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Bacterioplankton are essential components of riverine ecosystems. However, the
mechanisms (deterministic or stochastic processes) and co-occurrence networks
by which these communities respond to anthropogenic disturbances are not well
understood. Here, we integrated niche-neutrality dynamic balancing and co-occurrence
network analysis to investigate the dispersal dynamics of bacterioplankton communities
along human activity intensity gradients. Results showed that the lower reaches (where
intensity of human activity is high) had an increased composition of bacterioplankton
communities which induced strong increases in bacterioplankton diversity. Human
activity intensity changes influenced bacterioplankton community assembly via
regulation of the deterministic-stochastic balance, with deterministic processes more
important as human activity increases. Bacterioplankton molecular ecological network
stability and robustness were higher on average in the upper reaches (where there
is lower intensity of human activity), but a human activity intensity increase of about
10%/10% can reduce co-occurrence network stability of bacterioplankton communities
by an average of 0.62%/0.42% in the dry and wet season, respectively. In addition,
water chemistry (especially NO3

−-N and Cl−) contributed more to explaining community
assembly (especially the composition) than geographic distance and land use in the dry
season, while the bacterioplankton community (especially the bacterioplankton network)
was more influenced by distance (especially the length of rivers and dendritic streams)
and land use (especially forest regions) in the wet season. Our research provides a new
perspective of community assembly in rivers and important insights into future research
on environmental monitoring and classified management of aquatic ecosystems under
the influence of human activity.

Keywords: human activity intensity, assembly processes, bacterioplankton, network stability, river

INTRODUCTION

Human activity refers to the process of anthropogenic utilization, exploitation, and protection of
the natural environment for development and survival (Xu et al., 2015). Changes in water quality
caused by the alteration of water supply, drainage, and the construction of impervious surface
(Yang et al., 2022) can lead to changes of environment conditions and land use, and an alteration
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of aquatic ecosystems in proximity to urban areas (Uchida
et al., 2020). Rivers are critical freshwater ecosystems that
interact with other ecosystems through constant input from
surface runoff (Zhang L. et al., 2020; Li et al., 2021).
Bacterioplankton are key components of freshwater ecosystems
which compose a significant portion of the biodiversity and
play a significant role in biogeochemical cycles (Wang Y.
et al., 2020). Additionally, bacterioplankton diversity is an
important indicator of water quality (Wang B. et al., 2020).
Understanding bacterioplankton community parameters (e.g.,
structure, composition, and distribution) is critical in accurately
determining the mechanisms which drive microbial community
assembly. Riverine ecosystems can be severely influenced by
human-related activities which can lead to changes in species
diversity, community composition, and biotic integrity at
different trophic levels (Vishnivetskaya et al., 2011; Ouyang
et al., 2020; Wu B. et al., 2021). In particular, changes in
land use can have dramatic effects on riverine microbial
ecosystems (Li et al., 2020). The spatial distributions of
bacterioplankton communities can be affected by anthropogenic
land use urbanization, industrialization, and agriculturalization
(Zhao et al., 2021). In addition, changes in riparian land
cover or flow alteration of flow damming (e.g., dams) can
impact organic matter retention in rivers, filter keystone
species, reshape distribution of metacommunities, mediate
ecological assembly processes of microbial communities, and
subsequently alter the stability of ecosystem processes (Grill
et al., 2019; Wang Y. et al., 2020; Gao et al., 2021).
Therefore, a better understanding of river bacterioplankton
ecology requires exploration of the composition and network of
bacterioplankton communities in riverine ecosystems. However,
a comprehensive understanding of how human activity intensity
impacts river biodiversity and the bacterioplankton network
is still lacking.

Exploring community assembly mechanisms of
bacterioplankton and their related ecological processes is
paramount in the field of community ecology (Nemergut
et al., 2013). Deterministic (Niche-based) and stochastic
(neutral-based) processes can both explain the assembly and
community structure of bacterioplankton (Bahram et al.,
2016). The deterministic process asserts that bacterioplankton
communities are shaped by biotic and abiotic factors, such
as species interactions (e.g., predation and competition)
and environmental filtering (e.g., temperature and pH) (Liu
et al., 2015). The stochastic process asserts that processes
such as random birth, death, speciation, immigration, and
extinction shape the bacterioplankton community structure
(Vanwonterghem et al., 2014). Determinism and stochasticity
have diverse effects on bacterioplankton communities in
coastal regions (Mo et al., 2018), rivers (Sun et al., 2021),
and lakes and reservoirs (Liu et al., 2015). Significant
deterministic relationships between bacterioplankton
composition and environmental parameters have been
previously reported for multiple spatial scales (Agogué
et al., 2010; Glaeser et al., 2010; Shu et al., 2020). However,
stochastic processes also can explain the bacterioplankton
community composition in diverse aquatic environments

at large geographical scales (Zhao et al., 2017; Chen et al.,
2019; Logares et al., 2020). Therefore, both approaches have
utility, and no overall consensus has yet been found. Given
that human activity changes may be related to environmental
filtering, understanding key ecological processes that govern
bacterioplankton community assembly in rivers subject to
strong anthropogenic influences is critical for sustainable
watershed management.

