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Background. SARS-CoV-2 coronavirus infection
ranges from asymptomatic through to fatal
COVID-19 characterized by a ‘cytokine storm’ and
lung failure. Vitamin D deficiency has been postu-
lated as a determinant of severity.

Objectives. To review the evidence relevant to vitamin
D and COVID-19.

Methods. Narrative review.

Results. Regression modelling shows that more
northerly countries in the Northern Hemisphere
are currently (May 2020) showing relatively high
COVID-19 mortality, with an estimated 4.4%
increase in mortality for each 1 degree latitude

north of 28 degrees North (P = 0.031) after adjust-
ment for age of population. This supports a role for
ultraviolet B acting via vitamin D synthesis. Fac-
tors associated with worse COVID-19 prognosis
include old age, ethnicity, male sex, obesity, dia-
betes and hypertension and these also associate
with deficiency of vitamin D or its response. Vita-
min D deficiency is also linked to severity of
childhood respiratory illness. Experimentally, vita-
min D increases the ratio of angiotensin-converting
enzyme 2 (ACE2) to ACE, thus increasing angio-
tensin II hydrolysis and reducing subsequent
inflammatory cytokine response to pathogens and
lung injury.

Conclusions. Substantial evidence supports a link
between vitamin D deficiency and COVID-19 sever-
ity but it is all indirect. Community-based placebo-
controlled trials of vitamin D supplementation may
be difficult. Further evidence could come from
study of COVID-19 outcomes in large cohorts with
information on prescribing data for vitamin D
supplementation or assay of serum unbound 25
(OH) vitamin D levels. Meanwhile, vitamin D sup-
plementation should be strongly advised for people
likely to be deficient.
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Introduction

The SARS-CoV-2 coronavirus is an enveloped RNA
virus, infection by which provokes a remarkable
range of responses from complete lack of symptoms
through to cytokine storm and life-threatening

acute respiratory distress syndrome (ARDS) [1, 2].
The explanations for this extremely variable prog-
nosis are unclear. Mortality from coronavirus infec-
tious disease 2019 (COVID-19) is higher amongst
people who are older, male, obese, diabetic, hyper-
tensive, or who are from black, Asian, or minority
ethnic (BAME) demographics. All these factors are
associated with increased prevalence of vitamin D
deficiency or, as inmale sex, with reduced impact of
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vitamin D on the immune response. Vitamin D is,
like cortisone and sex hormones, a cholesterol-
derived steroid hormone, and it modulates expres-
sion of around 5% of human genes including many
relevant to the immune response to pathogens. We
have therefore examined the evidence that vitaminD
deficiency might be a factor determining severity of
COVID-19.

Association between northerly latitude and increased mortality
from COVID-19

There is currently (May 2020) a significant associa-
tion between northerly latitude and mortality from
COVID-19 expressed per million population across
the 117 countries with more than 1 million popula-
tion and more than 150 recorded cases at time of
sampling (Fig. 1) [3]. Much of this association is due
to the younger age of populations in some countries.
Adjusting for per cent of population ≥ 65 years does
however leave a significant relationship between
latitudeandCOVID-19mortality (P = 0.031)withan
estimated 4.4% increase in mortality for each 1
degree latitude north of 28 degrees North (Table 1).
Addition of neither pollution (particles of mat-
ter < 2.5 µm diameter (PM2.5) micrograms per m3)
nor population density per country added signifi-
cant explanatory power to a model containing lati-
tude and age. An association between northerly
latitude and mortality has also been noted amongst
African Americans across the United States [4].

Associations between COVID-19 mortality and lat-
itude suggest a possible effect of ultraviolet light. A
substantial source of vitamin D comes from synthe-
sis in the skin from its precursor 7-dehydrocholes-
terol as a consequence of ultraviolet light (UVB)
exposure. People living far from the equator may
therefore become vitamin D deficient in the winter
and spring,with levels lowest fromDecember toMay
[5]. It is estimated that at latitudesbelow35degrees,
either side of the equator UVB radiation is sufficient
for year-round vitamin D synthesis, although this
will also depend on diet, skin colour, clothing, time
spent outdoors and use of sunscreen [6].

Interpretation of country-to-country variation is
further complicated by variable approaches to
supplementation and vitamin D food fortification
initiatives. Thus, vitamin D levels are generally well
maintained despite relative lack of UVB exposure
in Nordic countries due to widespread use of
supplements and food fortification, whereas defi-
ciency is commoner in the United Kingdom and in

southern European countries, [7, 8] and particu-
larly amongst persons over 80 years and those in
institutions. We have recently reported a signifi-
cant correlation between COVID-19 mortality and
reported average serum vitamin D levels across
European countries [9]. Vitamin D deficiency
defined as <30 nmol L�1 is found in over 10% of
Europeans [7], but it has been suggested that a
level of at least 50 nmol L�1 may be optimal [6].
Wuhan itself, where the outbreak started, is at
latitude 31 degrees north; however, air pollution is
also a major factor limiting UVB radiation and has
previously been very marked over this densely
populated (11M) city [10]. There are currently no
population-based vitamin D data available from
Wuhan. In sunnier Brazil, whose capital Brasilia is
at �16 degrees latitude, there is now high mortality
but meta-analysis has shown 28% prevalence of
vitamin D deficiency [11].

