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THE BIGGER PICTURE Deep learning models have shown many successes in modeling biomedical data.
Most existing models handle one type of data, while real-world data science applications often have
multi-modal datasets with various characteristics and qualities along with domain-specific knowledge.
This paper presents a new graph neural network method called the Hierarchical Interaction Network
(HINT) that handles complex interaction patterns from multi-modal data for clinical-trial-outcome predic-
tions. HINT offers a general data science methodology for handling complex interconnected datasets
with underlying domain knowledge. In particular, HINT’s ability to handle different types of input data
(e.g., graphs, text, and categorical variables) and missing values can provide valuable algorithm design
strategies for broader data science communities. Also, we curated and released a large and labeled bench-
mark dataset of 17,538 clinical trials for trial outcome predictions.
SUMMARY
Clinical trials are crucial for drug development but often face uncertain outcomes due to safety, efficacy, or
patient-recruitment problems.We propose the Hierarchical Interaction Network (HINT) to predict clinical trial
outcomes. First, HINT encodes multi-modal data (drug molecule, target disease, trial eligibility criteria) into
embeddings. Then, HINT trains knowledge-embedding modules using drug pharmacokinetic and historical
trial data. Finally, a hierarchical interaction graph connects all of the embeddings to capture their interactions
and predict trial outcomes. HINT was trained and validated on 1,160 phase I trials, 4,449 phase II trials, and
3,436 phase III trials. It obtained 0.665, 0.620, and 0.847 F1 scores on separate test sets of 627 phase I, 1,653
phase II, and 1,140 phase III trials, respectively. HINT significantly outperforms the best baseline method on
most metrics. The benchmark dataset and codes are released at https://github.com/futianfan/clinical-trial-
outcome-prediction.
INTRODUCTION
 the trial outcome in an in silico manner? Here, the trial outcome
A clinical trial is an indispensable step toward developing a new

drug. Human participants are tested to respond to the drug (e.g.,

a drug molecule or drug combinations) for treating target dis-

eases. The global clinical trial market has reached $44.3 billion

in 2020 and is expected to grow to $69.3 billion by 2028.1 The

costs of conducting clinical trials are extremely expensive (up

to hundreds of millions of dollars2), and the time to run a trial

takesmultiple years, with a low success probability.3,4 Many fac-

tors, such as the inefficacy of the drug, drug safety issues, and

poor trial protocol design, can fail a clinical trial.5 Can we predict
This is an open access article under the CC BY-N
refers to a binary success indicator whether the trial is completed

to meet their primary endpoints. The vast amount of historical

clinical trial data and massive knowledge bases about passed

and failed drugs brings a new opportunity for using machine

learning models to tackle the critical question: Can one predict

the trial outcome before the trial starts?

Various public data sources can provide vital information for

predicting the trial outcome. For example, the ClinicalTrials.gov

database (publicly available at https://clinicaltrials.gov/) has

369,700 historical clinical trials, including important information

about those trials. In addition, we utilize the standard medical
Patterns 3, 100445, April 8, 2022 ª 2022 The Author(s). 1
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codes of the diseases and their natural language descriptions

through the National Institutes of Health website (publicly avail-

able at https://clinicaltables.nlm.nih.gov/). The DrugBank data-

base (publicly available at https://www.drugbank.ca/) contains

the biochemical description of many drugs, which allows for

the computational modeling of drug molecules.6

Over the years, there have been early attempts to predict indi-

vidual components in clinical trials to improve the trial results,

including using electroencephalographic (EEG)measures to pre-

dict the effect of antidepressant treatments in improving depres-

sive symptoms,7 optimizing drug toxicity based on drug- and

target-property features,8 and leveraging phase II results to pre-

dict phase III trial results.9 Recently, there has been interest in

developing a general method for trial outcome predictions. As

an initial attempt, Lo et al.10 predicted drug approvals for 15 dis-

ease groups based on drug and clinical trial features using clas-

sical machine learning methods. Despite these initial efforts,

several limitations impede the utility of existing trial outcome pre-

diction models, including:

d Lack of benchmark data. Data science progress in any

domain needs to be measured on large and accessible

benchmark data. Such datasets in clinical trial domains

are not available, which severely affects data science ef-

forts on clinical-trial-related research. Such data are avail-

able in computer vision, e.g., ImageNet.11

d Limited task definition and study scope. Existing works

either focus on predicting individual components of tri-

als,8,12–14 such as patient-trial matching, or only a subset

of disease groups.10 Although these works are helpful for

part of the trial design, they do not predict the trial outcome

for a broad set of target diseases. We are one of the first to

study the general trial outcome prediction problem across

different trial phases for many different diseases.

d Limited features used for prediction. Due to their limited

task definition and study scope, existing works often only

leverage restricted-disease-specific parts, which cannot

be generalized for other diseases. These works also ignore

the fact that a trial outcome is determined by various fac-

tors, including drug safety, treatment efficiency, and trial

eligibility criteria. For example, the biomedical knowledge,

such as drug molecule structures and historical trial data,

for different diseases can be beneficial for modeling trial

outcomes.

d Ignoring the complex relations among trial components.

Due to the limited data and task scope, existing methods

often simplify their predictions by limited input features

and rely on classical classification methods (e.g., random

forest) that are not explicitly designed for modeling the

interaction of different trial components.8,9,12,13,15 This

simplified assumption impedes the prediction perfor-

mance of the existing works.
Our approach
To provide accurate trial outcome predictions for all trials, we

propose the Hierarchical Interaction Network (HINT). The HINT

model is trained on amulti-modal dataset, includingmolecule in-

formation of the drugs, the target disease information, the trial
2 Patterns 3, 100445, April 8, 2022
eligibility criteria, and biomedical knowledge. HINT first encodes

thesemulti-modal data into latent embedding vectors of the drug

molecule, the target disease, and the trial risk, where an imputa-

tion module is designed to handle missing data. Next, we train a

knowledge-embedding module from external knowledge on

pharmacokinetic properties for improving drug embedding. We

also train another trial-risk-embedding module using historical

trial data for improving trial risk embedding. After that, we pre-

sent an interaction graph module to connect all of the embed-

dings to capture various interaction effects from different trial

components. Finally, HINT learns a dynamic attentive graph

neural network to predict trial outcomes.
Contributions
Our main contributions are summarized as follows:

d Problem: We formally define a model framework for a gen-

eral clinical-trial-outcome prediction task, which not only

models various trial risks, including drug safety, treatment

efficiency, and trial recruitment, but also models a wide

range of drugs and indications (e.g., diseases). Our model

framework can generalize over new trials given the drug

molecule, target disease, and trial eligibility criteria (Prob-

lem formulation).