Future increases of anthropogenic activity will continue
to disrupt natural environments, increase environmental
stress, and amplify the destabilization of microbial co-
occurrence networks (Shu et al., 2021). Bacterioplankton
species in natural ecosystems do not exist in isolation
or appear in individual populations (Mo et al., 2021).
These species interact to form complex bacterioplankton
communities and perform multiple ecosystem functions (Jiao C.
et al., 2020). Thus, the understanding of bacterioplankton
communities is best focused on individual species level
characteristics (e.g., species abundance and richness) as well
as the interaction characteristics of the communities. Most
bacterioplankton taxa interact either directly or indirectly,
and either positively, negatively, or neutrally with each
other through multiple mechanisms to form complex
ecological networks and drive ecosystem functionality
(Jiao C. et al., 2020). The community response to human
disturbances can be impacted by ecological network properties
(Hernandez et al., 2021). For example, negative interactions
and network modulations can enhance network stability
(Coyte et al., 2015). Although there exists an extensive
body of novel and innovative network analysis methods in
ecology (Jiao C. et al., 2020; Xue et al., 2020; Shu et al.,
2021), there is still much work needed to better understand
how the network stability of bacterioplankton communities
will respond to various human activity intensities. Co-
occurrence network analysis can be utilized to understand
the network structure of bacterioplankton and its environmental
drivers in rivers.

The Le’an River, a mid-sized river in subtropical China, is
a suitable system to study the effect of strong anthropogenic
disturbances on community assembly processes (Yu et al., 2016).
The Le’an River is under severe environmental stress due to
mining occurring near the middle reaches of the river, nutrition
pollution from domestic and agricultural operations in the
downstream reaches, and other anthropogenic influences (Chen
et al., 2016; Ji et al., 2018; Zhang H. et al., 2020). However, the
relationships between topological structures of bacterioplankton
networks of the Le’an River and how the anthropogenic activity
has impacted niche-neutrality successional mechanisms in a
freshwater continuum is yet an open question. Thus, the present
study has three main objectives: (1) explore how the deterministic
processes and stochastic processes cooperate with each other
in bacterioplankton community assemblage; (2) reveal the
differences and the interaction mechanisms of bacterioplankton
community networks in response to spatially varying human
activity intensity and (3) identify the relative influences
of land use, water chemistry, and geographic distance in
bacterioplankton communities (e.g., composition and network).
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FIGURE 1 | Location of the Le’an River and our sample sites. The cities of Wuyuan, Dexing, and Leping are indicated.

MATERIALS AND METHODS

Study Area and Sampling Methodology
The Le’an River course goes through multiple counties (Wuyuan,
Dexing, and Leping), empties into Poyang Lake which then goes
into the Chang (Yangtze) River (Figure 1). The Le’an River is
∼ 279 km long and has a drainage area of 8989 km2. The
basin is situated in a monsoon climate zone, with an average
annual precipitation of 1850 mm. There is a long wet season
from April to September, with 69.1% of the annual precipitation
falling during this period. The Le’an River basin has many non-
ferrous metal mines, including the most productive copper mine
in China (Dexing), located in the middle reaches of the river. The
downstream areas are surrounded by rice cropping agriculture.

Water samples were collected at an approximate depth of
50 cm at 15 sites (Figure 1) located in the center of the
river channel. We attached organic glass hydrophore to a long
rope, stood on the bridge, and carefully dropped it into the
river water below, waiting for 5 min for the water to saturate
the sampler, and then pulling it back. Samples were collected
in both dry season and wet season periods (December 2016
and June 2017, respectively). Sites L01–L04 are in the upper
reaches, sites L05–L10 are in the middle reaches, and sites L11–
L15 are in the lower reaches. We used several (4–6) filtering
equipment with several hand pumps at once for one water
sample (3 L). Then all filters from one sample were mixed

together for environmental DNA extraction. In addition, we use
the prefiltration to reduce the filtering time. The procedure of
prefiltration for water sample is recommended by the Shanghai
Majorbio Bio-pharm Technology Co., Ltd., China, where the
sequencing was performed. This prefiltration procedure has been
used in some studies (Staley et al., 2013; Read et al., 2015; Hu et al.,
2017). Water samples were filtered through a 0.45 µm acetate
filter membrane, then placed into a sealed sampling bottle and
refrigerated at 0–4◦C. Electric conductivity (EC) and pH tests
were carried out using a portable water quality analyzer (HI9828,
Hanna Instruments Ltd., Rome, Italy) which was calibrated
before each measurement. The calibration of the conductivity/pH
meter was performed with buffer and a conductivity solution.
The estimated precision was 1 and 1% for pH and EC,
respectively. Additionally, an automatic discontinuous analyzer
(Smartchem 200 Brookfield, WI, United States) was used to
determine ammonia nitrogen (NH4+-N), nitrate (NO3

