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Abstract Heat and drought events are increasing in frequency and intensity, posing significant risks to
natural and agricultural ecosystems with uncertain effects on the net ecosystem CO2 exchange (NEE). The
current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture
impacts on the gross ecosystem exchange (GEE) and respiration (RECO) fluxes to assess the temporal variability
of NEE over south‐western Europe for 2001–2022. Warming temperatures lengthen growing seasons, causing
an increase in GEE, which is mostly compensated by a similar increment in RECO. As a result, there is a modest
increase in the net carbon sink of 0.69 gC m− 2 yr− 1 but with high spatial and annual variability. The heatwave of
2022 reduced net carbon uptake by 91.7 TgC, a 26.4% decrease from the mean. The interannual variability of
NEE is more influenced by drought in temperate humid regions than in Mediterranean semi‐arid regions. These
results emphasize the vulnerability of the net carbon sink as drying trends could revert the NEE trends, as it is
happening for croplands in the French Central Massif.

Plain Language Summary Heat and drought events are increasing in frequency and intensity, posing
significant risks to natural and agricultural areas, and altering their capacity for ecosystem CO2 exchange. In
view of recent heat and drought events, we study the changes in ecosystem carbon capture capacity and
respiration over south‐western Europe for 2001–2022. Warming temperatures lengthen growing seasons
causing an increase in carbon capture which is mostly compensated by a similar increment in respiration,
resulting in a modest annual increase of net carbon sink of 0.80 gC/m2 yr− 1 but with high spatial and annual
variability such as the heatwave of 2022 which reduced the carbon sink by 27%. These results emphasize the
vulnerability of the net carbon sink as drying trends could revert the carbon sink capacity, as it is happening for
croplands in the French Central Massif.

1. Introduction
Global climate change, particularly increasing extreme climate events, is profoundly impacting the terrestrial
carbon balance and altering vegetation dynamics (Ciais et al., 2005; Keenan et al., 2016; Reichstein et al., 2013).
Climate warming has extended the growing season in Northern ecosystems by producing more favorable con-
ditions for photosynthesis, thereby increasing their terrestrial ecosystem productivity or gross ecosystem ex-
change (GEE) (Ciais et al., 2019; Zhu et al., 2016). The increased atmospheric carbon dioxide (CO2)
concentrations also have positive fertilization effects on the vegetation productivity (Los, 2013; Schimel
et al., 2015; Thornton et al., 2007). However, warming has also stimulated the release of terrestrial carbon to the
atmosphere or ecosystem respiration (RECO) by enhancing soil organic matter decomposition and vegetation
respiration (Keenan et al., 2016). Interannual variations of these biogenic carbon fluxes are expected to increase
with increasing frequency and intensity of extreme climate events (Zscheischler, Mahecha, et al., 2014;
Zscheischler, Reichstein, et al., 2014), potentially destabilizing the long‐term carbon cycle (Fernández‐Martínez
et al., 2023).
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Regions like south‐western Europe, which experience transitional climate conditions, are especially sensitive to
warming and drying trends (Giorgi & Lionello, 2008). These conditions exacerbate the impacts of extreme
climate events such as heat and drought events (Fischer & Schär, 2010; Molina et al., 2020), which pose sig-
nificant risks to crops, forests, and overall ecosystem carbon balance. Although the Mediterranean climate is
typically characterized by long dry summers (Gilabert et al., 2015), the resilience of its forests (Bento et al., 2023;
Gazol et al., 2018) and crops (Alonso et al., 2019; Ribeiro et al., 2019) reaches its limits when long drought
episodes combined with heat waves start to affect the plants (Ermitão et al., 2021; Rita et al., 2020). The
occurrence of heatwaves and droughts, and the associated disturbances can partially reduce the net atmospheric
carbon uptake or net ecosystem exchange (NEE) or even cause net losses in carbon stocks, releasing CO2 to the
atmosphere (Qu et al., 2024; Reichstein et al., 2013). For instance, the exceptional drought of the summer 2022,
affecting central and south‐eastern Europe, caused a reduction of the net biosphere uptake over the drought area in
summer between 56 and 62 TgC (van der Woude et al., 2023). It is crucial to comprehend the impact of heat and
drought events on the south‐western European carbon balance, given its vulnerability to climate change (Fischer
& Schär, 2010; Giorgi & Lionello, 2008; Molina et al., 2020).

A multi‐year analysis of the impact of drought and heat events on biogenic carbon fluxes is essential for south‐
western Europe, where long‐term observational records of CO2 concentrations and fluxes are sparse. This gap
limits our understanding of regional carbon dynamics, particularly the intricate dependencies of GEE and RECO on
heat and drought episodes (Reichstein et al., 2013; von Buttlar et al., 2018). Although numerous studies have
investigated the role of water and heat stress on vegetation productivity and GEE in southern Europe (Ermitão
et al., 2021; Gilabert et al., 2015; Gouveia et al., 2017; Rita et al., 2020), changes in the NEE remains highly
uncertain due to overlooked complex dependencies from heat and drought episodes on RECO. Additionally, soil
water availability and vapor pressure deficit (VPD; atmospheric dryness) are the main factors driving interannual
variability of photosynthesis (Gilabert et al., 2015), yet the timing of drought and heat events is also an important
factor regulating the vegetation response (Jin et al., 2023). Moreover, process‐based biogeochemical models
usually fail to capture the vegetation carbon response to extreme variations in soil moisture (Stocker et al., 2018,
2019).

Remote sensing data‐driven biosphere models, which estimate ecosystem fluxes based on satellite‐derived
vegetation indices and meteorological drivers, usually estimate the water stress effect on GEE using satellite
sensed water indices or VPD without considering soil moisture as a model input (Fu et al., 2022; Running
et al., 2004; Stocker et al., 2018, 2019). Although satellite‐derived vegetation indices based on vegetation
structure (i.e., the Normalized Difference Vegetation Index, NDVI, or the Enhanced Vegetation Index, EVI) can
to some extent capture the effect of droughts on GEE (Maselli et al., 2009), they tend to underestimate the
magnitude of GEE reductions under dry conditions (Stocker et al., 2019). For instance, the Vegetation Photo-
synthesis and Respiration Model (VPRM) (Mahadevan et al., 2008) does not consider soil moisture as a constraint
(Mahadevan et al., 2008). Different studies have shown the potential of enhancing the VPRM model capabilities
by model parameter optimization (Dayalu et al., 2018) or by modifying the respiration equation (Gourdji
et al., 2022), resulting in similar or even better model performances compared to more complex process‐based
models.