d Benchmark: To enable general clinical-trial-outcome pre-

dictions, we leverage a comprehensive set of datasets,

including drugbank, disease codes, and clinical trial re-

cords to curate a Trial Outcome Prediction (TOP) dataset

(Benchmark).

d Results: We evaluated HINT against state-of-the-art

baselines using real-world data. HINT achieved 0.665,

0.620, and 0.847 F1 scores on phase I-, II-, and III-level

predictions, respectively. In addition, HINT achieves sta-

tistically significant improvements compared with the

best baseline method (Cross-Modal Psuedo-Siamese

Network [COMPOSE]).16 We also conduct an ablation

study to evaluate the importance of key components of

clinical trials to the prediction power and the effectiveness

of the hierarchical formulation of a trial interaction graph.

Lastly, we conduct a case study to show the potential

real-world impact of HINT by successfully predicting

some prominent trial outcomes (results and discussion).

d Method: We design a graph neural network method that

explicitly simulates different clinical trial components and

their interaction relations for predicting trial outcomes

(Method).
Problem formulation
A clinical trial is designed to validate the safety and efficacy of a

treatment set toward a target disease set on a patient group

defined by the trial eligibility criteria.

Definition 1 (treatment set)

The treatment set includes one or multiple drug candidates, de-

noted by

M = fm1;.;mNmg; (Equation 1)

where m1;.;mNm
are Nm drug molecules involved in this trial.

https://clinicaltables.nlm.nih.gov/
https://www.drugbank.ca/
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Note that we focus on clinical trials that aim at discovering new

indications of drug candidates. The trials that do not involve drug

molecules, such as surgery techniques andmedical devices, are

out of this scope and can be considered future work.

Definition 2 (target disease set)

Each trial targets one or more diseases. Suppose there are NdR

1 diseases in a trial, we represent the target disease set as

D =
�
d1;.;dNd

�
; (Equation 2)

where d1;.;dNd
are Nd target diseases. We use di to represent

the raw information associated with the disease including the

disease name, description (text data), and the corresponding

diagnosis code (e.g., International Classification of Diseases

[ICD] codes17).

Each trial has eligibility criteria (in unstructured natural lan-

guage) that describe criteria for enrolling patients, including

participant characteristics such as age, gender, medical history,

target disease conditions, and current health status.

Definition 3 (trial eligibility criteria)

The patient group is specified by the trial eligibility criteria.

Formally, eligibility criteria consist of a set of inclusion and exclu-

sion criteria for recruiting patients represented by the following:

C =
�
cI
1;.; cI

M;c
E
1 ;.;cE

N

�
; c

I=E
i is a sentence: (Equation 3)

M (N) is the number of inclusion (exclusion) criteria in the trial, and

cI
i (c

E
i ) denotes the i-th inclusion (exclusion) criterion. Each crite-

rion c is a sentence in unstructured natural language.

Definition 4 (trial outcome)

Trial outcome is a binary label y˛f0;1g, where y = 1 indicates the

trial met their primary endpoints, while 0 means failing to meet

with the primary endpoints.

Here, the primary endpoints are the statistical measures to

indicate whether the drug candidate works or not. For example,

for an antihypertensive drug trial, the primary endpoint can be

the percentage of hypertension patients with controlled blood

pressure (BP), e.g., systolic BP < 140 mm Hg.

Problem 1 (trial outcome prediction)

The predicted success probability is by˛½0; 1�. The goal of HINT is

to learn a deep neural network model fq for predicting the actual

trial success status by:
by = fqðM;D;CÞ; (Equation 4)

where M;D;C are the treatment set, target disease set, and

eligibility criteria, respectively. We focus on predicting the suc-

cess for a particular phase of the trial. In general, there are three

trial phases: phase I tests the toxicity and side effects of the drug,

phase II determines the efficacy of the drug (i.e., if the drug

works), and phase III focuses on the effectiveness of the drug

(i.e., whether the drug is better than the current standard prac-

tice). The phase-level prediction determines whether a specific

clinical trial study will successfully complete at the phase.
Benchmark
To standardize the clinical-trial-outcome predictions, we create

a benchmark dataset for Trial Outcome Prediction named TOP,

which incorporate rich data components about clinical trials,
including drug, disease, and eligibility criteria. We first describe

the data components and then report the processing steps to

construct this benchmark dataset.

Benchmark dataset overview

TOP consists of 17,538 clinical trials with 13,880 small-molecule

drugs and 5,335 diseases. Out of these trials, 9,999 (57.0%) suc-

ceeded (i.e., meeting primary endpoints) and 7,539 (43.0%)

failed. For each clinical trial, we produce the following four data

items: (1) drug molecule information including Simplified Molec-

ular Input Line Entry System (SMILES) strings and molecular

graphs for the drug candidates used in the trials; (2) disease infor-

mation including ICD-10 codes (disease code), disease descrip-

tion, and disease hierarchy in terms of CCS codes (https://www.

hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp); (3) trial eligi-

bility criteria are in unstructured natural language and contain in-

clusion and exclusion criteria; and (4) trial outcome information

includes a binary indicator of trial success (1) or failure (0), trial

phase, start and end date, sponsor, and trial size (i.e., number

of participants).

In addition to the primary clinical trial data, we also provide two

auxiliary datasets. One is the pharmacokinetics (PK) dataset,

which consists of wet lab experiment results for five important

PK tasks (PK properties are absorption, distribution, meta-

bolism, excretion, and toxicity) and the drug SMILES strings,

provided in MoleculeNet (available at https://moleculenet.org/

datasets-1). Another is the disease risk dataset, which is the his-

torical success rate of the target disease and the disease de-

scriptions, provided at ClinicalTrials.gov.