−-N)
and total phosphorus (TP). Chlorine and sulfate ion (Cl−,
SO4

2−) concentrations were determined using an Ics-2100 ion
chromatography system. Total organic carbon (TOC) was also
measured using a TOC analyzer (Shimadzu TOC-L CPH, Kyoto,
Japan). Trace metals, including chromium (Cr); copper (Cu); zinc
(Zn); cadmium (Cd); iron (Fe); cobalt (Co); arsenic (As), and
lead (Pb) were measured with ICP–MS (Thermo X series II, NE,
United States). The accuracy and precision of the methods and
results were checked by using the certified Standard Reference
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Materials (SRM-1640 and SRM-1643e of National Institute of
Scientific and Technology, United States). The detection limits
were 0.031 (Cr), 1.929 (Fe), 0.005 (Co), 0.091 (Cu), 0.025 (Zn),
0.1 (As), 0.001 (Cd), and 0.026 (Pb).

We employ digital elevation model (DEM) data (∼ 30 m
resolution) to delineate the boundaries of the river basin.
Sub-basin classifications at each sampling site ranged from a
single sampling site that encompassed the sub-basin area to
the inclusion of adjacent upper sample sites to reflect the
inputs of allochthonous bacteria due to the fast population
growth and replacement rates of bacterial communities. Land-
cover classification was generated using Landsat 8 satellite
imagery (also at 30 m resolution). Land use patterns were
determined using imagery from the National Earth System
Science Data Center at the National Science and Technology
Infrastructure of China1. Images were then categorized into six
classes: farmlands, forests, grassland, freshwaters, urban areas,
and others.” Calculations were performed using ArcGIS v10.3.

We calculate four geographic distance parameters (river
length, catchment area, cumulative dendritic distance, and mean
dendritic stream length). Here, river length is defined at that
found in the mainstream of the river, where the majority of
anthropogenic land use types (e.g., towns, cities, and industries)
are observed. Thus, river length is the most important distance
parameter to analyze human activity. Catchment area can suggest
runoff volume. Cumulative dendritic distance is taken as the
length of the river networks upstream of a sample site. Finally,
mean dendritic stream length is calculated as the ratio of the
dendritic stream length (cumulative) to the number of paths from
all springs to each sample site. All geographic determinations
were performed in ArcGIS v10.3.

Environmental DNA Extraction,
Amplification, and Sequencing
We pre-filtered samples using 5 µm Durapore membrane
filters (diameter 25 mm; Xinya, China); this helps to remove
particulates and algal biomass. Next, we filter again using
0.22 µm Durapore membrane filters (diameter 25 mm; Xinya,
China) to collect microbial cells. Each water sample was filtered
simultaneously using multiple membranes to reduce filtering
time. Filtered samples were then mixed and stored at −80◦C
before environmental DNA extraction.

Total DNA from the water samples were extracted using
the E.Z.N.A. R© Soil DNA Kit (Omega Bio-tek, Norcross,
GA, United States), following the manufacturer’s protocols.
The bacterial V3–V4 hypervariable regions of 16S rRNA
genes were amplified using a forward primer of: 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and a reverse primer of: 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) (Castrillo et al., 2017).
The V3–V4 hypervariable region has been targeted via the MiSeq
platform (which can produce single-end reads of 350 bp), which
can allow for more accurate and cost-effective characterizations
of microbiome samples (Caporaso et al., 2012; Loman et al.,
2012; Fouhy et al., 2016). PCRs were then carried out using
the following parameters: initial denaturation for 2 min at

1http://www.geodata.cn

95◦C, followed by 25 cycles of 30 s at 95◦C, annealing for
30 s at 55◦C, and elongation for 30 s at 72◦C. These were
all followed by a final elongation step for 5 min at 72◦C. We
then use gel electrophoresis on 2% agarose gels to amplify
PCR. Triplicate PCR amplicon products were pooled for each
sample, then purified using an AxyPrep DNA gel extraction
kit (Axygen, Corning, NY, United States), and finally quantified
using the QuantiFluorTM-ST system (Promega, Madison, Wi,
United States). DNA sequencing was conducted on the Illumina
MiSeq platform (Illumina, San Diego, CA, United States) and
pair-ended using 2 bp × 250 bp sequencing chemistry. All PCR
products were sequenced using the Illumina MiSeq platform
by Shanghai Majorbio Bio-pharm Technology Co., Ltd., China.
Raw reads were deposited in the NCBI Sequence Read Archive
database (Accession number: SRP142494).

Statistical Analyses
Human activity intensity of the land surface can be estimated
by the determination of land use/cover types; direct human
interference types include farmland and urban use (Xu et al.,
2015). The human activity intensity of land surface is given by:

HAILS =
Si
S
× 100%

where HAILS is the human activity intensity of land surface;
Si is the human activity-influenced land area; i is cover type,
and S is total land area. Changes in HAILS were calculated
and are displayed in Supplementary Table 1. The HAILS level
in the Le’an River watershed has a gradient from upstream to
downstream: (1) Low HAILS level were L01-L04 sites classified
to the upper reaches; (2) Middle HAILS level were L05-L10
sites classified to the middle reaches; (3) High HAILS level were
L11-L15 sites classified to the lower reaches.