Alternative explanations for the north-south gradi-
ent in COVID-19 mortality are arguably less plau-
sible. Although population density expressed per
country does not currently associate with COVID-
19 mortality, it could be speculated that cities tend
to be smaller and urban populations less densely
crowded further south but there are many exam-
ples of high population cities below 28 degrees
latitude north – Karachi 14.9M, Hong Kong 7.4M,
Mexico City 8.9M, Nairobi 4.3M and Sidney 5.2M,
for example. It can also be pointed out that there is
a north-south gradient for diagnosed cases, how-
ever, if true – for diagnosis rate is of course very
dependent on testing frequency - this may well
reflect the longer period of infectivity that is asso-
ciated with more severe COVID-19 illness. It does
not seem very likely that the virus has simply had
less opportunity to spread south of the equator
given that we are now 4 months into the pandemic.

Ultraviolet light, particularly UVB, has also been
shown to have direct immunosuppressive effects
on the skin, that include suppression of contact
sensitivity at the UV-irradiated site and induction
of antigen-specific tolerance mediated by regula-
tory T lymphocytes. Significant systemic immuno-
suppression has also been demonstrated in
experimental models [12]. Various mediators are
thought to be responsible for these effects. These
include cis-urocanic acid, generated by the iso-
merization of trans-urocanic acid, which binds to
the serotonin receptor on antigen-presenting cells,
keratinocytes and mast cells, and also cyclobutene
pyrimidine dimers, generated by UV-mediated
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nucleotide damage, and oxidation products of
membrane lipids.

UV light could also reduce viability of free virus in
the environment. Although UVC light (200–280 nm
wavelength) that has a strong germicidal effect
does not penetrate the earth’s atmosphere, UVB
(280–320 nm) has a weaker but significant anti-
viral effect that may shorten the survival of the
virus on surfaces and thus reduce infection rates
[13]. Higher temperature and higher humidity can
also decrease viral survival in the environment and
have been shown to correlate with reduced COVID-
19 infection rates and mortality across 166 coun-
tries [14]. The evidence is contradictory though: a
recent study in the United States has linked UVB,
and higher temperature, but not rainfall with lower

SARS-CoV-2 infection rates [15], whereas a study
across Chinese cities has shown no association
with either UVB or temperature and R0 or infection
rates [16].

Thus, although the association with latitude
implies that COVID-19 may prove seasonal, the
mechanisms underlying this could include any or
all of impacts of UVB on the immune system
mediated by vitamin D synthesis, other conse-
quences of the actions of UVB in the skin and
direct effects on environmental survival of SARS-
CoV-2 consequent to UVB, humidity or tempera-
ture. Of these, only an effect of UVB mediated by
vitamin D synthesis would readily explain the
associations between COVID-19 mortality and
ethnicity.

Figure 1 (a) COVID-19 mortality
per 1 million population by country
compared with latitude of capital
cities. Fitted values are derived
from a piecewise linear model of
the logarithm of mortality on
latitude. This was based on a
threshold of 28 degrees North that
explained the greatest amount of
variation. (b) Logarithm of COVID-
19 mortality per 1 million
compared with latitude with and
without adjustment for age
(%≥65 years). Data accessed 18
May 2020. Reproduced from [3]
with permission.

Vitamin D and COVID-19 / J.M. Rhodes et al.

ª 2020 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine 99

Journal of Internal Medicine, 2021, 289; 97–115



Vitamin D chemistry and biology

Vitamin D, uniquely amongst the vitamins, is a
steroid hormone. It is fat-soluble and exists in two
forms, vitamin D2 (ergocalciferol) and vitamin D3
(cholecalciferol). Both are generated by the action of
UVB, splitting a single (9,10) carbon–carbonbond in
their respective precursors – ergosterol and choles-
terol thus generating a secosteroid or ‘cut’ steroid.
Ergosterol is the precursor in fungi and plankton
and cholesterol the precursor in animals. The
chemical structure of vitamin D therefore has close
similaritieswith thatof theother cholesterol-derived
hormones such as cortisol, aldosterone, testos-
terone and oestrogen (Fig. 2). Vitamin D3 has
greater affinity for the circulating vitamin D binding
protein and a substantially longer half-life in the
circulation than vitamin D2 [18]. This is probably
only of major significance if taken by intermittent
bolus dosing rather than daily supplementation
[19]. After the generation of cholecalciferol (or ergo-
calciferol), further hydroxylation is required in the
liver and then the kidney to generate the active 1,25
dihydroxycholecalciferol. It should be noted though
that macrophages/dendritic cells also have the
ability to convert 25(OH)D to 1,25(OH)2D via
CYP27B1 and that clinical consequences of vitamin
D deficiency correlate better with serum concentra-
tion of 25(OH)D rather than with the (1000-fold
lower) serum concentration of 1,25(OH)2D [20].
Although lymphocytes also express CYP27B1, this
is at substantially lower level and the regulatory
(anti-inflammatory) effect of vitamin D on human
lymphocytes in mixed cell culture requires the
presence of antigen-presenting dendritic cells [21].
The daily requirement of vitamin D is estimated at
between 5 and 20 µg (200 to 800 IU) [6], and it is not
easy to achieve this through diet alone. Oily fish is