Tasks. Many tasks can be studied in terms of prediction using

TOP. In this paper, we focus on trial primary outcome prediction

as a binary classification. Future works can be done for more

granular predictions on different types of outcomes such as pa-

tient enrollment and expected trial duration.

TOP benchmark statistics. For the PK auxiliary dataset, we

have 640 drugs for absorption, 1,593 for distribution, 15,020

for metabolism, 15,982 for excretion, and 24,576 for toxicity.

For the disease risk auxiliary dataset, we have 16,356 disease

combinations and their success rate in the past. In Figure 1,

we show the time distribution of some statistics. Table 1 shows

statistics of the curated dataset.

Data curation process

We create the TOP benchmark for trial outcome predictions from

multiple data sources, including the drug knowledge base, dis-

ease code (ICD-10 code), historical clinical trials,17 andmanually

curated trial outcome labels. We split learning (training and vali-

dation)/test data on January 1, 2014. The earlier trials are used

for training and validation, while the later trials are used for tests.

We ensure that the completion dates of training/validation data

are earlier than the start dates of the test data. The training/vali-

dation splits are random, with a ratio of 9:1.

Trial selection criteria. We apply a series of selection filters to

ensure the selected trials have high-quality outcome labels as

shown in Figure 2. We start with 369,700 raw clinical trial re-

cords from ClinicalTrials.gov. (1) We select only interventional

trials, and 288.400 trials are left. (2) We select trials that test

small-molecule drugs, and 143,400 trials are left. (3) We sam-

ple and label a set of 22,300 completed trials. (4) We further

select trials with known drug molecule structures and available

disease codes, and 17,600 trials are left in TOP. (5) After
Patterns 3, 100445, April 8, 2022 3
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Figure 1. Time distribution

(A) A histogram of time distribution of trials’ start dates. The fall in 2009–2010 is due to the financial crisis.18 The number decreases after 2015 because it usually

takes several years to complete a trial, and most of the trials that started after 2015 are not yet complete and thus have not been selected.

(B) The percetange of successful trials over the years. This also drops significantly after 2015 for the same reasons: most of the completed trials that started after

2015 were either stopped early or failed.

(C) The percetange of recruited patients over the years. The shape is similar to the trial number as in (A). Note that the trials that started before 1998 are limited in

number and hence not shown in the above panels.
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filtering by start/completion date (i.e., ensure train/validation

and test have no time overlap), 12,500 trials are used in the

experiments.

Each trial in ClinicalTrials.gov is an XML file, and we parse

them to obtain all of the variables. In particular, for each trial,

we obtain the NCT ID (i.e., identifiers to each clinical trial), dis-

ease names, drugmolecules, brief titles and summaries, phases,

and eligibility criteria.

Data processing and linking. Next, we describe how we pro-

cess and link the parsed trial data to machine-learning-ready

input and output formats:

d Drug molecule data are extracted from ClinicalTrials.gov

and linked to the molecule structure (SMILES strings and
Table 1. Data statistics

Trials, # Drugs, #

All 17,538 13,880

All (filtered by start/completion date) 12,465 10,026

Neoplasm 4,246 2,456

Respiratory system 1,299 1,736

Digestive system 1,844 1,990

Nervous system 1,975 2037

Others 8,174 9,778

Start before 2000 179 144

Start between 2000–2004 1,753 1,092

Start between 2005–2009 6,211 2,358

Start between 2010–2014 6,846 3,277

Start between 2015–2021 2,549 2,987

Phase I 1,787 2,020

Phase II 6,102 5,610

Phase III 4,576 4,727

All clinical trial records were available at ClinicalTrials.gov on February 20, 2021

successes and failures. The train/validation and test are time-split by the date J

2014, while the completion dates of the train/validation set are before January 1

after the date in the training data. Train/validation sets are randomly split with a

4 Patterns 3, 100445, April 8, 2022
the molecular graph structures) using DrugBank Data-

base6 (https://www.drugbank.com).

d Disease data are extracted from ClinicalTrials.gov and

linked to ICD-10 codes and disease descriptions using

clinicaltables.nlm.nih.gov and then to CCS codes via

hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp.

d Trial eligibility criteria are extracted from ClinicalTrials.gov.

d Trial outcome labels (binary labels) are extracted through

manual curation by an internal IQVIA team.

d Auxiliary drug PK data include five datasets across the

main categories of PK. For absorption, we use the bioavail-

ability dataset provided in Ma et al.’s supplemental infor-

mation.19 For distribution, we use the blood-brain-barrier

experimental results provided in Adenot et al.’s study.20
Diseases, # Successes, # Failures, #

5,335 9,999 7,539

3,893 7,149 5,316

2,008 1,752 2,494

968 868 431

1,558 1,072 772

1,369 1,171 804

4,090 5,136 3,038

193 43 136

317 771 982

1,267 3,472 2,739

1,613 4,185 2,661

1,710 1,528 1,021

1,392 582/77/347 462/39/280

2,824 1,925/196/918 2,079/249/735

1,619 2,042/208/854 1,050/136/286

. For phases I, II, and III, we show the #train/#validation/#test for both

anuary 1, 2014, i.e., the start dates of the test set are after January 1,

, 2014. We do not include the trials that started before and completed

ratio of 9 to 1.

https://www.drugbank.com
http://clinicaltables.nlm.nih.gov


Figure 2. Workflow of data curation
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For metabolism, we use the CYP2C19 experiment from

Veith et al.’s21 paper, which is hosted in the PubChem

bioassay portal under AID 1851. For excretion, we use

the clearance dataset from the eDrug3D database.22 For

toxicity, we use the ToxCast dataset23 provided by Mole-

culeNet (https://moleculenet.org/datasets-1). We consider

drugs nontoxic when they pass all toxicology assays. AD-

MET datasets are used to pretrain the drug encoder, as

elaborated on in the supplemental information.

RESULTS

This section presents the performance comparison of different

machine learning models on the benchmark TOP. It also shows

the superior performance of the proposed method HINT on

this benchmark.