The main objective of this study is to determine the effect of heat and drought events on the temporal variability
of the net biogenic carbon fluxes over south‐western Europe, including Portugal, Spain, southern France, and
Italy, for the period 2001–2022. To do so, we modify the VPRM model to incorporate the impact of soil moisture
on the GEE and RECO. In addition to the analysis of long‐term carbon flux variability over this whole period, we
also examine the control of climate driver anomalies (temperature, soil moisture and solar radiation) and a
drought index, the Standardized Precipitation Evaporation Index (SPEI) (Vicente‐Serrano et al., 2010, 2013), on
the interannual anomalies of carbon fluxes over 10 biogeographical regions (Figure 1). To complement the
analysis of VPRM simulations, we also use GEE based on the sun‐induced chlorophyll fluorescence (SIF), a
Global Orbiting Carbon Observatory‐2 (OCO‐2) SIF product (GOSIF) (Li & Xiao, 2019) between 2001 and
2022, and carbon flux estimates from the process‐based biogeochemical model ORCHIDEEv3 (McGrath
et al., 2023). Finally, we study the intra‐annual variations in carbon fluxes in the following regions during two
exceptional heat and drought events: the Iberian sclerophyllous region in the year 2005, and the Atlantic region in
the year 2022.
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2. Materials and Methods
2.1. Study Area

The study region encompasses south‐western Europe from Portugal to Italy (Figure 1). This large area encom-
passes a great diversity of ecosystems, topographical features, climates, land‐use, and soil typologies (Gouveia
et al., 2017), which we classify into 10 biogeographical regions based on the map of Terrestrial Ecoregions of the
World from the World Wildlife Fund (Olson et al., 2001). The classification of the biogeographical regions is
detailed in Supporting Information S1. The prevailing climate is the subtropical Mediterranean climate with hot
and dry summers, although other climates such as temperate oceanic, mountainous and humid continental cli-
mates are present.

2.2. VPRM Modifications

VPRM simulates surface CO2 exchanges between the atmosphere and the biosphere using meteorological data
and remote‐sensing vegetation indices (cf. Supporting Information S1). NEE is estimated as the difference be-
tween RECO and GEE, following a negative sign convention where negative fluxes represent CO2 uptake by
ecosystems. VPRM parameters are optimized for 8 plant functional types (PFT) representing various land cover
types (i.e., evergreen forest, deciduous forest, mixed forest, shrubland, Mediterranean savanna, cropland,
grassland, and sparsely or non‐vegetated), weighted by fractional coverage to calculate the regional ecosystem
fluxes.

To account for the impact of soil moisture on GEE and RECO, modifications were made in the VPRM equations,
with an RECO parameterization based on a previous study (Migliavacca et al., 2011). The methodology for
optimizing the modified and default VPRM parameters using data from southern Europe flux tower observations
is presented in Supporting Information S1. The flux tower data is obtained from the data sets FLUXNET 2015
(Pastorello et al., 2020) and the Warm Winter 2020 product from ICOS (Warm Winter 2020 and ICOS Ecosystem
Thematic Centre, 2022) (see Figure S1 and Tables S1 and S2 in Supporting Information S1).

Figure 1. Biogeographical regions. Area of study and biogeographical regions of this study.
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The GEE parameterization consists of a light‐use‐efficiency approach that relates the GEE to the fraction of
photosynthetically active radiation that is absorbed by vegetation canopies, combined with a set of optimized
scaling factors (λSW, Tscale, Wscale, and Pscale). We introduce a new scaling factor, SMscale, to better represent soil
moisture stress on GEE, distinguishing between adequate soil water and insufficient soil water regimes, according
to a previous study (Stocker et al., 2019). The GEE parameterization is defined as

GEE = λSW · Tscale · Wscale · Pscale · SMscale ·
SW

(1 + SW/SW0)
· EVI (1)

where SW is shortwave radiation, and SW0 is the half‐saturation shortwave radiation. The function SMscale is
defined to be 1 when the soil moisture (θ) is above a critical soil moisture threshold (θ∗) and decreases linearly
below this threshold (Fu et al., 2022). Soil moisture in the uppermost soil level (0–15 cm depth) is normalized
between the permanent wilting point and the field capacity of the soil. The form of the SMscale function is:

SMscale = {
q · (θ − θ∗) + 1,θ < θ∗

1,θ ≥ θ∗
(2)

where q and θ∗ are optimized parameters, being q the sensitivity of GEE to low soil moisture. With this modi-
fication, we increase the number of parameters in the GEE parameterization from two (λSW, SW0) to four (adding
q and θ∗).

The default VPRM employs a linear function of air temperature to determine RECO. In this study, we use an
equation proposed in two previous studies (Migliavacca et al., 2011; Reichstein et al., 2003). In our approach, we
employ soil moisture rather than precipitation to depict water stress on RECO using a hyperbolic tangent function.
This choice is due to soil moisture's superior role in influencing soil microbial processes and plant stress (W. Liu
et al., 2009). The RECO equation in the modified VPRM relies on air temperature, soil moisture and short‐term
vegetation productivity (daily GEE) as follows:

RECO = (R0 + k1 · GEE) · tan h(k2 · θ + γ) · e
E0 ·( 1

Tref − T0
− 1

T− T0
)

(3)

GEE represents the average GEE over the previous 24 hr, and T is the air temperature. Tref and T0 are fixed
temperatures at 288.15 K (15°C) and 227.13 K (− 46.02°C), respectively. Model‐specific constants, R0, k1, k2, γ,
and E0 vary for each PFT and refer to reference abiotic ecosystem respiration, sensitivity of RECO to GEE,
sensitivity of RECO to soil moisture, a constant indicating how RECO responds to null θ, and the activation energy
parameter for the sensitivity of RECO to air temperature, respectively. Including vegetation productivity in the
respiration parameterization enhances the spatial and temporal dynamics of RECO, preventing a bias in seasonal
amplitude (Migliavacca et al., 2011). GEE has also been included in previous studies to improve the estimation of
RECO (Xiao et al., 2011, 2014).

The VPRM model is used to estimate biogenic carbon fluxes (NEE, GEE, and RECO) at an hourly resolution
spanning from 2001 to 2022 and at a spatial resolution of 9 km. The model uses meteorological drivers from the
ERA5‐Land data set (Muñoz‐Sabater, 2019) and satellite‐derived vegetation indices processed from MODIS
surface reflectances (Vermote, 2015). The model computes fluxes individually for each PFT and results were
subsequently aggregated based on the VPRM PFT map. Another modification to VPRM includes differentiating
between summer and winter crops within the cropland PFT, as is explained in Supporting Information S1.