the only really substantial natural dietary source
though farmed versuswild fish concentrations vary.
Liver and eggs also contain vitamin D but a single
egg only provides about 5%of the daily requirement.
Mushrooms need to be subjected to UV irradiation
and even then will only provide modest amounts of
vitamin D2. For the majority of people, the main
source of vitamin D is its generation by the action of
UVB on cholesterol in the skin. This is evidenced by
the fact that in the UK, blood levels of vitamin D are
approximately 50% lower in February than in
September [22] (Fig. 2). That seasonal differences
are not even greater reflects the long half-life of
vitamin D in the body (2–3 months), predominantly
in fat stores, in contrast to its relatively shorthalf-life
in the blood (2–3 weeks) [23].

Vitamin D is best known for its effects on calcium
and phosphate absorption, osteoclast activation,
andhenceonbonecalcificationandmuscle strength
[24]. However, the vitamin D receptor is very widely
expressed, including by all leucocyte classes [25].

In theblood, approximately 85%of vitaminD isbound
to vitamin D binding protein (DBP), 15% to albumin
and just 0.03% of 25(OH)D3 and 0.4% of total 1,25
(OH)2D3 are free vitamin D [26]. It is thought that in
most cells, only free vitamin D can enter the cell.
Cellular entry by protein-bound vitamin D is depen-
dent onexpressionof the cell surface receptor proteins
megalin and cubilin [20] and is largely restricted to the
kidney, parathyroid and placenta. Free vitamin D
diffuses through the plasma membrane and binds to
the vitaminD receptor (VDR) in the cell nucleuswhere
the vitamin D/VDR complex then interacts with
vitamin D response elements in the genome. It is
estimated that vitamin D affects the transcription of
around 1000 genes, that is around 5% of the human

Table 1. Associations between COVID-19 mortality by country, latitude and % of population ≥ 65 years (from [3], data
accessed 18 May 2020).

Variable

Regression

coefficient Standard error P-value

% of variation

explained Effect size (95% CI)a

Univariate models

Latitude 0.1074 0.0142 <0.0005 33.1 11.3% (8.3–14.5%)

% ≥65 0.1766 0.0199 <0.0005 40.4 19.3% (14.8–24.1%)

Multivariate model

Latitude 0.0428 0.0196 0.031 43.0 4.4% (0.4–8.5%)

% ≥65 0.1281 0.0291 <0.0005 13.7% (7.4–20.3%)

aThe effect size is, for latitude, the percentage increase in mortality from one location, situated at least 28˚north, to another
location one degree further north and, for % ≥65, the percentage increase in mortality for each one % increase in % ≥65
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genome [27]. In pooled leucocytes, it has been shown
that at least 60 genes are vitamin D-responsive [28]
and nearly two hundred genes in monocyte/macro-
phage cells [29-31] (Fig. 2). Vitamin D therefore has
substantial effects on the immune system that are
highly relevant to the response to pathogens.

Impact of vitamin D on immunological response to pathogens –
clinical studies

A protective effect of cod-liver oil in tuberculosis was
recognized in an early therapeutic trial conducted at

London’s Bromptonhospital in the 1840s [32] and the
role of vitamin D in this effect was recognized in the
1940s, initially with the successful treatment of cuta-
neous tuberculosis and subsequently with many
confirmatory studies [33]. Since then, knowledge of
the impacts of vitamin D on the immune system has
expandedgreatlyand therehasbeen increasing recent
focus into its role in determining response to viral
infections, particularly respiratory viruses.

The evidence both from laboratory studies and
from clinical studies is that vitamin D status has

Figure 2 (a) Synthesis of vitamin D, adrenal and sex hormones from cholesterol. Adapted from Muscogiuri et al. [17] with
permission. (b) Seasonal variation in serum vitamin D levels (mean [95% CI]) amongst 7437 white British (1958 British birth
cohort) at age 45. Dark bar = male, pale bar = female. From Hypponen and Power [22] with permission. (c) Heatmaps of
vitamin D-responsive genes in mixed leucocytes from individuals before and after 2 months of vitamin D supplementation.
Four individuals had prior vitamin D deficiency, and 4 individuals had prior normal levels. Blue = decreased expression.
Brown = increased expression. It can be seen that vitamin D responsiveness equalized between the two sets of individuals
after supplementation. From Hossain-nezhad et al. [28] with permission.
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probably only a small impact on risk for viral
infection but a much more important impact on
inflammatory response and hence severity. Thus, a
meta-analysis looking at impact of supplementary
vitamin D on risk for upper respiratory tract
infection showed a statistically significant but very
modest reduction, from 42.2% to 40.3%, in risk of
one or more infections [34]. However, amongst
those who were vitamin D deficient at baseline the
reduction in infection rate was greater – from
55.0% down to 40.5%. A beneficial effect was only
seen with regular daily dosing and not with inter-
mittent bolus dosing. Probably more impressive is
the association between vitamin D deficiency and
severity of respiratory disease – for example the
need for intensive care in 1016 infants hospitalized
with bronchiolitis (22% if vitamin D < 20 ng mL�1

(50 nmol L�1), compared with 12% if vitamin
D > 30 ng mL�1 (75 nmol L�1); P = 0.003) [35].