Experimental setting
Evaluation settings

We consider phase-level evaluation, where we predict the

outcome of a single-phase study. Since each phase has different

goals (e.g., phase I is for safety, whereas phases II and III are for

efficacy), we evaluate phases I, II, and III separately. Data statis-

tics are shown in Table 1. All codes (including data collection and

preprocessing, model construction, learning process, and eval-

uation) are publicly available at https://github.com/futianfan/

clinical-trial-outcome-prediction.

Evaluation metrics

We use the following metrics to measure the performance of all

methods.

d Precision-recall area under the curve (PR-AUC): PR curves

summarize the trade-off between the true positive rate and

the positive predictive value for a predictive model using

different probability thresholds.

d F1: The F1 score is the harmonic mean of precision and

recall.

d Area under the receiver operating characteristic curve

(ROC-AUC): The ROC curve summarizes the trade-off be-

tween the true- and false-positive rates for a predictive

model using different probability thresholds.

d p value: We report the results of hypothesis testing in terms

of p values to showcase the statistical significance of our

methodover thebestbaseline results. If thepvalue issmaller

than 0.05, we reject the null hypothesis and claim that our

method significantly outperforms the best baselinemethod.

Baselines

We compare the proposed method HINTwith several baselines,

including conventional machine learning models and deep

learning methods. We enhance their feature sets for all classical
machine learning baselines to be the same as HINT. In particular,

we include (1) 1,024-dimensional Morgan fingerprint features,24

(2) GRAM embedding, where the GRAM model is pretrained us-

ing disease risk modules, and (3) Bidirectional Encoder Repre-

sentations from Transformers (BERT) embedding of eligibility

criteria. Then these three sets of features are concatenated as

the input of all baselines. For deep learning baselines (DeepEn-

roll and COMPOSE), molecule encoders over input molecule

graphs are added.

d Logistic regression (LR): LR was used10,25 for trial outcome

predictions.

d Random Forest (RF): Similar to LR, RF was used10,25 for

trial outcome predictions.

d XGBoost: An implementation of gradient-boosted decision

trees designed for speed and performance. It was used in

the context of individual patient trial outcome predictions in

Rajpurkar et al. and Siah et al.7,25

d Adaptive boosting (AdaBoos) was used in Fan et al.26 for

individual Alzheimer’s patients’ trial result predictions.

d k Nearest Neighbor (kNN) + RF10 combines statistical

imputation techniques for handling missing data and stan-

dard classification methods. In the experiment, we chose

the best-performing model reported10 with kNN as the

imputation technique and Random Forest as the classifier.

d Feedforward Neural Network (FFNN):15 It uses the same

feature as HINT. The feature vectors are fed into a three-

layer feedforward neural network, where the hidden di-

mensions are 500 and 100, and the rectified linear unit

(ReLU) function is used as an activation function in the hid-

den layer to provide nonlinearity.

d DeepEnroll27 was originally designed for patient-trial

matching, and it uses (1) a pre-trained BERT model28 to

encode eligibility criteria into sentence embedding, (2) a hi-

erarchical embedding model for disease information, and

(3) an alignment model to capture the eligibility criteria-dis-

ease interaction information. To adapt DeepEnroll for trial

outcome predictions, the molecule embedding (hm)

computed by the MPNN algorithm29 over molecule graphs

is concatenated to the output of the alignment model to

make trial outcome predictions.

d COMPOSE16 was also originally designed for patient-trial

matching. It uses convolutional highway and memory net-

works to encode eligibility criteria and diseases, respec-

tively, and an alignment model to model the interaction.

COMPOSE incorporates the molecule information in the

same way as DeepEnroll, as described above.

Disease subgroups

We also study the predictive performance of trial outcome pre-

dictions on different disease subgroups. These 4 groups take
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Table 2. Empirical results of various approaches for phase-level-

outcome predictions on test sets

Phase I trials

# train: 1,044; # valid: 116; # test: 627; # patients/trial: 45

Method PR-AUC F1 ROC-AUC

LR 0.500 ± 0.005 0.604 ± 0.005 0.520 ± 0.006

RF 0.518 ± 0.005 0.621 ± 0.005 0.525 ± 0.006

XGBoost 0.513 ± 0.06 0.621 ± 0.007 0.518 ± 0.006

AdaBoost 0.519 ± 0.005 0.622 ± 0.007 0.526 ± 0.006

kNN+RF10 0.531 ± 0.006 0.625 ± 0.007 0.538 ± 0.005

FFNN15 0.547 ± 0.010 0.634 ± 0.015 0.550 ± 0.010

DeepEnroll27 0.568 ± 0.007✝ 0.648 ± 0.011 0.575 ± 0.013

COMPOSE16 0.564 ± 0.007 0.658 ± 0.009 0.571 ± 0.011

HINT 0.567 ± 0.010 0.665 ± 0.010✝ 0.576 ± 0.008✝

Phase II trials

# train: 4,004; # valid: 445; # test: 1,653; # patients/trial: 183

Method PR-AUC F1 ROC-AUC

LR 0.565 ± 0.005 0.555 ± 0.006 0.587 ± 0.009

RF 0.578 ± 0.008 0.563 ± 0.009 0.588 ± 0.009

XGBoost 0.586 ± 0.006 0.570 ± 0.009 0.600 ± 0.007

AdaBoost 0.586 ± 0.009 0.583 ± 0.008 0.603 ± 0.007

kNN+RF10 0.594 ± 0.008 0.590 ± 0.006 0.597 ± 0.008

FFNN15 0.604 ± 0.010 0.599 ± 0.012 0.611 ± 0.011

DeepEnroll27 0.600 ± 0.010 0.598 ± 0.007 0.625 ± 0.008

COMPOSE16 0.604 ± 0.007 0.597 ± 0.006 0.628 ± 0.009

HINT 0.629 ± 0.009*,✝ 0.620 ± 0.008*,✝ 0.645 ± 0.006✝

Phase III trials

# train: 3,092; # valid: 344; # test: 1,140; # patients/trial: 1,418

Method PR-AUC F1 ROC-AUC

LR 0.687 ± 0.005 0.698 ± 0.005 0.650 ± 0.007

RF 0.692 ± 0.004 0.686 ± 0.010 0.663 ± 0.007

XGBoost 0.697 ± 0.007 0.696 ± 0.005 0.667 ± 0.005

AdaBoost 0.701 ± 0.005 0.695 ± 0.005 0.670 ± 0.004

kNN+RF10 0.707 ± 0.007 0.698 ± 0.008 0.678 ± 0.010

FFNN15 0.747 ± 0.011 0.748 ± 0.009 0.681 ± 0.008

DeepEnroll27 0.777 ± 0.008 0.786 ± 0.007 0.699 ± 0.008

COMPOSE16 0.782 ± 0.008 0.792 ± 0.007 0.700 ± 0.007

HINT 0.811 ± 0.007*,✝ 0.847 ± 0.009*,✝ 0.723 ± 0.006*,✝

The mean and standard deviation of 30 independent runs (with different

random seeds) are reported.