2.3. Climate and Remotely Sensed Data

Climatic driver data are from the European Centre for Medium‐Range Weather Forecasts (ECMWF) ERA5‐Land
reanalysis product. These data cover the years from 1950 to present, with hourly frequency and 0.1° resolution
(Muñoz‐Sabater, 2019). For this study, only the data from 2001 to 2022 is used. The key variables used include
2 m temperature (T2M) for air temperature, surface solar radiation downwards (SSRD) for shortwave radiation,
and volumetric soil water of the second layer (7–28 cm depth; SM2) for soil moisture. This specific soil layer is
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chosen because of its higher correlation with observed soil water content from flux tower stations compared to
other layers.

To assess drought episodes across south‐western Europe, monthly averaged ERA5‐Land variables, including
T2M, SSRD, and SM2, are employed. Additionally, the multi‐scalar drought index SPEI is computed at various
month aggregations (1‐, 3‐, 6‐, 9‐ and 12‐month, for SPEI01, SPEI03, SPEI06, SPEI09, and SPEI12, respectively)
to assess drought intensity and variability using monthly averaged ERA5‐Land data between 1951 and 2022.
SPEI considers not only precipitation but also the atmospheric evaporative demand crucial for studying vege-
tation impacts on warm regions (Vicente‐Serrano et al., 2010, 2013). The SPEI is determined based on a log‐
logistic probability distribution of the series of differences between precipitation and potential evapotranspira-
tion (PET), with PET calculated using the Food and Agriculture Organization (FAO‐56) Penman‐Monteith
equation. The Python module SPEI (Vonk, 2024) is used for the derivation of the drought index.

The EVI and the land surface water index (LSWI) are processed from the MODIS Terra satellite MOD09A1 v6.1
product (Vermote, 2015) using the VPRM preprocessor from the Department of Biogeochemical Systems in the
Max Planck Institute for Biogeochemistry (https://www.bgc‐jena.mpg.de/4758306/bsi_vprmpreproc; last access
22/11/2024).

The VPRM model uses the Synergetic Land Cover Product (SYNMAP) (Jung et al., 2006) for the vegetation
classification map reclassified to the 8 VPRM PFTs. SYNMAP is a 1‐km global land cover product built from
remote sensing observations and its classes are defined based on PFT mixtures with explicit leaf type and
longevity definitions, and thereby is ideal for carbon cycle modeling applications.

To complement the analysis of VPRM simulations, we also use GEE based on the SIF product GOSIF (0.05°)
between 2001 and 2022 (Li & Xiao, 2019). GOSIF GEE exhibits strong correlations with flux tower GEE at 8‐
day, monthly, and annual scales, maintaining a high correlation with GEE even during drought episodes (Lv
et al., 2023; Qiu et al., 2022), and offers the advantage of relying solely on satellite SIF observations, eliminating
the need for climate data.

GEE, RECO, and NEE are also estimated using the process‐based ORCHIDEEv3 model at high‐resolution
(0.125°) over Europe simulating between 1901 and 2022 (McGrath et al., 2023). ORCHIDEE estimates car-
bon, water and energy fluxes from environmental drivers (meteorology and CO2 mole fractions) including a
dynamic nitrogen cycle coupled to the vegetation carbon cycle. ORCHIDEE is driven with meteorological data
from ERA5‐Land realigned with the Climatic Research unit (CRU) observation data set at 0.5° between 1981 and
2022, and is driven with the UERRA HARMONIE‐V1 data set realigned with the CRU between 1901 and 1981 as
described in McGrath et al. (2023).

2.4. Statistical Analysis

Monthly anomalies of GEE, RECO, NEE and the climate drivers (T2M, SM2, and SSRD) are calculated, as the
difference between monthly values and monthly means for the entire period 2001–2022. The methodology used to
determine the long‐term trend of consists of a linear regression of the carbon flux annual anomaly time series and
the significance of these trends is assessed using a Pearson correlation test.

To investigate the influence of SPEI at various timescales on the interannual variability of fluxes, a Pearson
correlation analysis is conducted using the time series of detrended flux anomalies. In the case of the climate
drivers, the partial correlation coefficient is calculated for each variable controlling the interannual variations in
the other two driver variables. For this analysis, detrended anomalies are aggregated for growing season months,
identified for each biogeographical region and based on average seasonal cycles. Growing season months are
determined based on when the monthly mean GOSIF GEE exceeds 30% of the intra‐annual GEE range (Figure S1
in Supporting Information S1). Although GOSIF GEE and VPRM GEE generally exhibit similar seasonal cycles
across all biogeographical regions, discrepancies are observed for the Iberian and Tyrrhenian‐Adriatic scle-
rophyllous regions. Higher discrepancies are observed with ORCHIDEE GEE, which presents earlier growing
seasons (Figure S1 in Supporting Information S1).

Finally, we select two study cases consisting of years with severe heat and drought events largely affecting the
NEE of the south‐western European ecosystems to study intra‐annual variations in biogenic carbon fluxes in
response to these major events. The study cases are the Iberian sclerophyllous region in the year 2005, and the
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Atlantic region in the year 2022. For these study cases, VPRM‐simulated carbon fluxes, along with T2M and
SM2, are aggregated on an 8‐day basis. Anomalies relative to the means over the 2001–2022 period are computed
for each grid cell and 8‐daily period within the year.

3. Results
3.1. Performance Evaluation of the Different Versions of VPRM With Flux Tower Data

In this section, we compare the performances of the default VPRM (VPRMDEF, see Supporting Information S1),
the default VPRM with optimized parameters (VPRMDEF_OPT) and the modified VPRM (VPRMMOD) for
simulating the CO2 fluxes over eddy‐covariance flux towers in south‐western Europe, using half‐hourly observed
fluxes (NEE), and GEE and RECO estimates from observations using the nigh‐time partitioning method (Pas-
torello et al., 2020). An evaluation data set subset of flux tower observations is employed (Table S2 in Supporting
Information S1). The statistical metrics used for the evaluation of the model‐data fitting are the Pearson corre-
lation coefficient (r), the Root Mean Squared Error (RMSE) and the Mean Squared Deviation (MSD = RMSE2)
decomposed as the sum of three components: the squared bias (SB), the squared difference between measured and
simulated standard deviation (SDSD) and the lack of correlation weighted by the standard deviation (LCS).
Further details of the MSD decomposition are explained in Kobayashi and Salam (2000).