A study in Irish people >60 years old and healthy
apart from hypertension showed a strong correla-
tion between vitamin D deficiency and increase in
both IL-6 and C-reactive protein [36]. A detailed
investigation of the impacts of vitamin D, gender
and seasonality on cytokines has subsequently
been undertaken in 534 healthy subjects as part of
the Human Functional Genomics Project [37]. This
showed that monocyte inflammatory cytokine
responses to lipopolysaccharide and Candida albi-
cans are substantially greater in men. Several
inflammatory cytokines, including TNF-alpha,
interleukin beta and interleukin 6, were shown to
be higher in summer, mostly showing no relation-
ship with vitamin D.

Interpreting serum vitamin D levels during illness – the negative
acute phase effect

Studies of vitamin D levels in individuals who are
already ill or have raised inflammatory markers have
to be interpreted with caution. Controlled studies in
calves infected with bovine diarrhoea virus (BVDV)
showed that serumvitaminD levels fell by 57%during
the acute phase response to illness [38] and similar
falls have been documented in humans following
orthopaedic surgery and acute pancreatitis [39]. Both
serum vitamin D binding protein (DBP) and albumin
concentrations fall in illness and total vitaminD levels
will fall as a consequence. It is therefore almost
inevitable that therewill beacorrelationbetween lower
total serum vitamin D levels and increased COVID-19
severity. There are several possible ways of getting
around this problem:

Measurement of free vitamin D

Total 25(OH)D serum concentration in serum is
generally acknowledged to be the de facto biomar-
ker of vitamin D status. However, as already noted,
the unbound (i.e. free) concentration of 25(OH)D is
below 0.5% of the total concentration [26, 40].
Emerging evidence points to a critical role for free,
rather than total 25(OH)D in mediating important
cellular processes related to immunity. For
instance, in vitro studies have demonstrated
reduced immune functions of dendritic cells [21]
and adherent monocytes [41] by increasing DBP in
culture media which reduces the amount of free 25
(OH)D. This is analogous to free thyroid hormones
or testosterone which are physiologically more
relevant than their total concentration.

Measurement of free 25(OH)D has been challeng-
ing due to its very low serum concentrations
(approximately 10-fold less than free thyroid hor-
mones) and has historically relied on cumbersome
radioactive tracer-based methods [42]. More
recently, two further assays, including an ELISA
[43] and a high-throughput mass spectrometric
method [44] for direct measurement of free 25(OH)
D, have been introduced, but require further
clinical and technical validation. Thus, computa-
tional methods which rely on concentrations of
total ligands and DBP and their in vitro measured
affinity constant are often used to calculate free 25
(OH)D [45]. It is important to note, however, that
the biological significance of DBP’s various allelic
forms on DBP concentrations and affinity differ-
ences is yet to be fully established. The experimen-
tally measured affinity differences for vitamin D
metabolites for various genotypic forms of DBP
with the exception of one study [46] appear to be
small [47, 48]. On the other hand, genotype has
been consistently shown to alter serum DBP con-
centrations [49, 50]. In summary, the main role of
DBP in determining free 25(OH)D levels appears to
be DBP concentration-dependent rather than
genotype-dependent. Thus, measurement of serum
DBP and albumin alongside total 25(OH)D should
allow a robust computational approach for calcu-
lating free 25(OH)D and permit a better correlation
between vitamin D status and COVID-19 severity.

Associations with vitamin D receptor polymorphism

Vitamin D receptor polymorphisms impact on
vitamin D response. Meta-analysis has shown a
highly significant relationship (P = 0.007 OR 1.52)
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between hospitalization for respiratory syncytial
virus (RSV) bronchiolitis and possession of a minor
allele for a vitamin D receptor polymorphism
(Fok1-f rs2228570) that lowers transcriptional
activity of the vitamin D receptor [51]. This poly-
morphism has an allele frequency of 13 to 38% in
healthy subjects so it could be very informative to
know whether this allele is also seen with higher
frequency in people with more severe COVID-19.

Mendelian randomization

The difficulty in interpreting serum vitamin D
levels during illness has led investigators to con-
sider the application of Mendelian randomization.
This uses gene polymorphisms that predict vitamin
D status as a surrogate for vitamin D deficiency.
One approach that has proved successful has used
gene polymorphisms associated with risk of skin
colour, tanning, or freckling. This identified a
group of gene polymorphisms that together were
predictive of vitamin D status [52]. However, this
included genes such as HERC2 that are major
determinants of blue eye colour [53] which in turn
are strongly associated with reduced pigmentation
and enhanced vitamin D response to UVB in white
individuals [54]. This approach may therefore be
less effective in a population that contains mixed
ethnicities.