Raw fastq files were demultiplexed and quality-filtered using
QIIME v1.30 as follows: 250 bp reads were truncated at any
site with an average quality score b20 over a 50 bp sliding
window, and truncated reads shorter than 50 bp were discarded;
reads with N2 nucleotide mismatches during primer matching
or with ambiguous characters were removed; only sequences that
overlapped by N10 bp were assembled on the overlap sequence.
Reads that could not be assembled were discarded. We used
Usearch v7.0 to identify and remove chimeric sequences, and to
cluster OTUs at a 97% similarity cutoff. Operational Taxonomic
Units (OTUs) were clustered using a 97% similarity cutoff
(UPARSE version 7.1). Chimeric sequences were then identified
and removed using UCHIME. The phylogenetic affiliation of
each 16S rRNA gene sequence was then analyzed using the RDP
Classifier (Release11.3) and compared against the Silva (Release
119) 16S rRNA database employing a confidence threshold of
70%. The OTU taxonomy was assigned against the Newton
freshwater 16S rRNA database (Newton et al., 2011) with a 70%
confidence threshold by the RDP Classifier (release 11.32) (Wang
et al., 2007). Dilution curve analysis was subsequently performed
based on OTU values. The Chao1 richness index and the
Shannon diversity index were used to assess the alpha diversity.

2http://sourceforge.net/projects/rdp-classifier/
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Principal coordinate analysis (PCoA) was then performed on
the OTU data which used Bray-Curtis distance matrices to
examine similarity among bacterial communities at every site.
Similarity analysis (ANOSIM) tests were used to determine if the
differences in OTUs among groups were statistically significant.
We evaluated clustering or overdispersion of bacterioplankton
communities through an examination of the deviation of
each observed metric from the average of the null model
(checkerboard or C score) (Stone and Roberts, 1990; Gotelli
and McCabe, 2002; Crump et al., 2009; Mo et al., 2021). The
C-score was evaluated using 30,000 simulations and sequential
swap randomization algorithms with the EcoSimR” package
in R, version 3.6.1 (R Core Team, 2015). The contribution
of stochastic processes to bacterioplankton communities was
then estimated using a neutral community model (Sloan et al.,
2006). We calculated Levins’ niche breadth (B) index using the
formula:

Bj =
1∑N

i=1 P
2
ij

Bj is the habitat niche breadth of OTU j in each
metacommunity, N is the total number of communities in each
metacommunity and Pij is the proportion of OTU j in community
i (Pandit et al., 2009). These calculations were performed using
the “niche.width” function in R package “spaa” (Pandit et al.,
2009; Zhang, 2020).

We then construct Bacterioplankton molecular ecological
networks using 16S rRNA and molecular ecological network
methods (Deng et al., 2012; Jiao S. et al., 2020; Wu B. et al.,
2021). Phyla-level network analysis was performed to identify
the relations between microbial taxa using Cytoscape version
3.4.0 combined with the CONET plug-in3 (Jiao S. et al., 2020;
Xia et al., 2020; Mishra et al., 2021). The topological roles of
different nodes were separated into four sub-categories according
to their within-module degree (zi) and participation coefficient
(pi) threshold value: network hubs (zi > 2.5; pi > 0.62),
module hubs (zi > 2.5; pi < 0.62), connectors (zi < 2.5;
pi > 0.62) and peripherals (zi < 2.5; pi < 0.62) (Poudel et al.,
2016; Fan et al., 2018). The “bioenv” function in the “vegan”
package was then used to identify environmental factors subsets
that best predicted the differences in microbial community
structure, which were then used in variance partitioning analysis
(VPA) modeling (Borcard et al., 1992; Oksanen, 2012) to
evaluate relative contributions of land use, water chemistry,
and geographic distance parameters (Supplementary Figure 6).
Mantel’s correlations between taxonomic compositions and
environmental factors were computed in R (Sunagawa et al.,
2015), and all data were tested for normality (Shapiro–Wilkes
test). Variables that were not normally distributed were then
log transformed to normality. One-way analyses of variance
(ANOVA) tests using Fisher’s least significant difference (LSD)
post-hoc tests were performed in SPSS Statistics v20, at a
significance level of p ≤ 0.05.

3http://psbweb05.psb.ugent.be/conet

RESULTS

Change of Human Activity Intensity and
Water Chemistry Characteristics Along
the Le’an River
We examine the spatial distribution of farmlands, forests,
grassland, freshwaters, urban areas, and others, to understand
the impacts of anthropogenic disturbance. Forest areas occupy
the largest proportion of the upper reaches of the watershed
(84.69± 3.37%), whereas a higher percentage of urbanized area is
found in the urbanized middle reaches (4.93 ± 2.76%) and a
higher percentage of agricultural land is found in the lower
reaches (48.60± 17.14%).