Regarding the NEE, VPRMMOD exhibits lower RMSE (Figure S3a in Supporting Information S1) and stronger
correlations with observations (Figure S4a in Supporting Information S1) across most PFTs except for mixed
forest. Optimizing VPRM parameters achieves significant RMSE reductions (exceeding 0.55 μmol CO2 m− 2 s− 1)
for evergreen forest, summer crops, and grasslands (Figure S3a in Supporting Information S1). The improved
performance of VPRMDEF_OPT and VPRMMOD results from a close match in the standard deviation of the
modeled NEE to the observed values compared to VPRMDEF (Figure 2a). An evaluation of the seasonal cycles

Figure 2. Decomposed mean squared deviation comparison. Mean squared deviation (MSD) and its components SB, SDSD, and LCS for the three VPRM versions
calculated using half hourly data and the different PFTs. (a) NEE, (b) GEE, and (c) RECO. EF: evergreen forest, DF: deciduous forest, MF: mixed forest, SHR: shrubland,
SAV: savanna, CRO: cropland, CRO_W: winter crops; CRO_S: summer crops; GRA: grassland.
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with monthly mean fluxes (Figure S5 in Supporting Information S1), reveals that all versions closely match the
observed negative peak during the growing season for all PFTs except Mediterranean savannas, where
VPRMMOD aligns more closely with the observations than VPRMDEF and VPRMDEF_OPT.

Regarding the GEE, VPRMMOD presents the lowest RMSE for evergreen forest, with notable reductions achieved
through parameter optimization (Figure S3b in Supporting Information S1). VPRMMOD exhibits the strongest
correlations with the observations for evergreen forest, shrubland and winter crops (Figure S4b in Supporting
Information S1), although similar correlations are found for the other PFTs. The optimization of the VPRM
parameters decreases SB and SDSD across all PFTs except mixed forests (Figure 2b), while increasing LCS
implies a better estimation of the magnitudes of the fluctuations of GEE. The VPRM parameter optimization
improves the representation of the growing season GEE peaks in all PFTs except mixed forests (Figure S5 in
Supporting Information S1). The differences in GEE seasonal cycles between VPRMDEF_OPT and VPRMMOD are
not significant, indicating minor impact from GEE parameterization modifications at the monthly scale (Figure
S5 in Supporting Information S1).

Regarding the RECO, VPRMMOD generally has lower RMSE (Figure S3c in Supporting Information S1) and
stronger correlation with observations (Figure S4c in Supporting Information S1), except for mixed forest and
shrubland where VPRMDEF_OPT outperforms. VPRMMOD significantly improves model data‐fitting for savannas,
croplands (in all aggregations) and grasslands, with RMSE reductions exceeding 0.71 μmol CO2 m− 2 s− 1. The
improvements shown for VPRMMOD stem from the reduction of the SB and SDSD for all the PFTs as well as the
reduction of the LCS for savannas and croplands. VPRMMOD better captures peak seasonal cycles for deciduous
forest, savanna, croplands, and grasslands compared to VPRMDEF_OPT and VPRMDEF (Figure S5 in Supporting
Information S1). Introducing GEE in the RECO parameterization corrects the timing of the seasonal peak for
savannas and croplands.

Based on the better performance of the modified VPRM for most of the PFTs, we will focus solely on this version
of VPRM and refer to it from now on as VPRM.

3.2. Trends of South‐Western Europe Carbon Fluxes

The long‐term trend analysis of carbon fluxes from VPRM, ORCHIDEE, and GOSIF shows an overall increase of
both GEE and RECO, with certain regions showing flux stability (Figure 3). GOSIF presents a positive trend in

Figure 3. Long‐term carbon flux trends. Spatial pattern of the long‐term trends of annual fluxes for (a) VPRM GEE; (b) ORCHIDEE GEE; (c) GOSIF GEE; (d) VPRM
RECO; (e) ORCHIDEE RECO; (f) VPRM NEE; (g) ORCHIDEE NEE between 2001 and 2022. The black dots correspond to areas where the linear regression is
significant (p < 0.05).
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GEE (spatial median of 5.50 g C m− 2 year− 2 and 52.5% of the vegetated areas showing significant increases),
while positive VPRM GEE trends are more localized to the mountainous regions (3.58 g C m− 2 year− 2 and
25.3%). Both models are consistent in estimating a non‐significant negative trend in the GEE in the Massif Central
mountains (south‐central France). ORHCIDE GEE spatial median trends (3.58 g C m− 2 year− 2 and 43.2% of the
domain) align with the VPRM spatial median trend, but spatial distributions differ. ORCHIDEE estimates
positive trends in the French Massif Central, and negative or near‐zero trends across the Italian peninsula.

The long‐term trends of the VPRM RECO present a similar spatial distribution to those of GEE, although the
magnitude (spatial median of 3.01 g C m− 2 year− 2) is smaller than that for the GEE (3.58 g C m− 2 year− 2). The
spatial extent of the areas with significant VPRM RECO trends (36.0%) extends further than the areas with sig-
nificant GEE trends (25.3%). ORCHIDEE RECO trends are spatially distributed similar to ORCHIDEE GEE
trends but with higher spatial magnitude and extent (spatial median of 4.02 g C m− 2 year− 2, and 61.4%).

The comparable spatial trends of VPRM GEE and RECO reflect that long‐term variations in released and captured
carbon by the ecosystems compensate each other, implying a trend approaching zero in the NEE
(− 0.69 g C m− 2 year− 2 and 14.6%) (Figure 2d). VPRM estimates a significant increase of net carbon sink over
specific regions located in the Alps (− 2.39 g C m− 2 year− 2), and the Apennines, and Corsican
(− 3.43 g C m− 2 year− 2) mountainous regions (Figure S6 in Supporting Information S1). Only one region, located
in the northern part of the Massif Central, shows a non‐significant decrease in net carbon sink (maximum trends of
11.33 g C m− 2 year− 2). On the contrary, ORCHIDEE estimates a positive and non‐significant trend in the NEE
(0.51 g C m− 2 year− 2 and 5.2%). High disagreement between ORCHIDEE and VPRM is found in the Italian
peninsula and the Alps (Figures 3f and 3g).

The disaggregation of the fluxes by PFT reveals that the increase in the long‐term trends of the GEE and RECO in
the Po Basin, the Italian sclerophyllous, the Apennine and Corsican montane and the Tyrrhenian‐Adriatic scle-
rophyllous regions is dominated by croplands (Figure 4). In other regions such as the Atlantic, the Iberian
sclerophyllous and the Western European broadleaf regions, the long‐term trends of RECO are higher than those
for the GEE in croplands, counteracting the contributions of the natural PFTs with stronger sink increases.

Over the entire study area (Figure 5), VPRM, ORCHIDEE, and GOSIF GEE shows a significant increase of 6.5,
6.6, and 9.4 Tg C year− 2, respectively. GOSIF and VPRM GEE show strong agreement on the interannual
variability. VPRM and ORCHIDEE RECO also exhibit a significant increase of 5.0 and 7.7 Tg C year− 2,
respectively, with high agreement on the interannual variability. This occurs in conjunction with a significant
warming trend of 0.057°C year− 1 and a non‐significant soil drying trend over the region. Due to the compensation
between GEE and RECO, the VPRM NEE shows a non‐significant decrease of − 1.5 Tg C year− 2, while
ORCHIDEE presents a non‐significant increase of 1.1 Tg C year− 2. This discrepancy between models is caused
by the different RECO trends. Moreover, the occurrence of summer heat and drought events increases the intra‐
annual variability of NEE, producing the largest positive NEE anomalies.