A broader statistical approach is to use a genome-
wide association study (GWAS) to identify, in a
hypothesis-free fashion, polymorphisms that asso-
ciate with vitamin D deficiency. This has been done
in a remarkable study across 79,366 European-
ancestry individuals [55]. Polymorphisms at six loci
were informative with high significance. However,
the overall estimate of heritability of serum vitamin
D concentrations was found to be only 7.5% and
with only 38% of that heritability accounted for by
the identified polymorphisms. This approach will
therefore only be useable with very large sample
sizes. Moreover, a different GWAS would need to be
performed for other ethnic groups.

Measurement of vitamin D in hair or other tissues

Study of vitamin D levels in hair samples has been
proposed as a way of avoiding the negative acute
phase response effect of severe illness on serum
vitamin D levels [56]. This approach is proving
reliable in measurement of other steroid hormones
such as cortisol [57,58] but would need further
validation.

Impact of vitamin D on immunological response to pathogens –
laboratory studies

In keeping with the clinical studies, experimental
evidence shows that vitamin D has shown only
inconsistent effects on viral replication in human
respiratory epithelial cell culture but markedly
down-regulates production of pro-inflammatory
cytokines including TNF-alpha and IL-6 by various
mechanisms including inhibition of viral-induced
NF-kappaB activation [59].

Vitamin D receptors are expressed by most immune
cells including activated T cells, B-cells and den-
dritic cells, and macrophages. Vitamin D is impor-
tant for killing of phagocytosed bacteria, including
Mycobacterium tuberculosis [60, 61] and E. coli, [62]
by macrophages. An important part of this bacteri-
cidal effect relates to the induction by vitamin D of
cathelicidin, a cationic bactericidal peptide [63].
Cathelicidin (LL-37) can be produced not only by
macrophages but also by epithelial cells and has
been shown to have anti-viral activity, particularly
against enveloped viruses [64]. Vitamin D has been
shown to induce an anti-viral effect against rhi-
novirus in cultured respiratory epithelial cells [65],
an effect that can also be demonstrated by addition
of exogenous cathelicidin [66]. An effect of catheli-
cidin against influenza has also been shown [67].
Currently though, the impacts of vitamin D on
macrophage defence against viral pathogens have
demonstrated a predominant impact on cytokine
response rather than on viral killing [68]. Some of
the work has focussed on Dengue fever, a viral
infection that is well known for its very marked
cytokine activation and risk of organ failure [69, 70],
although vitamin D deficiency has paradoxically
been shown to correlate with reduced risk of septic
shock in Dengue fever [71]. Experiments have
shown consistent suppression of inflammatory
cytokine response to pathogens by vitamin D, in
macrophages, and also in T cells and in various
animal models of pneumonia and pneumonitis [72-
74]. Cytokines suppressed include IL-6 that has
been incriminated in COVID-19-associated ARDS.

Given that vitamin D may regulate the response of
nearly two hundred genes in the monocyte/macro-
phage, it is not surprising that its suppressive
effect on macrophage cytokine responsiveness has
been shown to be effected via more than one
pathway. Vitamin D has been shown to regulate
the production of inflammatory signalling medi-
ated by both NF-kappaB and STAT-1 [75] with
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MAPkinase activation as an important precursor
[72]. There has therefore been increasing specula-
tion that vitamin D deficiency could contribute to a
risk of more serious COVID-19 disease with
increased risk of cytokine storm and consequent
acute respiratory distress syndrome (ARDS) [76,
77].

Vitamin D immune response and gender

The impact of vitamin D on suppressing the
immune response has been shown to differ between
men and women. Vitamin D induces reduction in
pro-inflammatory cytokines IL17 and interferon
gamma and increase of interleukin 10 production
by CD4 + T lymphocytes, effects that are much
greater in T lymphocytes from women than from
men. Similarly, anti-CD3- and anti-CD28-stimu-
lated peripheral blood mononuclear cells from men
generated less than half the number of regulatory
CD4 + CD25 + FoxP3 + T lymphocytes in response
to vitamin D compared with cells from women, but
this gender difference disappeared when oestradiol
was added [78]. In keeping with this, a Norwegian
study has looked at the effect of weekly supplemen-
tation with 20 000 IU vitamin D3 or placebo on the
human transcriptome in prediabetic individuals
with impaired glucose tolerance. Fifty-eight genes
were shown to be significantly affected by vitamin D
in men compared with 185 in women (P < 0.05). In
women, 51 genes showed a 2-log difference in
expression compared with only a single gene in
men [79]. Genes affected included those related to
the interleukin signalling pathway and B cell-medi-
ated immunity. The authors speculated that the
gender difference might be related to oestrogen-
dependent effects on synthesis of the vitamin D
binding protein.