*Groups whose performances are significantly better than the best base-

line (pass the t test, i.e., p value < 0.05).
✝The best performing models on each metric for each trial phase.
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up 19.4%, 8.4%, 12.7%, and 12.0%of all trials in the benchmark

TOP, respectively.

d Neoplasm/tumor/cancer/oncology, e.g., cerebellar neo-

plasms, neuroectodermal tumors, breast cancer, and

stomach neoplasms.

d Respiratory system diseases, e.g., tuberculosis, sinusitis,

and tonsillitis.

d Digestive system diseases, e.g., cholera, esophageal dis-

ease, gastritis, and duodenitis.
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d Nervous system diseases, e.g., meningitis, Parkinson’s

disease, and cerebral palsy.

Experiment (Exp) 1: Phase-level trial outcome

predictions

First, we compare the performances of phase-level outcome

predictions. For each phase, we train a separate model to

make the prediction. We compare HINT with several baseline

approaches, covering conventional machine learning models

and deep-learning-based models. Among training data, we allo-

cate 10% for examples as the validation set for model parameter

tuning. The means and standard deviations of 30 independent

runs (with different random seeds) are reported. We present

the prediction performance in Table 2.We also report the relative

success/failure proportion as a function of the predicted success

probability on test sets in Figure 3, where the distributions of pre-

dictions for positive (success) and negative (fail) samples are

significantly different. We have the following observations:

(1) Deep-learning-based approaches including FFNN, Deep-

Enroll, COMPOSE, and HINT outperforms conventional

machine learning approaches (LR, RF, XGBoost, Ada-

Boost, kNN+RF) significantly in outcome predictions for

all three phases. This confirmed the benefit of deep

learning models for clinical-trial-outcome predictions.

(2) Among all deep learning methods, HINT performs best

with F1 scores of 0.665 for phase I, 0.620 for phase II,

and 0.847 for phase III. Compared with the strongest

baseline (COMPOSE), HINT achieved 1.0%, 3.9%, and

7.0% relative improvement in terms of F1. The likely

reason for this performance improvement is that HINT in-

corporates insightful multi-modal data embedding and

finer-grained interactions between multi-modal data and

trial components (i.e., nodes in interaction graphs).

(3) When comparing the prediction performance across

phases I, II, and III, we find that phase III achieves the

highest accuracy for almost all methods, while phases I

and II are more challenging with lower accuracy.

Exp 2: Evaluation on various disease groups

We evaluate HINT on different disease groups, including

neoplasm (oncology/cancer/tumor), respiratory system dis-

eases, digestive systemdiseases, and nervous systemdiseases.

We also evaluate the prediction performance on high/low-preva-

lence disease trials (top/bottom 10% in prevalence), and the fre-

quencies are counted in the training sets. Some examples of low-

prevalence diseases are I25.700 (atherosclerosis of coronary ar-

tery bypass graft[s], unspecified, with unstable angina pectoris),

Z62.6 (inappropriate [excessive] parental pressure), and E22.2

(syndrome of inappropriate secretion of antidiuretic hormone),

and some examples of high-prevalence diseases are E11.44

(type 2 diabetes mellitus with diabetic amyotrophy), C05.2 (alig-

nant neoplasm of uvula), and F20.3 (undifferentiated schizo-

phrenia). We present the results in Table 3. We observe that the

prediction of neoplasm-related trials achieves 0.604 PR-AUC,

0.585 F1 score, and 0.595 ROC-AUC, which are significantly

lower than the other cohorts, showing that predicting the

outcome for neoplasm ismost challenging. The prediction of res-

piratory-system-disease-related trials achieves 0.860 PR-AUC,

0.867 F1 score, and 0.805 ROC-AUC, obtaining the highest
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Figure 3. Predicted success probability versus relative success/failure proportion

Phase I, II, and III showing in (A), (B), and (C), respectively.
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accuracy among all cohorts. Digestive-system-related trials also

achieve a great prediction performance (0.750PR-AUC, 0.786 F1

score, and 0.728 ROC-AUC). Also, we find that low-prevalence-

disease-related trials still achieve a good prediction perfor-

mance, validating the generalization of the proposed method.

Exp 3: Evaluation on missing data imputation

The complete data sample is ðM;D;C;yÞ, while missing data is

ðD;C; yÞ (molecule information is missing). We use a data impu-

tation module to estimate molecule embedding chm . To further

validate the effectiveness of the data imputation module, we

conducted experiments on phase-III-level predictions with

missing molecules. Specifically, we fix the training set, where

all data are complete, then vary the percentage of missing mol-

ecules from f0%; 25%; 50%; 75%g. We compare the perfor-

mance of three methods: (1) HINT (with imputation), (2) HINT

(without imputation), and (3) COMPOSE (the strongest baseline).

Both (2) and (3) cannot leverage missing data; hence, the sam-

ples with missingmolecule information are ignored in the training

data. We conduct 30 independent runs (with different random

seeds) and report the average F1 score and corresponding

95% confidence interval for all three methods on all scenarios

and show the results in Figure 4. We find that all methods

degrade with missing data, as expected. However, HINT with

imputation outperforms the other methods, thanks to its capa-

bility to impute the missing molecule embeddings.

Exp 4: Case studies

Next, we provide qualitative examples of HINT applying to some

recent trials in Table 4.