3.3. Interannual Variability of Carbon Fluxes

Figure 6 shows the correlation between VPRM GEE and RECO interannual anomalies and the SPEI01, SPEI03,
and SPEI06, and the partial correlation of the flux anomalies with the climate drivers (T2M, SM2, and SSRD)
during the growing season months. Water availability prevails as the dominant driver of GEE interannual
variability. Except for the Alps, the strongest correlations with GEE anomalies are found for SPEI (spatial
median ranges between 0.37 and 0.76) and soil moisture (between 0.35 and 0.64). These results suggest that
seasonal and extended droughts significantly influence GEE fluctuations. The correlations of GEE with SPEI at
higher timescale aggregations (9 and 12 months) (between 0.29 and 0.73) are slightly lower than those for
lower timescale (Figure S7 in Supporting Information S1). GEE in Mediterranean climate biogeographical
regions (IbeScl., IbeMon., NESSF., TyrAdr.) shows a higher correlation with SPEI06, while in temperate
humid regions, GEE presents higher correlations with SPEI03 (Atl., WEur., ItaScl., ApeCor.) or SPEI01
(PoBas.). The strongest correlations between SPEI and GEE anomalies are found in the Iberian sclerophyllous
and Tyrrhenian‐Adriatic regions (Figure 6), specifically for SPEI06 (r = 0.76 for IbeScl., and r = 0.72 for
TyrAdr.).

In low‐altitude regions (excluding Alps, Apennine, and Corsican montane forests), air temperature shows pri-
marily non‐significant negative partial correlations with GEE anomalies (between − 0.28 and 0.02), while RECO
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shows positive partial correlations with air temperature (between 0.04 and 0.42). Higher temperatures during the
growing season lead to reduced gross CO2 uptake and increased CO2 release, while increased precipitation and
soil moisture promote the photosynthetic activity. Although radiation presents a positive correlation with GEE, it
is generally non‐significant (between 0.03 and 0.27). In temperate humid regions such as the Atlantic, Western
Europe and Po Basin, RECO displays weaker correlations with SPEI01 (r = 0.15–0.42) compared with GEE
(SPEI: r = 0.43–0.62), indicating that RECO is less sensitive to droughts in such regions. Conversely, in south‐
eastern regions like Tyrrhenian‐Adriatic, Apennine and Corsican montane, RECO exhibits stronger correlations
with SPEI and partial correlations with soil moisture (SPEI: r = 0.53–0.81; SM2: r = 0.62–0.79).

Figure 4. Long‐term carbon flux trends by PFT. Average trends of the VPRM GEE and RECO aggregated annually for the different biogeographical regions and
integrated for the different plant functional types. The PFT percent coverage is marked over each bar.
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GOSIF and VPRM GEE show good agreement across biogeographical regions and climate drivers (Figure S7 in
Supporting Information S1), confirming that VPRM is able to simulate the interannual variability of GEE well.
ORCHIDEE and VPRM GEE present good agreement for most of the biogeographical regions and climate
drivers (Figure S7 in Supporting Information S1), except for the Atlantic (ORHCIDEE presents higher positive
correlations with T2M), the Alps (ORCHIDEE presents stronger negative correlations with SPEI01 to SPEI12,
and SM2) and the Tyrrhenian‐Adriatic (ORCHIDEE presents lower correlations with SPEI06 to SPEI12 and
SM2). ORCHIDEE and VPRM RECO show good agreement across most biogeographical regions and climate
drivers (Figure S8 in Supporting Information S1), except for the Italian sclerophyllous, Tyrrhenian‐Adriatic,
Apennine and Corsican montane regions where ORCHIDEE presents lower correlations with SPEI03 to SPEI12
(ORCHIDEE r = 0.17–0.56; VPRM r = 0.43–0.81) and SM2 (ORCHIDEE r = 0.22–0.45; VPRM
r = 0.51–0.79).

Notably, the biogeographical regions where SPEI presents a stronger negative correlation with VPRM NEE
anomalies are the Po Basin (r = − 0.70 to − 0.55) and the Italian sclerophyllous (r = − 0.59 to − 0.49) (Figure 7).
For the other biogeographical regions, except the Alps, NEE anomalies present a weaker negative correlation with
SPEI (between − 0.54 and − 0.17) and SM2 (between − 0.32 and 0.07), compared with the positive correlations
with GEE anomalies (SPEI: r = 0.37–0.76; SM2: r = 0.35–0.64).

3.4. Intra‐Annual Variability of Carbon Fluxes

In the following section, we study the intra‐annual variability of the carbon fluxes for two study cases. Figure 8a
depicts the impact of the 2005 drought on carbon fluxes in the Iberian sclerophyllous region. VPRM indicates
reduced GEE and RECO from late January to October. Higher GEE reductions of − 2.0 ± 1.1 g C m− 2 day− 1 (the
error corresponds to spatial standard deviation) appear in late April and May. GEE and RECO anomalies evolve
similarly, although the impact on RECO is lower (− 1.6± 0.8 g C m− 2 day− 1). Climate driver anomalies (Figure 8c)
reveal persistent negative soil moisture anomalies, dipping to − 0.09 ± 0.02 m3m− 3 from the start of the year to

Figure 5. Time‐series of annual anomalies over the study area. Annual anomalies in the climate data and carbon fluxes during 2001–2022. (a) Soil moisture and
temperature, (b) GEE, (c) RECO, and (d) NEE aggregated over the entire study area. The dashed lines represent the trends, while in the boxes the trends and the p value
are detailed. The black stars in subplot (d) mark the years in which the SPEI aggregated over 1‐, 3‐, 6‐, 9‐, or 12‐month during summer is below − 1, indicating a drought
affecting most of the study area. The red stars mark the years when the summer temperature anomalies are above 1°C, indicating a summer heat event.
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October, particularly during spring when fluxes are the lowest. Negative temperature anomalies (below − 5°C) are
observed during winter, delaying the start of the growing season, while May‐July features positive temperature
anomalies (>3°C), further depleting soil moisture. The event leads to a 65.5 Tg C year− 1 (− 25.4%) reduction in
annual GEE, and 47.3 Tg C year− 1 (− 18.9%) decrease in annual RECO, resulting in a 18.1 Tg C year− 1 (− 251.0%)
increase in NEE (i.e., decrease in net carbon uptake), and turning the ecosystems in the region from net carbon
sinks into net carbon sources. The Atlantic, Iberian montane, north‐eastern Spain and southern France regions
also experience net carbon uptake reductions (Figure S9 in Supporting Information S1) of 14.0 Tg C year− 1

Figure 6. Drivers of carbon flux anomalies. Boxplots of correlation values between VPRM GEE and RECO detrended anomalies and the different climate drivers and
drought indices aggregated over the growing season months for each biogeographical region. The median is represented by a yellow line. The discontinuous black lines
represent the limit when correlations are significant (p < 0.05).
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(− 16.1%), 6.8 Tg C year− 1 (− 35.6%) and 3.4 Tg C year− 1 (− 21.4%), respectively. In the south‐western European
region, the 2005 drought causes a total net carbon uptake reduction of 76.4 Tg C year− 1 (− 22.0%).