Increased prevalence of vitamin D deficiency amongst people with
risk factors for severe COVID-19 including ethnicity, diabetes,
hypertension, obesity and institutionalization

Vitamin D deficiency is commoner in obese indi-
viduals, people with type 2 diabetes, hypertension,
and most strikingly amongst ethnic minorities in
Europe and North America – where darker skin
pigmentation reduces skin synthesis and eightfold
increased prevalence of deficiency is reported
(Table 2) [80-83]. All of these are demographics
that have been associated with increased risk of
severe COVID-19. Vitamin D deficiency is also
substantially commoner amongst people who are
institutionalized including prisoners and people in

care homes [84-87]. Since vitamin D is fat-soluble,
its deficiency is also more likely in people with
chronic digestive disorders such as Crohn’s dis-
ease or chronic pancreatitis but, hopefully, most
will be receiving supplements.

Vitamin D, the renin–angiotensin system and COVID-19

The receptor for SARS-CoV-2, as for SARS-CoV, is
angiotensin-converting enzyme 2 (ACE2) so there is
intense interest in factors that alter its expression
or function. ACE2 has potentially contradictory
roles. Given that it is the receptor for SARS-CoV-2,
it would be reasonable to assume that greater
expression of ACE2 would be bad for the human
host. However, since the discovery of ACE2 twenty
years ago various studies have shown that it has a
crucial role in protecting against acute lung injury
and ARDS in experimental models [88-90]. The
balance between ACE2 and ACE seems crucial as
ACE2 counteracts the effects of ACE by hydrolys-
ing angiotensin II to angiotensin (1-7). Since
angiotensin II is central to the development of
ARDS, this is a very important protective mecha-
nism. So, more ACE2 is good – at least in respect of
reducing risk of ARDS, and ACE2 also has a
protective role against cardiovascular diseases
[91, 92]. ACE2 is highly expressed on human lung
alveolar cells but also on vascular endothelial cells,
smooth muscle cells, renal tubular epithelium and
small intestinal enterocytes. There is frustratingly
little published information on its expression, or
perhaps more importantly on the ratio of ACE2:
ACE expression, in children, males, elderly, vary-
ing ethnicity etc other than very small human
studies [93] or animal studies. The gene encoding
ACE2 is carried on the X chromosome. Serum
assays have shown no sex differences in ACE2
concentration overall but higher serum ACE2 in
older women [94]. Studies in rats have however
shown substantially reduced ACE2 expression
with ageing and particularly in older males [95].

Vitamin D has been shown experimentally to
increase ACE2, reduce ACE expression, reduce
angiotensin II production and reduce damage in
lipopolysaccharide (lps)-induced lung injury in rats
[96]. Similarly, vitamin D receptor gene knockout
mice show much more severe acute lung injury and
increased mortality in an lps-sepsis model of ARDS
with amelioration by antagonists of angiotensin II
[73]. Vitamin D also suppresses expression of
renin, the rate-limiting enzyme in the renin-an-
giotensin cascade [97]. These effects are clearly
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highly relevant to a potential role of vitamin D in
protecting against ARDS in COVID-19.

Vitamin D deficiency, lupus anticoagulant-associated thrombosis
and COVID-19

Venous and arterial thrombo-embolic events are
common in severe COVID-19, affecting 28% of
cases admitted to intensive care, despite thrombo-
prophylaxis, in an Italian case series of 388
patients [98]. There has been considerable interest
in the effects of vitamin D on coagulation but large
studies have failed to show an impact of vitamin D
status or supplementation on the risks for cardio-
vascular disease or thromboembolism [99, 100].

A much stronger case can be made though for a
protective effect of vitamin D against thrombotic

complications of the anti-phospholipid syndrome
[101], and here there are intriguing parallels with
the thrombotic tendency in COVID-19 [102]. Stud-
ies have shownaprevalence of up to 70% for vitamin
D deficiency amongst patients with anti-phospho-
lipid syndrome and meta-analysis of 4 case–control
studies including 325 cases and 507 controls
showed an odds ratio of 3.06 (P < 0.001) for fre-
quency of vitaminD deficiency in patients with anti-
phospholipid syndrome [103]. In keeping with an
effect of vitamin D, marked seasonality has been
shown for anti-phospholipid antibody titres in
healthy controls with lower levels in summer
months [104].

A systematic investigation of 56 patients hospital-
ized for COVID-19 found 25 (45%) positive for
lupus anticoagulant on the basis of coagulation

Table 2. Associations between vitamin D status and demographic variables associated with COVID-19 mortality

Author/year

Demographic

variable

Type of study/

location n Findings Conclusions

Kunutsor et al 2013 80 Hypertension Meta-analysis 283 537 Relative risk for

hypertension reduced

by 0.88 (95% CI 0.81–

0.97) per 10 ng mL�1

increment in vitamin D

levels

Inverse correlation

between vitamin D

status and

hypertension

Mauss et al 2015 81 Diabetes Cross-sectional

(Germany)

1821 Vit D < 10 ng mL�1

associated with

increasing HbA1c

P ≤ 0.001

And type 2 diabetes OR

2.55 (95% CI 1.16–

5.12)