Examples of failed trials. One of the most promising drugs in

2019 was Entresto for heart failure, the leading cause of death
Table 3. Phase-III-level predictions for disease groups

Cohorts In test set, % PR-

Neoplasm 19.4 0.60

Respiratory 8.4 0.86

Digestive 12.7 0.84

Nervous system 12.0 0.75

High-prevalence diseases 10 0.84

Low-prevalence diseases 10 0.78

All diseases 100 0.81
in the United States. Entresto is sponsored by Novartis and

was expected to have a 5-billion-dollar peak sale. However, in

multi-country phase III trials with 4,822 patients enrolled, the

result did not reduce death or meet any other endpoints. The trial

took 5 years (2014–2019) and was estimated to cost $200million

dollars (we use the median per-patient cost multiplied by the

number of patients to estimate the cost30). We feed the drug (En-

tresto), disease (heart failure), and their phase III eligibility criteria

into HINT, and it predicts a low success probability of 0.476. This

means that HINT could potentially have alerted the practitioners

of the likely failure.

We also tested HINT on Fevipiprant, which was expected to

be Novartis’s blockbuster drug for asthma. The phase III trial of

Fevipiprant took 4 years (2015–2019) and enrolled 894 patients,

and it also incurred huge costs (an estimated 40 million dollars).

Unfortunately, the primary endpoint was not met, and Fevipi-

prant was retired. We feed the drug (Fevipiprant), disease

(asthma), and eligibility criteria into HINT, and it predicts a

0.352 success probability, which is low.

Similarly, for a recent phase II study on the effect of Pembro-

lizumab and Epacadostat on non-small cell lung cancer by Incyte

and Merck, HINT correctly predicts the failure of the trial.

Error analysis

We also observe some cases that HINT predicts wrongly. For

example, HINT generates a wrong prediction in a recent phase

III study of Ustekinumab on a rare disease called lupus erythema-

tosus (4th row in Table 4). We did the error analysis in a phase-III-

level prediction, which contains 1,140 test points, where 874

points are predicted correctly. To better investigate HINT’smech-

anism, we divide the test data points into two disjoint groups: (1)
AUC F1 ROC-AUC

4 ± 0.015 0.585 ± 0.10 0.595 ± 0.016

0 ± 0.028 0.867 ± 0.023 0.805 ± 0.029

9 ± 0.024 0.858 ± 0.028 0.813 ± 0.025

0 ± 0.023 0.786 ± 0.035 0.728 ± 0.025

5 ± 0.019 0.852 ± 0.021 0.748 ± 0.011

3 ± 0.017 0.803 ± 0.012 0.702 ± 0.021

1 ± 0.007 0.847 ± 0.009 0.723 ± 0.006

Patterns 3, 100445, April 8, 2022 7



A B C

Figure 4. Empirical studies on missing molecule imputation on phase-III-level predictions

Evaluated on F1, ROC-AUC, and PR-AUC showing in (A), (B), and (C), respectively. For each data point, we conduct 30 independent runs with different random

seeds, evaluate their mean and standard deviation, and plot the 95% confidence interval.
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predicted correctly by HINT (874 data points) and (2) predicted

wrongly by HINT (266 data points). For both groups, we evaluate

whether the drugs and disease codes in the test set are already

seen in the training set. More specifically, group 1 represents the

drug/disease code appearing in the training set, whereas group

0 means not.

Regarding the drugs, for group 1, the mean and standard de-

viation of the indicator variable are 0.348 and 0.476, respectively;

that is, 34.8%of the drugs appear in the training set. For group 2,

the mean and standard deviation of the indicator variable are

0.345 and 0.475, respectively. In this case, groups 1 and 2 do

not differ much.

Regarding disease codes, for group 1, the mean and standard

deviation of the indicator variable are 0.928 and 0.156, respec-

tively, which means that 92.8% of disease codes appear in the

training set; for group 2, the mean and standard deviation are

0.814 and 0.302, respectively. Groups 1 and 2 differ significantly

on these statistics. We conclude that the trials with unseen

disease codes (not in the training set) are more likely to be mis-

predicted by HINT, which is more likely to happen with rare

diseases. This is also consistent with the example of lupus ery-

thematosus in Table 3.

Examples of successful trials

HINT can also predict the success probability of trials accu-

rately, reassuring drug developers about the prospect of treat-

ment. For example, HINT predicts several recent huge trial

successes:
8

d Sitagliptin on diabetes by Merck 2017 received a 0.742

success probability.

d Etanercept for rheumatoid arthritis by Amgen 2019

received a 0.673 success probability.

d Afibercept for glaucoma by Bayer 2020 acquired a 0.854

success probability.

d Naltrexone for depression by University of Pittsburgh 2020

received a 0.747 success probability.

d cTACEDoxorubicin for liver cancer by Yale University 2020

received a 0.583 success probability.

d Phosphate supplement and vitamin D for X-linked hypo-

phosphatemia by Ultragenyx 2020 received a 0.556 suc-

cess probability.
Patterns 3, 100445, April 8, 2022
In addition, we provide an interpretability analysis in Figure S1

and an ablation study in Table S2.

DISCUSSION

Trial outcome predictions
Existing works often focus on predicting individual patient out-

comes in a trial instead of a general prediction about the overall

trial success. They usually leverage expert-crafted features. For

example, Wu et al.31 leveraged support vector machines

(SVMs) to predict the status of genetic lesions based on cancer

clinical trial documents. Rajpurkar et al.7 used gradient-

boosted decision trees (GBDTs32) to predict the improvement

in symptom scores based on the treatment symptom score

and EEG measures for depressive symptoms with an antide-

pressant treatment. Hong et al.8 focused on predicting clinical

drug toxicity according to drug-property and target-property

features and used an ensemble classifier of weighted least

squares support vector regression. Note that these models

are not tackling the same task as us. They are predicting at

the patient level, whereas HINT focuses on the trial level.

More relevant to us, Qi et al.9 designed a Residual Semi-Recur-

rent Neural Network (RS-RNN) to predict phase III trial results

based on phase II results. In contrast, the task of HINT is to

predict for all clinical trial phases. Lo et al.10 explored various

imputation techniques and a series of conventional machine

learning models (e.g., logistic regression, random forest,

SVM) to predict the drug approval within 15 disease groups.