In 2022, south‐western Europe experiences its hottest recorded summer, coupled with an extended drought event
extending from winter until November (Copernicus Climate Change Service (C3S), 2023). Winter and spring
precipitation and soil moisture deficits further increase during summer due to the unusually warmer temperatures
and multiple heat wave episodes (Copernicus Climate Change Service (C3S), 2023). Figure 8b shows the 2022
spatial mean GEE and RECO anomalies in the Atlantic region. GEE remains persistently low from June to August,
except for early July. RECO also shows negative summer anomalies, although for a shorter period and with smaller
reductions than GEE. During spring, GEE and RECO experience positive anomalies (over 2.1± 0.9 g C m− 2 day− 1)

Figure 7. Drivers of NEE anomalies. As Figure 6 but for VPRM NEE.
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driven by the exceptionally high temperatures during May (over+4°C) (Figure 8d). The VPRM model estimates a
decrease in the net carbon uptake of 16.2 Tg C year− 1 (− 18.7%) in the region during 2022 and 91.7 Tg C year− 1

(− 26.4%) in the south‐western European domain.

4. Discussion
4.1. Long‐Term Trends of Ecosystem Carbon Fluxes

In this study, we analyzed the long‐term trends and interannual variability of carbon fluxes in the south‐western
European region from 2001 to 2022 to understand the response of these fluxes to heat and drought events. The
statistical analysis of the carbon fluxes reveals an overall increase or stability of GEE (spatial median of 5.51,
3.58, and 3.58 g C m− 2 year− 2 for GOSIF, VPRM and ORCHIDEE, respectively) and RECO (3.01 and
4.02 g C m− 2 year− 2 for VPRM and ORCHIDEE, respectively). These trends are particularly prominent in
montane regions such as the Alps, Apennines, Pyrenees, and Dinaric Alps. We identify a positive trend of the
enhanced vegetation index (EVI) derived from MODIS surface reflectances (Vermote, 2015) over the Medi-
terranean region (trends up to 0.0012 EVI year− 1), which is more evident during the spring and winter months
(Figure S10 in Supporting Information S1). Additionally, when examining long‐term trends in the air tempera-
tures using ERA5‐Land data (Muñoz‐Sabater, 2019) (Figure S11 in Supporting Information S1), a more sub-
stantial winter warming (up to 0.2°C year− 1) is observed over these same regions. The temperature rise during the
colder season contributes to the increase in GEE and RECO values by alleviating growth limitations and extending
the growing season (Keenan et al., 2016). This is supported by similar increases in GEE based on the GOSIF data
set, which relies on satellite‐derived SIF data (Li & Xiao, 2019), reinforcing the notion of elevated gross carbon
uptake in high‐altitude regions of the south‐western European region.

However, differences between GOSIF, ORCHIDEE, and VPRM are observed in other biogeographical regions,
possibly due to differences in model parameterization and input data. The discrepancies between the three models
impair our ability to conclude about the long‐term trends in NEE. GOSIF exhibits an overall higher spatial median
compared to VPRM and ORCHIDEE. GOSIF solely relies on SIF data and an ensemble of SIF‐GEE linear
relationships computed from global flux tower data, whereas VPRM combines remotely sensed vegetation
indices, meteorological data, and region‐specific model parameters. Consequently, the long‐term increase in
GOSIF is directly linked to SIF data, whereas VPRM's response is influenced by both vegetation indices and
climate drivers. On the contrary, ORCHIDEE depends solely on climate drivers, used to derive a dynamic
vegetation model, which simulates processes that affect the carbon cycle, that is, photosynthesis, carbon allo-
cation, maintenance and growth respiration, litter decomposition, and vegetation dynamics (McGrath

Figure 8. Intra‐annual impact of heat and drought. Time series of the spatially average anomalies for the Iberian sclerophyllous in 2005 (a, c), and Atlantic mixed forest
in 2022 (b, d) for (a, b) 8‐day GEE (blue), RECO (orange), and NEE (pink). (c, d) Spatially averaged 8‐day T2M (red) and SM2 (green) for the study year (dotted line) and
the climatic mean for the 2001 to 2022 period (solid line). The shaded areas correspond to the temporal standard deviation for each 8‐day period.
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et al., 2023). ORCHIDEE simulations account for dynamic vegetation and time‐varying carbon pools, as well as
the input of atmospheric CO2 concentrations and a dynamic nitrogen cycle which are not present in GOSIF and
VPRM and are essential for long‐term simulations of carbon fluxes (McGrath et al., 2023). However, because
ORCHIDEE simulates phenology and vegetation dynamics, depending on calibrated parameters using global
data, this adds uncertainty in the estimation of regional growing season onset and end, and limits the accuracy of
long‐term simulations of carbon fluxes (Santaren et al., 2014), which could explain the differences in the spatial
distribution of the trends between VPRM and ORCHIDEE GEE.

According to VPRM simulations, RECO has also increased in the past two decades, at a slower rate than GEE but
affecting a larger area (see Figure 3). The increase in RECO, especially in high‐altitude regions, partially offsets the
increase in GEE, resulting in only a modest increase in the carbon sink (0.69 g C m− 2 year− 2). While ORCHIDEE
estimates a modest decrease in the carbon sink (− 0.51 g C m− 2 year− 2) produced by a higher estimation of the
RECO long‐term trend, totally offsetting the increase in GEE. This balance suggests that the south‐western Europe
ecosystems maintain equilibrium between increased carbon uptake through photosynthesis and carbon released
through respiration. Unlike temperate and boreal forests, which are experiencing a long‐term increase in their
carbon sink potential (Yang et al., 2023; Yu et al., 2022), the Mediterranean regions exhibit balanced long‐term
carbon cycle trends. Ongoing warming and drying trends in the regions may lead to uncompensated responses in
GEE and RECO, causing variations in the NEE trends. For instance, we have identified with VPRM a positive trend
in NEE (i.e., a decreasing trend in net carbon uptake) of croplands in the Central Massif of France (Figure 3e)
coinciding spatially with a drying trend in the region (Figure S12 in Supporting Information S1) (X. Liu
et al., 2021). These prospects could further compromise the net carbon sink capacity of other agricultural eco-
systems in south‐western Europe as the ongoing drying trend (Figure S12 in Supporting Information S1) affects
other regions in the domain. These findings highlight the vulnerability of the south‐western European region's
carbon sink capacity to climate change, especially more frequent and intense droughts.