Strong inverse

correlation between

vitamin D status,

fasting glucose, HbA1c

and type 2 diabetes

Yao et al 2015 82 Obesity Meta-analysis 13 209 Vitamin D deficiency

(varying definitions) OR

3.43 (95% CI 2.33 to

�5.06) for obesity

Strong inverse

correlation between

vitamin D status and

obesity

Herrick et al 2019 83 Ethnicity Cohort study

(USA)

16 180 Prevalence of vitamin D

deficiency

(<30 nmol L�1)

17.5% (95% CI 15.2–

20.0) in non-Hispanic

black; 2.1% (95% CI 1.5

–2.7) in non-Hispanic

white

Strong association

between ethnicity and

vitamin D deficiency.

No gender difference
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tests (dilute Russell’s viper venom time (DRVVT)
and activated partial thromboplastin time (aPTT)
although anticardiolipin or anti-beta2-glycoprotein
antibodies were only detected in 10% [105].
Another study reported that 20% of 216 patients
positive for SARS-CoV-2 were found to have a
prolonged activated partial thromboplastin time
(aPTT) and when most of these were further tested
91% were positive on lupus anticoagulant assay
[106]. It is well recognized that lupus anticoagulant
activity may develop transiently, typically for two to
three months, in other viral infections [107].

Seasonal variation of vitamin D deficiency and implications for the
COVID-19 pandemic

In the absence of vitamin D supplementation,
there is marked seasonal variation in vitamin D
levels. In the UK, for example, sunlight does not
contain sufficient UVB to allow skin vitamin D
synthesis until April and in northern Europe
blood levels in nonsupplemented individuals may
not rise substantially until late May or June [6].
Similarly, because of its relatively long half-life in
fat stores of 2–3 months, levels in the Southern
Hemisphere typically do not drop until June.
Moreover, older people and people with dark skin
have much lower dermal synthesis of vitamin D in
response to UVB [108]. The seasonality of respi-
ratory virus infections is of course very well
documented for influenza, human coronavirus
and respiratory syncytial virus (RSV) – the ‘winter
viruses’ [109], although other factors such as
temperature and humidity are likely also to
underlie this. There is sound evidence linking
vitamin D deficiency with risk for or severity of
influenza [76, 110] and RSV [51, 75]. If COVID-19
severity is strongly related to vitamin D status,
this too may prove to be a winter virus, since more
severe COVID-19 illness probably results in a
longer period of infectivity. Current lock-down
measures could of course blunt the normal sum-
mer rise in vitamin D.

Vitamin D in the COVID-19 pandemic – current knowledge

There are very limited peer-reviewed studies cur-
rently published, and the current data are ‘soft’.
The simplest but possibly the most informative is
a questionnaire-based study in Italian patients
with Parkinson’s disease (n = 1486) and their
family members (‘controls’ n = 1207) [111]. One
hundred and five (7.1%) of patients and 92 (7.6%)
family members had confirmed or probable

COVID-19. Vitamin D supplements had been
taken by 13/105 (12.4%) COVID-19 cases com-
pared with 316/1381 (22.9%) unaffected – after
age adjustment OR 0.56 (95% CI 0.32–0.99;
P = 0.048) for vitamin D supplements reducing
odds of COVID-19 infection.

Another study from Italy has reported serum
vitamin D levels taken with 7 weeks of SARS-
CoV-2 PCR testing – mostly with 3 days of test
[112]. Amongst 107 patients with available data,
the 27 SARS-CoV-2 positives had median 25(OH)D
11.1 ng mL�1 (IQR 8.2–21.0) compared with the 80
SARS-CoV-2 negatives who had median 25(OH)D
24.6 ng mL�1 (IQR 8.9–30.5; P = 0.004). Because
of the proximity of vitamin D assay to PCR testing,
it is possible that vitamin D levels could have been
lowered as a consequence of a negative acute phase
response.

It should be noted that both of these studies are
looking at the possible impact of vitamin D on risk
for infection. No peer-reviewed studies have yet
been published looking at possible impacts of
vitamin D on COVID-19 severity.

Several preprints that have not yet undergone peer
review are available online, but some of these are
problematic. One of the more complete studies
reports a retrospective cohort from Chicago of 4314
patients tested for COVID-19 all of whom had a
vitamin D level in the year before testing [113]. In
multivariate analysis that adjusted for age and
ethnicity, being likely vitamin D deficient (previous
deficient level and lack of increased treatment)
increased risk of testing positive for COVID-19 (RR
1.77, P < 0.02). It should again be noted that this
addresses whether vitamin D impacts on risk for
infection but does not inform about risk of COVID-
19 severity.

Three studies, two currently online as preprints
and one peer-reviewed, have used historical vita-
min D levels, measured between 2006 and 2010 in
individuals sampled for the UK Biobank. These
studies have shown no association between histor-
ical vitamin D levels (season-adjusted) and testing
positive for COVID-19 but have not yet assessed
COVID-19 severity [114-116].