Siah et al.25 evaluated various conventional machine learning

models for clinical-trial-outcome predictions. However, they

did not leverage rich trial features, e.g., drug molecules and trial

eligibility criteria, whereas HINT takes into account the multi-

modal data sources.

A related statistical practice during trial design is power anal-

ysis for sample-size estimation. Power/sample-size estimation is

used to determine howmany patients to recruit for a given trial in

order to answer the research question in the study. More specif-

ically, the sample size can be estimated given the treatment ef-

fect size between groups, the desirable power, and the statistical

significance level. However, a strong assumption about the

treatment effect has to be made to perform such power analysis



Table 4. Case studies: Prediction versus actual outcomes

Indication/disease Drug Sponsor Year Outcome Prediction

Heart failure Entresto Novartis 2019 fail 0.476

Asthma Fevipiprant Novartis 2019 fail 0.352

Lung cancer pembrolizumab and epacadostat Incyte 2020 fail 0.498

Lupus erythematosus ustekinumab Janssen 2019 fail 0.567

Diabetes sitagliptin Merck 2017 success 0.742

Rheumatoid arthritis etanercept Amgen 2019 success 0.673

Neovascular glaucoma aflibercept Bayer 2020 success 0.854

Depression naltrexone U. Pitts. 2020 success 0.747

Liver cancer cTACE doxorubicin Yale U. 2020 success 0.583

X-linked hypophosphatemia phosphate supplement and vitamin D Ultragenyx 2020 success 0.556

Prediction is the HINT’s predicted success probability. Low probability means the trial is likely to fail, and high probability means the trial is likely to

succeed.
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before trials. Moreover, power analysis does not utilize the rich

trial information, unlike HINT. In comparison, HINT directly uti-

lizes the information from the molecule structures, disease indi-

cation, and trial eligibility criteria to model the trial success prob-

ability. Finally, power analysis has to make assumptions about

the treatment effect and variability of that effect, which can be

tricky to estimate before the trial starts.
Trial representation learning
Recently, deep learning has been leveraged to learn representa-

tions from clinical trial data to support downstream tasks such as

patient retrieval16,27 and enrollment.33 For example, Doctor2-

Vec33 learns hierarchical clinical trial embedding, where the un-

structured trial descriptions were embedded using BERT.28

DeepEnroll27 and COMPOSE16 leverage the pretrained BERT28

model to encode clinical trial eligibility criteria. While these works

optimize the representation learning for a single component in a

trial, HINT models a diverse set of trial components such as

molecule, disease, eligibility criteria, PK, and disease risk infor-

mation and fuses them through an interaction graph neural

network.
Limitations and future works
The current paper has several limitations. We plan to study them

in our future works.

Supporting more trial types

HINT can handle interventional trials involving small molecules.

Other trial types such as medical devices and biologics trials

are not covered by the current model due to molecule encoding.

From the method perspective, we can replace the molecule

encoder with another encoder, such as protein sequence en-

coders for biologics. However, the challenge is in the limited

training data of biologics. Nevertheless, supporting other trial

types can be a future extension of the current work.

Supporting rare diseases

Like any machine learning model, HINT requires sufficient

training data to train accurate predictive models. However,

low-prevalence diseases, especially rare diseases, are difficult

to handle due to the lack of sufficient historical trials as training

data for HINT.
Enhancement of model interpretability

HINT is a graph neural network model that integrates compre-

hensive data sources to predict trial outcomes. Due to the com-

plex interaction patterns, it can be difficult to explain those pre-

dictions. We provide an example to illustrate how to understand

all intermediate predictions and provide some explanation in the

supplemental material. However, we also recognize that the

model interpretability should be further studied in future work.

Trial outcome labels

HINT assumes a simple binary label of success or not. How-

ever, there might be more granular classes of the trial out-

comes, especially for the failed trials. It will be more useful if

the model can classify the trial to more specific failure rea-

sons. However, reliably creating such granular trial labels

can be quite challenging. Significantly, the reason for a trial’s

failure might not be well documented or understood. Trial pub-

lications are often disproportionally skewed toward successful

trials, although detailed explanations of failed trials can benefit

future trials.

Look-ahead bias

Some subtle look-ahead biases might be inherent in the pre-

trained embedding modules, e.g., ADMET and trial risk en-

coders. This is because the data used for pretraining are not

point in time, i.e., they might not be available in 2014. This means

that future information (e.g., ADMET properties for a new mole-

cule just published in 2020) could be indirectly used to create

embeddings for drug molecular features. To address this chal-

lenge, a prospective study can be conducted moving forward

to validate the HINT model for future trials.

Conclusion
In this paper, we create a machine learning benchmark for trial

outcome predictions. We design a graph-neural-network-based

method HINT to leverage multi-sourced data and incorporate

multiple factors in a hierarchical interaction graph for predicting

trial outcomes. Also, HINT can handle missing data via an impu-

tation module. Empirical studies indicate that HINT outperforms

multiple baseline methods in several prediction metrics on

phase-level trial outcome predictions. Future works include ex-

panding to other trial types beyond intervention trials of small

molecules and expanding the binary trial outcome labels.
Patterns 3, 100445, April 8, 2022 9



Figure 5. HINT framework
HINT is an end-to-end neural network pipeline with the following components: drug molecule embedding hm, disease embedding hd , and trial eligibility criteria

embedding hp. Before constructing an interaction graph using these components, HINT pretrain some embeddings (blue nodes) using external knowledge about

drug properties and disease risks. Then, we construct an interaction graph to characterize interactions between various trial components. Trial embeddings are

learned based on the interaction graph to capture both trial components and their interactions. Based on the learned representation and the dynamic attentive

graph neural network (Equation 13), we make trial outcome predictions.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and

will be fulfilled by the lead contact, Jimeng Sun (jimeng@illinois.edu).

Material availability

This study did not generate any physical materials.

