epithelium from untreated women. We
have made every effort to counterbalance this limitation by using a

statistical analysis suitable for small sample sizes and by using
novel and important samples that provide accurate in vivo data.

CONCLUSIONS

We find that a distinct profile distinguishes the NlEpi of breast
cancer cases (HN), including both ERþ and ER� cancers, from
that of controls (RM), and this profile can be discerned in PM. This
suggests that the HN profile is not an effect of the tumour, but
instead may be a marker of increased breast cancer risk, or a
reflection of breast cancer’s earliest gene expression changes. Gene
expression changes before histological abnormalities could be used
to elucidate pathways altered early in breast carcinogenesis and to
develop novel risk-assessment tools, prevention agents, and
therapies.
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