4.2. Heat and Drought Events Control the Interannual Variability of Carbon Fluxes

The analysis of the interannual variability in carbon fluxes emphasizes the significant influence of climatic drivers
on the detrended anomalies of these fluxes. Across all the biogeographical regions, except for the Alps eco-
systems, water availability emerges as the dominant climatic driver for interannual variability (see Figure 6). This
is evident through the strong correlation observed between these fluxes and both soil moisture and the SPEI. The
close agreement between VPRM, ORCHIDEE, and GOSIF correlations further supports the influence of soil
moisture and SPEI on GEE variability. This alignment is notable, considering that initially, one might attribute
this relationship to soil moisture as a driver of the VPRM model.

Analyzing the influence of climate drivers on GEE reveals a direct link between climate dryness and the extent to
which droughts influence the interannual variability of GEE. The regions where the water balance plays a more
important role in the interannual anomalies of the GEE during the growing season are the semi‐arid regions of the
Iberian and Tyrrhenian‐Adriatic sclerophyllous and mixed forests (see Figure 6). In these regions, GEE is
strongly correlated with the occurrence of droughts during the growing season and in the previous 6 months (from
the previous autumn forward). These findings align with previous research by Gouveia et al. (2017), who noted
that, during the month of May, Mediterranean dry vegetation communities, particularly croplands, present the
highest correlations between the vegetation activity and the SPEI aggregated at time scales between 3 and
9 months. These regions have a high proportion of non‐forest vegetation (more than 85% of the vegetated areas)
and low annual precipitation (less than 800 mm), explaining the heightened sensitivity to soil moisture availability
during periods of active vegetation growth (Vicente‐Serrano, 2007). In contrast, the Alps, characterized by the
low annual temperatures (3.8°C) and high precipitation levels (1,485 mm), exhibit a positive correlation with air
temperature and negative correlations with SPEI and soil moisture. This pattern suggests that the Alps' vegetation
faces continuous energy limitations and warmer temperatures and increased solar radiation tends to bring climatic
conditions closer to the optimal temperatures for photosynthesis (between 18 and 22°C).

While increased air temperatures negatively impact GEE (except for the Alps), their impact on RECO is less pro-
nounced. These differences can be attributed to distinct ecophysiological responses of photosynthesis and respi-
ration to temperature and soil moisture stress. Air temperature impacts photosynthesis when it surpasses a certain
optimum temperature by reducing the chemical reaction kinetics (von Buttlar et al., 2018), whereas soil moisture
stress impacts photosynthesis by ecophysiological and structural changes (Bréda et al., 2006). On the other hand,
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increasing soil temperatures, and hence air temperatures, stimulates heterotrophic respiration by increasing the
kinetics of soil microbial decomposition, root respiration and the diffusion of enzymes (von Buttlar et al., 2018),
while strong soil moisture deficits produced by droughts negatively affects soil microbial activity and reduces
autotrophic respiration due to the reduction of recently assimilated carbon (Migliavacca et al., 2011; Reichstein
et al., 2003). Therefore, while an increase of temperature during the growing season can be negative for photo-
synthesis, especially if it is accompanied by a drought, the impact onRECO is reduced by the compensating effects. It
is worth noting that these responses vary depending on the ecosystem type and plant species.

Our analysis reveals a higher influence of droughts on GEE anomalies compared with RECO anomalies in
temperate humid regions such as the Atlantic, Western Europe, and the Po Basin regions. In contrast, the impacts
of droughts on GEE and RECO in other Mediterranean climate regions show similar or higher correlations with
RECO. The different responses of GEE and RECO to drought occurrences between humid and dry climates may be
attributed to various factors, including higher intra‐annual compensation effect for RECO compared to GEE in
humid regions, the resistance capacity of Mediterranean vegetation to seasonal droughts (Gazol et al., 2018), and
lagged responses of RECO to drought compared to more immediate effects on GEE (Ryan & Law, 2005). These
findings align with previous studies on the 2003 summer drought and heat event in Central Europe (Ciais
et al., 2005; Reichstein et al., 2007), which reported a higher impact of drought on GEE compared to RECO in
temperate ecosystems. We note that temperate humid regions in the Italian Peninsula exhibit the highest influence
of droughts on the NEE variability during the growing season. Consequently, anomalies in NEE are highly
influenced by droughts in these regions compared with Mediterranean regions (Figure 7). These results
emphasize the vulnerability of the south‐western Europe's net carbon sink to drought occurrences.

4.3. Warm Springs Do Not Compensate the Decreasing Effect of Droughts on CO2 Fluxes

We find that both GEE and RECO decrease during the summer for Atlantic mixed forests in 2022. This can be
explained by the heat wave in conjunction with persistent drought conditions (Bastos et al., 2014; García‐Herrera
et al., 2010) as shown by several studies on the coupled effects of heat and water stress on the photosynthetic
capacity of southern European ecosystems (Bastos et al., 2014; Ciais et al., 2005; Ermitão et al., 2021; Reichstein
et al., 2007).

However, the impact of heat‐drought combined conditions on RECO is lower than on GEE. These differential
responses between GEE and RECO result in a reduction of the net carbon uptake capacity of the ecosystems and
turn ecosystems from net carbon sinks to carbon sources (Ciais et al., 2005). These results align with the ones
obtained by a previous study (von Buttlar et al., 2018) that found that the combination of drought and heat
typically led to a strong decrease in GEE, whereas heat and drought impacts on respiration partially offset each
other using eddy‐covariance flux measurements.

For the 2022 study case, we find that the impact of summer heat and drought events is partially compensated by
abnormally warm temperatures between April and June, which leads to an increase in GEE and RECO. The warm
spring temperatures produce similar positive anomalies in GEE and RECO. The high spring RECO anomaly
detected in these two study cases could be attributed to the combination of high spring temperatures and the high
GEE anomalies at the peak of the growing season, causing an increase in the respiration of the recently assimilated
carbon. The similar increment of the GEE and RECO during spring compensates for each other, resulting in a
minimal NEE anomaly during the spring.

These distinct seasonal compensation effects between spring and summer lead to an overall reduction in net carbon
uptake compared to normal values during the growing season, dominating the anomalies for the entire year. These
findings highlight the importance of studying the combined impacts of heat and drought events on both GEE and
RECO, as they can cause non‐linear effects on the terrestrial carbon balance. Focusing solely on GEE might un-
derestimate the true impact of heat and drought events on ecosystems, and the terrestrial carbon balance.