The Cl− levels in the Le’an River showed a statistically
significant differences (P < 0.05) between the three HAILS
levels. The levels of the NO3

−N, NH4
+-N, Cr, Cu, Zn, Cd,

Co and Pb were significantly greater in the dry season than
in the wet season (Supplementary Table 2 and Supplementary
Figure 1). EC, SO4

2− and most trace metals levels were at a peak
at sites L05–L06 or L09–L12. NO3

−-N and TP concentrations
increased from the upper reaches to the lower reaches, and
the Cl− was larger in the lower reaches. Higher nutrient levels
(mainly N and P) observed in middle and downstream waters
are likely associated with strong anthropogenic activities and
a higher percentage of urbanized regions in the Le’an River
watershed. The presence of extensive mining (e.g., Dexing
Copper Mine) leads to the concentrations of Cr, Cu, Zn,
and As being highest in the middle reaches. Compared with
the surface water environmental quality standards in China
(GB3838–2002), the concentrations of NH4

+-N, TP and Pb
exceeded the water quality standard values in several samples
(Supplementary Figure 1). The result of the T-test showed
that the concentrations of NO3

−-N, NH4
+-N, Cu, Zn, Cd,

and Pb in the dry season were significantly higher than those
in the wet season.

The results of RDA showed that the land use and geographic
distance together explained 85.87 and 86.19% of the water-
quality variations (Supplementary Figure 2). In the wet season,
the Mean dendritic stream length (P = 0.022) was the most
significant variables affecting water quality. In the dry season,
the Urban (P = 0.041) was the most significant variable
affecting water quality.

Bacterioplankton Community Diversity
and Composition Along HAILS Gradient
After filtering for quality and subsampling (24,343 reads per
sample), 770 OTUs were acquired with 212–416 per sample.
All OTUs were assigned to 478 species, 310 genera, 188
families, 110 orders, 64 classes, and 30 phyla. The number
of OTU species in wet and dry seasons and the number of
species obtained at various taxonomic levels varied significantly
(Supplementary Table 3). Good’s coverage for the observed
OTUs was 99.73 ± 0.05%, which suggests a near-complete
community sampling.

Both Shannon diversity and Chao1 richness indices for
the bacterioplankton community were significantly higher in

Frontiers in Microbiology | www.frontiersin.org 5 May 2022 | Volume 13 | Article 806036

http://psbweb05.psb.ugent.be/conet
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-806036 April 29, 2022 Time: 9:4 # 6

Wu et al. Le’an River

FIGURE 2 | Relative bacterioplankton community abundances of during the wet and dry seasons, from upstream to downstream. Compositions are shown as
bacterioplankton phyla distributions. Taxa with relative abundances <1% are grouped in red and labeled as “others.”

the wet season than in the dry season, and both slightly
increased in fluctuations from the upper reaches to the lower
reaches (Supplementary Figure 3). Three distinct clusters
are observed in the PCoA plots of the bacterioplankton
community in the dry season and the wet season, distributed
in an orderly manner from upper reaches to middle reaches
(Supplementary Figure 4). ANOSIM tests gave a global R
value of 0.515/0.611 at p = 0.002/0.001, indicating statistically
significant separation of the two seasons. Community clustering
could explain more of the observed variation in the wet season
than in the dry season. Furthermore, the difference of seasonal
variations of the bacterioplankton community composition
was not statistically significant, as indicated by the ANOSIM
(P = 0.14) tests. Therefore, geographic distance between the
three reaches had greater impact on bacterioplankton community
composition than season.

The most common phyla observed, in order of occurrence,
were Proteobacteria, Bacteroidetes, and Actinobacteria (Figure 2).
Proteobacteria (59.9%) were the large majority, and were much
more abundant in the dry season than in the wet season.
Proteobacteria abundance was significantly lower in the
upper reaches as compared to the lower and middle reaches
during the dry season. Proteobacteria abundance differed at
different sampling sites in the wet season. Actinobacteria was

the most abundant during the wet season (37.1%), much
more than in the dry season (21.4%). The abundance of
Actinobacteria was significantly lower in the middle reaches
in both the dry and wet seasons. Bacteroidetes did not
significantly differ between the dry season (15.5%) and the
wet season (13.2%). Bacteroidetes abundance was stable at
all sites in both seasons. In contrast, Cyanobacteria were
the third most abundant phylum in the wet season (19.0%),
but had very low abundance during the dry season (0.1%).
In the lower reaches, Cyanobacteria abundance (13.9%)
were significantly lower in the wet season, as compared to
the middle reaches (25.3%). In addition, RDA was used to
determine the relationship between the main bacterioplankton
phylum and environmental parameters (Supplementary
Figure 6). The first two axes of RDA explained 97.8 and
91.8% of the total variation in the dry and wet season,
respectively. The environmental parameters that contributed
both significantly to the bacterioplankton community–
environment relationship were NO3

−-N (p = 0.019/0.032)
and Cl− (p = 0.014/0.036) in the dry and wet season, respectively.
The most abundant phylum Proteobacteria was significantly
positively correlated with NO3

−-N, while Actinobacteria
was negatively (Supplementary Figure 5). Bacteroidetes was
significantly negatively correlated with Cl−.
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FIGURE 3 | Relative bacterioplankton communities abundances of during the wet and dry seasons. Compositions are shown as freshwater and non-freshwater
bacterial OTU distributions.