Studies are urgently needed that examine COVID-
19 outcomes in relation to vitamin D status or
supplementation. An additional problem that
needs addressing is possible confounding by a
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‘healthy user’ effect, that is people with higher
vitamin D levels possibly leading a healthier life-
style in other ways. Care should be taken to adjust
for relevant confounders such as deprivation,
smoking and exercise.

Implications for current guidance

Many countries have recommendations for use of
vitamin D supplements. Current UK guidance at
https://www.nhs.uk/news/food-and-diet/the-new-
guidelines-on-vitamin-d-what-you-need-to-know/
is that ‘adults and children over the age of one
should have 10 µg (400 International units [IU]) of
vitamin D every day. This means that some people
may want to consider taking a supplement’. Recom-
mendations from other countries vary, and the
World Health Organization recommends a daily
intake of 5 µg (200 IU) for adults but rising to
15 µg (600 IU) over 65 years [6]. The proportion of
the population taking supplements is largely
unknown although in one Irish study only 4% of
men and 15% of women over 50 regularly took
supplements [87].

The relevant advisory bodies: European Food
Standards Agency, UK Scientific Advisory Com-
mittee on Nutrition and US Institute of Medicine,
all consider an upper intake limit of
4000 IU day�1 in adults [7]. The consensus rec-
ommendations for vitamin D intakes for older
adults or those with little sun exposure (house-
hold or confined) are a daily intake of 10–20 µg
(400–800 IU day�1). Due to an inadequate dietary
intake and lack of mandatory fortification in
Europe and the United Kingdom, a vitamin D
supplement may be required to achieve this.
However, lifestyle and demographic factors also
need to be taken into account and the ‘one size fits
all’ will not achieve sufficient blood 25(OH)D
concentrations across all people in a similar
timeframe. For instance, the response to vitamin
D supplementation is blunted in those who are
overweight or obese [117-120]. Furthermore, men
possibly have a lower response to supplementa-
tion than women [117] and people with intestinal
inflammatory conditions such as Crohn’s disease
have poorer absorption. Baseline vitamin D status
is also critical, and older adults may have a lower
response [121]. Consequently, those with very low
vitamin D concentrations, obesity, chronic
intestinal disease or other conditions that affect
vitamin D metabolism require either a much
longer run-in time period of supplementation or

a higher dose to reach a sufficient level in the
same timeframe.

Identification of appropriate supplementation dose
depends on the target serum 25(OH)D concentra-
tion. Although >25 or 30 nmol L�1 is generally
accepted as adequate for musculoskeletal health, it
is recommended by the US Institute of Medicine
that a higher level, >50 nmol L�1, should be
achieved [118]. Some authorities would recom-
mend a still higher target level of >75 nmol L�1, but
this is controversial. Extrapolation from a large
number of cohort studies suggests that for adults,
supplementation with 1000 IU day�1 should be
adequate, even in obese individuals, for achieving
>50 nmol L�1. However, to achieve >75 nmol L�1

would typically require supplementation of
between 3000 IU day�1 and 4000 IU day�1 for an
obese individual [118].

Finally, consideration also needs to be given to
other dietary components that are required for
vitamin D metabolism/function. For instance, the
metabolism of vitamin D into the active form is a
magnesium-dependent process, whilst it also acts
a co-factor for vitamin D binding protein [122].
Dietary intakes of magnesium have been high-
lighted as low in both the US and UK populations
[123, 124], and the recommended intakes are
around 420 mg day�1 for men and 320 mg/day�1

for women [125].

Implications for research

Research should include urgent observational
studies comparing blood levels of vitamin D in the
population with subsequent outcomes in COVID-
19 illness, but the caveat that vitamin D levels may
fall during the acute phase response of a pyrexial
illness may make interpretation difficult. Assay of
free vitamin Dmay largely get around this problem.
Simple observational studies of associations
between prior vitamin D supplementation and
COVID-19 outcomes could be the fastest route to
useful evidence.

Randomized controlled trials are regarded as the
‘gold standard’ for evidence but are probably
harder to conduct when the intervention under
test is an established vitamin rather than the more
usual trial of a novel and potentially riskier drug.
There are currently eleven clinical trials of vitamin
D in COVID-19 registered on clintrials.gov
(Table 3). Nine of these are in symptomatic
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patients. Supplementing vitamin D in people who
are already ill might be too late to be effective,
although certainly worthy of study. Two studies
will address prophylaxis, one in people >60 who
are institutionalized (Lille) and the other in health-
care workers and relatives of affected patients
(Tehran). Results from some of these studies will
hopefully become available over the next few
months.

Conclusions

Urgent research is needed to assess whether
vitamin D deficiency is associated with increased
COVID-19 severity and to determine the effects of
vitamin D supplementation. Meanwhile, given the
strong circumstantial and biological evidence, and
the relative safety of vitamin D supplementation, it
seems sensible to advocate its use more widely
during this pandemic, particularly for all those
people at risk of vitamin D deficiency. The poten-
tial gain if the hypothesis is correct would be
massive.

These points are summarized in Table 4.
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