These results suggest that the Mediterranean ecosystems, adapted to recurrent seasonal droughts during the
summer (Peñuelas & Sardans, 2021), are more vulnerable to the occurrence of persistent soil moisture deficits at
the beginning of the growing season, especially if persistent drought conditions affect the previous humid sea-
sons. The Iberian sclerophyllous region is principally cultivated with winter crops (Gouveia et al., 2017), which
can be affected by water deficits at early stages of crop development. Moreover, the cold winter conditions during
2005 in the Iberian Peninsula (anomalies of − 5°C) may have also affected GEE by delaying the start of the
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growing season or with a direct frost damage. These results highlight the potential recurrent stress that will suffer
the Iberian ecosystems under future climate scenarios, and the compromised carbon balance from these eco-
systems (Moemken et al., 2022).

4.4. VPRM Modifications Improve the Response of Carbon Fluxes to Heat and Drought

We modified the data‐driven biosphere model VPRM for GEE and RECO parameterizations, incorporating plant
functional type‐specific parameters calibrated using data solely from flux tower stations in the southern Europe
and neighboring regions. These modifications include the inclusion of soil moisture‐related water stress in the
GEE parameterization, resulting in improved model GEE estimates that better align with changes between energy
and water‐limited regimes. This modification improves the correlation between modeled and tower GEE esti-
mates at the monthly timescale in evergreen‐leaf ecosystems, such as evergreen forests (Figure S4b in Supporting
Information S1). Additionally, we implemented a more sophisticated semi‐empirical RECO parameterization that
considers vegetation productivity (GEE) and soil moisture, enhancing the predictive capability of the model to
better analyze seasonal and annual variations of the carbon balance.

However, several limitations emerge from the VPRM model for long‐term biogenic flux studies. For instance, the
VPRM model relies on a land cover map based on the Synergetic Land Cover Product (SYNMAP) (Jung
et al., 2006), which joins three global land cover products based on satellite observations as recent as 2001, failing
to account for land‐use/land‐cover changes during the 2001 to 2022 period. This limitation could be solved by
incorporating dynamic land‐cover maps as the MODIS MCD12Q1 product (Friedl & Sulla‐Menashe, 2019).
Moreover, the application of static parameters for each PFT for the 2001 to 2022 period could not properly capture
the increase in the light‐use‐efficiency factor due to the atmospheric CO2 fertilization effect or nitrogen deposition
(Keenan et al., 2016). A dynamic set of VPRM parameters, updated every few years, could address this issue,
provided that a continuous and standardized data set of carbon flux tower observations encompassing various
biogeographical regions, climates and PFT becomes available. Despite the commendable efforts of organizations
like FLUXNET (Pastorello et al., 2020) and the Integrated Carbon Observation System (ICOS), certain biomes
and PFT remain underrepresented in observation data sets, as it is the case of mixed forests and shrublands, which
only are represented by 1 and 2 flux towers, respectively. This underrepresentation contributes to model un-
certainties in estimating carbon fluxes in these regions, evidenced by the low model performance for these PFTs
(Figure 2). The VPRM predicting capabilities and the analysis of the carbon balance would benefit from the
incorporation of additional flux tower sites in these underrepresented biomes and PFT.

Despite the enhancements made to the RECO parameterization, the model evaluation reveals moderate correlations
with RECO observations compared to GEE and NEE (Figure S4 in Supporting Information S1). This discrepancy
suggests the existence of unaccounted processes within the model. These processes could relate to carbon pool
size (Reichstein et al., 2003), the maximum leaf area index throughout the year, nitrogen deposition, and stand age
(Migliavacca et al., 2011) in natural ecosystems. In the case of croplands, factors such as management practices
and soil carbon pools could potentially influence respiration (Eugster et al., 2010). Addressing these aspects could
improve RECO estimation but may introduce additional sources of model uncertainty due to increased complexity.

5. Conclusions
Using a modified VPRM model with parameters optimized for south‐western European ecosystems, this study
analyzed the long‐term trends and interannual variability of carbon fluxes in south‐western Europe from 2001 to
2022 to understand the response of these fluxes to heat and drought events. Our results revealed high spatial
variations of the carbon flux trends, being higher over mountainous regions in the Alps, Apennine, and Corsican
montane forests. Similar increases in the ecosystem's photosynthesis and respiration compensate each other,
resulting in only a modest increase of 0.69 g C m− 2 year− 2 (spatial median) in net carbon uptake over the region.
Ongoing warming and drying trends in the region may lead to uncorrelated responses in gross ecosystem ex-
change and ecosystem respiration, reverting the trend in the net ecosystem exchange. These findings highlight the
vulnerability of the south‐western Europe's carbon sink capacity to potential shifts in climate change, especially
more frequent and intense droughts.

Analyzing the influence of climate drivers on the gross ecosystem exchange and respiration reveals a direct link
between climate dryness and the extent to which droughts influence the interannual variability of the carbon fluxes.
Water balance plays a more important role in the interannual anomalies of the gross ecosystem exchange and
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respiration during the growing season in the semi‐arid Iberian and Tyrrhenian‐Adriatic sclerophyllous regions.
However, this analysis reveals a higher drought influence on gross ecosystem exchange anomalies than on
ecosystem respiration anomalies in temperate humid regions such as the Atlantic, Western Europe, and the Po
Basin. These findings emphasize the importance of studying the combined impacts of heat and drought events on
both ecosystem photosynthesis and respiration, as they can cause non‐linear impacts on the terrestrial carbon
balance.

Data Availability Statement
The VPRM version with the modifications detailed in this study is available in a Python program in the repository
“Vegetation Photosynthesis and Respiration Model code and output for south‐western Europe between 2001 and
2022” at Zenodo, via https://doi.org/10.5281/zenodo.10782550 with Creative Commons Attribution 4.0 Inter-
national license (Villalba, 2024). In this repository, there are also the terrestrial ecosystem carbon fluxes estimated
with the modified VPRM over the south‐western Europe domain between 2001 and 2022 used in this study in
NetCDF format. The hourly ERA5‐Land data (Muñoz‐Sabater, 2019) was downloaded from the Copernicus
Climate Change Service (C3S) Climate Data Store (2022). Neither the European Commission nor ECMWF is
responsible for any use thatmaybemade of theCopernicus information or data it contains. TheMODISMOD09A1
v6.1 product used for deriving the remotely sensed vegetation indices in this study is available at the NASA
EOSDIS Land Processes Distributed Active Archive Center via https://doi.org/10.5067/MODIS/MOD09A1.061.
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