A considerable proportion of non-freshwater bacteria was
commonly identified in both the dry and wet seasons (Figure 3).
The relative abundances of non-freshwater bacteria during the
wet season (62.94%) was significantly higher than during the dry
season (49.33%) (p = 0.001). The proportion of non-freshwater
bacteria was the highest in the region downstream of the
Dexing Copper Mine (Y05, 73.61%). The abundance of non-
freshwater bacteria in the dry season increased from upstream
to downstream, however, non-freshwater bacterial abundances
had large variations among sampling sites and were highest
during the wet season in the middle reach communities. The
proportion of non-freshwater bacteria was also higher in the
vicinity of the Dexing Copper Mine (Y05, 69.83%) and was
the highest in Leping county (Y11, 75.71%) communities.
High input of allochthonous bacteria in the Dexing Copper
Mine downstream and Leping counties created the local
environmental bacteria pool.

Deterministic and Stochastic Processes
Along the HAILS Gradient and Their
Relative Importance
The fraction of the relationship between the occurrence
frequency of OTUs and their relative abundance variations was
estimated by a neutral community model (NCM; Figure 4).
Stochastic processes showed increasing HAILS values (Figure 4),
explaining 55.9%/72.7%, 69.8%/50.8%, and 50.1%/59% of the
community variance during the dry and wet seasons, respectively.
The m-value was higher for bacterioplankton taxa and decreased
in the following order: upper reaches (m = 0.913/1.114)> middle
reaches (m = 0.696/0.947)> lower reaches (m = 0.472/0.796)
during the wet and dry season, respectively. Thus, stochastic
processes are more important in shaping the bacterioplankton
community assembly in the upper reaches. The C-scores
revealed that the standardized effect size (SES) increased with

increasing HAILS in both the dry and wet seasons, which
suggests the greater importance of deterministic processes
for bacterioplankton assemblage (Figure 5). In addition, all
bacterioplankton communities (especially in the wet season)
exhibited significantly wider niche breadths at low HAILS than
at middle or high HAILS levels (Figure 6).

Networks and Bacterioplankton
Community Stability Along the HAILS
Gradient
Distinct co-occurrence pattern networks were constructed based
on all datasets from the Le’an River (Supplementary Figure 6).
Nine networks along the HAILS gradient were analyzed to
analyze how community structures changed with dynamic
balancing of niche and neutrality during both seasons. These
network data suggest that the majority of the bacterial networks
in the wet season were more connected, larger, more modular,
and were more often negatively correlated than in the dry season
(Table 1). The topological properties of the networks also varied
significantly with HAILS (Table 1). The average number of nodes
(i.e., OTUs) in the lower reaches were 53.8%/40.9% higher than
the upper reaches during the dry and wet season, respectively.
Similarly, the links of the bacterial networks increased with
increasing HAILS (i.e., network size increased with increasing
intensity of human activity) in both the dry and wet seasons.
This indicated that OTU associations are more frequently under
environmental pressure than habitats distant from anthropogenic
activities, which is also supported by the higher average
clustering coefficients at high HAILS level (especially in the
wet season). Additionally, networks in the upstream river have
high modularity scores (49/54) in each season and the ratio of
modularity in bacterial networks decreases significantly along
the HAILS gradient (low, middle and high), indicating that
the bacterial network is more robust and stable in the upper
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FIGURE 4 | Neutral community model (NCM). The occurrence frequencies predicted for the dry season and wet season are displayed, which represents
bacterioplankton communities for low, moderate, and large HAILS values in the Le’an River. The best fit to the neutral community model is given as solid blue lines
(Chen et al., 2019), and the dashed blue lines indicate 95% confidence intervals. OTUs that occur more or less frequently than predicted are displayed in cyan and
red, respectively. The R2 values indicate the model fit and m describes the immigration rate.

FIGURE 5 | C-scores of null models. If observed C-scores are greater than simulated C-scores (i.e., C-scoreobs > C-scoresim) non-random co-occurrence is
indicated. Standardized effect size less than –2 and greater than +2 represent aggregation and segregation, respectively.

reaches (especially during the wet season) (Figure 7). Taxa
were organized via loose connections which form hierarchical
communities in suitable habitats, however, higher HAILS levels
may disrupt this order, forcing communities to interact more
among OTUs and merge small modules into larger ones.

Summarizing all networks, the nodes with the top
three highest degrees were Proteobacteria, Bacteroidetes,
and Actinobacteria, being potential keystone species
(Supplementary Figure 6). Hubs and connectors are defined
here as keystone species, meaning that if these taxa were
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FIGURE 6 | Mean habitat niche breadth comparison for all taxa along the HAILS gradient [different letters indicate significant differences at the p < 0.05 level (Mo
et al., 2021)].

TABLE 1 | Parameters of bacterioplankton community network topology during the dry/wet season in the Le’an River.