Data and code availability

The benchmark datasets and codes (including data collection and prepro-

cessing, model construction, learning process, and evaluation), referred as

the Works, are publicly available for noncommercial use only at https://

github.com/futianfan/clinical-trial-outcome-prediction. The dataset sources

are publicly available and processed by the authors. The trial outcome labels

are provided by IQVIA.
Method

HINT includes (1) the construction of the trial interaction graph and (2) the pre-

dicted trial outcome using the dynamic attentive graph neural network on the

interaction graph. The details of the method are available in the supplemental

information, where Table S1 list important mathematical notations. Here, we

provide the high-level components in the method.

(1) Trial interaction graph construction: We construct hierarchical interaction

graph G to connect all input data sources and important factors affecting clin-

ical trial outcomes. The interaction graph G is constructed in away to reflect the

real-world trial development process, and it consists of four tiers of nodes that

are connected between tiers:

(1.1) Input nodes (colored green in Figure 5) include drugs, diseases, and

eligibility criteria with node features of input embedding hm, hd ; hp˛ Rd .

Formally, we represent (1)molecular graphsM = fm1;/;mNm
g, (2) disease co-

des D= fd1;/;dNd
g (Equation 2), and (3) eligibility criteria (Equation 3) as

follows:

Molecule Embedding hm =
1

Nm

XNm

j = 1

fmðmjÞ;hm˛Rd ; (Equation 5)
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where fmð ,Þ is the molecule embedding function and can be a Morgan finger-

print,24 SMILES encoder,34 graph message passing neural network

(MPNN),29,35 or graph neural network.36 We average all molecules’ embed-

dings to get the drug embedding.

Disease Embedding hd =
1

Nd

XNd

i = 1

GRAMðdiÞ;hd˛Rd ; (Equation 6)

where GRAMðdiÞ represent an embedding of disease di using the graph-based

attention model GRAM.37

Eligibility Criteria Embedding hp = fpðCÞ;hp˛Rd ; (Equation 7)

where we apply Clinical-BERT,38,39 which is a domain-specific version of

BERT,28 to embed each sentence of eligibility criteria and aggregate them

into an embedding vector.

(1.2) External knowledge nodes (colored blue in Figure 5) include (1) ADMET

embeddings h� = X�ðhmÞ˛Rd, where � ˛fA;D;M;E;Tg (i.e., hA; hD; hM; hE ;

hT ), and (2) disease risk embedding hR = RðhdÞ. They are pretrained on

external knowledge.

(1.3) Aggregation nodes are colored yellow in Figure 5.

The PK nodes gather all information of the five ADMET properties:

Pharmacokinetics ðPKÞ hPK = KðhA;hD;hM;hE ;hT Þ;hPK˛Rd : (Equation 8)

Then, an interaction node models the interaction among the drug molecule,

disease, and eligibility criteria:

Interaction hI = Iðhm;hd ;hpÞ;hI˛Rd : (Equation 9)

In addition, we have an augmented interaction model to combine (1) the trial

risk of the target disease hR and (2) the interaction among the disease, mole-

cule, and eligibility criteria hI.

Augmented Interaction hV = VðhR;hIÞ;hV˛Rd : (Equation 10)

(1.4) Prediction node (colored gray in Figure 5) summarizes the PK and the

augmented interaction to obtain the final prediction:

mailto:jimeng@illinois.edu
https://github.com/futianfan/clinical-trial-outcome-prediction
https://github.com/futianfan/clinical-trial-outcome-prediction
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Trial Prediction hpred = PðhPK ;hV Þ;hpred˛Rd : (Equation 11)

(2) Dynamic attentive graph neural network: The trial embeddings provide

initial representations of different trial components and their interactions via

a graph. To further enhance the predictions, we design a dynamic attentive

graph neural network to leverage this interaction graph to model the influential

trial components and help improve predictions.

Mathematically, the interaction graph G is the input graph where nodes are

trial components and edges are the relations among these trial components.

We denote A˛f0; 1gK3K as the adjacency matrix of G. The node embeddings

Hð0Þ˛RK3d are initialized to

Hð0Þ = ½hd ;hm;hp;hA;hD;hM;hE ;hT ;hR;hPK ;hI;hV ;hpred�u˛RK3d ;

(Equation 12)

K = jGj is the number of nodes in graph G. K = 13 in this paper. We further

enhance the node embeddings using a graph convolutional network (GCN).40

HðlÞ = RELU
�
BðlÞ + ðV1AÞ

�
Hðl�1ÞWðlÞ

��
; l = 1;/; L;HðlÞ˛RK3 d ;

(Equation 13)

where B˛RK3d is a bias parameter, WðlÞ˛Rd3d is the weight matrix in the l-th

layer to transform the embedding, L is depth of GCN, and 1 is the element-

wise multiplication.

Different from conventional GCNs,40 we introduce a learnable layer-inde-

pendent attentive matrix V˛RK3K
+ . Vi;j , the (i; j)-th entry of V, measures the

importance of the edge that connects the i-th and j-th nodes in G. We eval-

uate Vi;j based on the i-th and j-th nodes’ embeddings in Hð0Þ, which are de-

noted hi ;hj˛Rd (hi˛Rd is transpose of the i-th row of Hð0Þ˛RK3d in

Equation 12):

Vi;j = g2

�
CONCAT

�
hi ;hj

		
; i; j˛f1;/;Kg;Vi;j˛R+ ; (Equation 14)

where g2ð ,Þ is a two-layer fully connected neural network with ReLU and sig-

moid activation functions in the hidden and output layers, respectively. Note

that the attentive matrix V is element-wise multiplied to the adjacency matrix

A (Equation 13) so that message of the edge with higher prediction scores

would give a higher weight to propagate.

Training: The target is binary label y˛f0; 1g, and y = 1 indicates the trial suc-

ceeds, while 0 means it fails. After GNN message passing, we obtain an up-

dated representation for each trial component. We then use the last-layer (L-

th layer) representation on the trial prediction node to generate the trial

outcome prediction, by = SigmoidðFCðhL
predÞÞ, where by˛½0; 1�; L is the depth

of the GCN. We use one-layer fully connected networks with sigmoid activa-

tion functions. Then, binary cross-entropy loss is used to guide the model

training:

Lclassify = � y logby � ð1� yÞlogð1� byÞ: (Equation 15)

HINT is trained in an end-to-end manner.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100445.
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