Network indexes Dry/Wet season

Upper reaches Middle reaches Lower reaches

Total nodes (TN) 100/173 131/159 98/191 112/212 123/223 146/230 125/219 173/216 235/268

Total links (TL) 184/594 276/543 146/642 191/768 180/655 288/673 308/788 467/486 663/786

Negative links (NL) 49/267 135/216 50/288 76/351 54/279 114/269 107/283 110/204 189/380

Positive links (PL) 135/327 141/327 96/354 115/417 126/376 174/404 201/505 357/282 474/406

Negative/Positive (NP) 0.36/0.82 0.96/0.66 0.52/0.81 0.66/0.84 0.43/0.74/ 0.66/0.67 0.53/0.56 0.31/0.72 0.40/0.94

R square of power-law (R) 0.51/0.15 0.19/0.08 0.54/0.10 0.61/0.09 0.92/0.32 0.53/0.36 0.30/0.23 0.47/0.36 0.34/0.24

Average degree (avgK) 3.68/6.87 4.21/6.83 2.98/6.72 3.41/7.25 2.93/5.87 3.95/5.85 4.93/7.20 5.40/4.50 5.64/5.87

Average clustering coefficient (avgCC) 0.59/0.64 0.69/0.65 0.59/0.70 0.54/0.71 0.58/0.75 0.71/0.70 0.66/0.68 0.62/0.66 0.71/0.80

Average path distance (APD) 1.05/1.26 1.25/1.06 1.02/1.21 1.35/1.07 1.37/1.12 1.08/1.21 1.17/1.27 2.24/1.28 1.45/1.16

Centralization of degree (CD) 0.07/0.10 0.07/0.09 0.07/0.06 0.07/0.08 0.04/0.06 0.05/0.05 0.10/0.08 0.10/0.04 0.06/0.04

Graph density (GD) 0.04/0.04 0.03/0.04 0.03/0.04 0.03/0.03 0.02/0.03 0.03/0.03 0.04/0.03 0.03/0.02 0.02/0.02

Number of module (NM) 49/54 37/47 32/46 37/49 35/48 32/48 33/40 31/42 30/42

Modularity (M) 0.85/0.90 0.71/0.92 0.73/0.79 0.89/0.87 0.91/0.87 0.86/0.80 0.82/0.82 0.84/0.71 0.82/0.70

removed, the associated modules and networks may also
dissipate. No node in the bacterial network in the upper,
middle, and lower reaches falls in under the classification
of network hubs or connectors (Supplementary Figure 7)
for either season. Nearly all of the nodes are peripheral
modules except for one network in the middle in which
is a module hub (Proteobacteria). This indicated that
Proteobacteria, Bacteroidetes, and Actinobacteria were the
dominant phyla in bacterial networks and were unaltered
spatially and temporally.

Environmental Factors Related to
Bacterioplankton Community and
Network Variation
Geographic distance can also influence the structure
of bacterioplankton assembly and were thus evaluated
(Supplementary Figure 8). Communities showed a strong
distance-decay pattern, in which community dissimilarity
increased with distance, suggesting that bacterioplankton taxa
under different hydrologic regimes (seasons) exhibited similar
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FIGURE 7 | The stability-decay curves for the nine bacterioplankton molecular ecological networks in the Le’an River. Linear regression relationships are shown
between the Number of module and HAILS in the (A) dry season and (B) wet season, respectively. The slopes of all lines were significantly less than zero and
significantly different in pairwise comparison.

spatial patterns. Community differences were also well described
by river length (r = 0.476, p = 0.001 in the dry season; r = 0.603,
p = 0.001 in the wet season). The bacterioplankton communities
exhibited a stronger distance-decay pattern in the wet season
than in the dry season.

Determining the relationship between environmental
factors and community structures is critical. Bioenv analyses
(Table 2) indicted that the optimal subset of land use
types for the bacterioplankton composition are forests
(Bioenv correlation = 0.3369 in the dry season; Bioenv
correlation = 0.4738 in the wet season). The optimal subset
of land use types for the bacterioplankton networks are forests
and freshwater regions (Bioenv correlation = 0.6157) in the
dry season. Farmland, forest, and urban levels were optimal for
bacterioplankton composition (Bioenv correlation = 0.4906) in
the wet season (Table 3). Optimal water chemistry parameters
are NO3

−-N and Cl− (Bioenv correlation = 0.6824) in the
dry season. Cl− concentrations (Bioenv correlation = 0.6620)
were optimal to bacterioplankton network in the dry season.
NO3

−-N levels were optimal for bacterioplankton composition
(Bioenv correlation = 0.6719) in the wet season, Cl−, Cd,
NO3

−N and TOC (Bioenv correlation = 0.5099) were optimal
for bacterioplankton networks in the wet season. River
length and mean dendritic stream length were the optimal
geographic distance parameters for both bacterioplankton
composition and network.

Variance partitioning (Figure 8) suggests that the
bacterioplankton composition and network are better explained
by geographic distance and land use than water chemistry during
the wet season. However, more environmental factors are found
to regulate the composition and stability of the interaction
network of the planktonic bacterial community in the Le’an
River in the dry season, which shows that water chemistry
had more influence on the bacterioplankton composition
and networks than geographic distance and land use in this
instance (Supplementary Figure 9). The variation in community
composition that was explained by water chemistry patterns,
42.6% in bacterioplankton composition in the dry season
and 45.1% in the wet season and 36.3% in bacterioplankton
network in the dry season, was higher than the impacts from
other environmental factors (Figure 8). However, the effects
of land use patterns and geographic distance on community
variations, 44.6% in bacterioplankton composition and 91.5% in
bacterioplankton network, is higher than that of water chemistry
(30.2 and 90.3%) in the wet season.

DISCUSSION

The richness and diversity of bacterioplankton slightly increases
with increasing anthropogenic stresses along the human
activity intensity spatial gradient. Our results support previous
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observations that the richness and diversity of bacterioplankton
is higher under human influenced urban conditions (Altermatt
et al., 2013; Huang and Huang, 2019; Wang et al., 2019).
River discharge variations in different hydrological seasons
can yield significant changes in water chemistry and chemical
pollutants as well resulting from allochthonous inputs (e.g.,
sediment resuspension and erosion) (Hu et al., 2017). We
found that bacterioplankton communities exhibited distinct
distribution patterns across space rather than by seasonality,
likely due to clear increases in anthropogenic pressure present
in the downstream regions but absent in the upstream
regions (Supplementary Figure 4). The middle and lower
reaches of the Le’an River have experienced rapid urbanization,
characterized by increased building and farmland land use
(Figure 1 and Supplementary Table 1). This is especially true
in sites with abundant urban areas (e.g., Dexing Copper Mine
Y05 and Leping city Y11), as non-freshwater bacteria were

abundant in the water communities (Figure 3). Such non-
freshwater populations can be introduced through runoff and
anthropogenic input (Staley et al., 2013). Newly introduced
allochthonous bacteria can be capable of proliferating in their
new lotic environment, at least temporarily, allowing them
to be constitutive community members (Savio et al., 2015).
Furthermore, the agricultural and urban watersheds are more
influenced by increased human activity which can result in
higher nitrogen and phosphorus concentrations. This in turn
can support a greater variety of bacterioplankton, stimulate
autochthonous bacterial growth and enhance community
richness (Mohit et al., 2014; Roberto et al., 2018). Bacteria
derived from sewage can also contribute to bacterial community
abundance and diversity due to their higher growth rates
(Shu et al., 2020). Additionally, allochthonous bacterial input,
evolution, and spreading along the river may be strengthened
by various human activities (i.e., agricultural land use may

TABLE 2 | Correlations of different combinations of environmental factors and bacterioplankton communities, as determined by Bioenv analysis.

Combination in dry season Correlation Combination in wet season Correlation

Land use Forest 0.3369 Forest 0.4738

Farmland + Forest 0.2391 Forest + Freshwater 0.4336

Farmland + Forest + Freshwater 0.1932 Farmland + Forest + Freshwater 0.4304

Farmland + Forest + Freshwater + Urban 0.1770 Farmland + Forest + Freshwater + Urban 0.3752

Water
chemistry

NO3
−-N 0.6312 NO3

−-N 0.6719

NO3
−-N + Cl− 0.6824 NO3

−-N + Cl− 0.6248

NO3
−-N + Cl− + As 0.6268 NO3

−-N + Cl−+ FNU 0.5938

NO3
−-N + Cl− + As + Cd 0.6343 NO3

−-N + Cl− + FNU + NH4
+-N 0.5841

Geographic
distance

River length 0.4764 River length 0.6027

River length + Mean dendritic stream length 0.4716 River length+ Mean dendritic stream length 0.6082

River length + Mean dendritic stream length + Cumulative
dendritic distance

0.4461 River length+ Mean dendritic stream length + Cumulative
dendritic distance

0.5799

River length + Mean dendritic stream length + Cumulative
dendritic distance + Catchment area

0.4138 River length + Mean dendritic stream length + Cumulative
dendritic distance + Catchment area

0.5581

Maximum values are indicated by bold text.

TABLE 3 | Correlations of different combinations of environmental factors and bacterioplankton network indexes (TN, TL, avgK, avgCC, GD, NM, and M), as determined
by Bioenv analysis.

Combination in dry season Correlation Combination in wet season Correlation

Land use Forest 0.5761 Forest+ Grassland 0.4677

Forest + Freshwater 0.6157 Farmland + Forest + Urban 0.4906

Forest + Freshwater + Other 0.6021 Farmland + Forest + Grassland + Urban 0.4824

Forest + Freshwater + Urban+ Other 0.5997 Farmland + Forest + Grassland + Urban + Freshwaters 0.4569

Water
chemistry

Cl− 0.6620 Cl− + Cd 0.5097

Cl− + Cd 0.4561 Cl− + Cd + TP 0.5022

Cl− + Cr +TOC 0.3194 Cl− + Cd + NO3
−-N + TOC 0.5099

Cl− + Cr +TOC + Co 0.2463 Cl− + Cd + NO3
−-N + TOC +pH 0.5042

Geographic
distance

River length 0.4860 Mean dendritic stream length 0.5122

River length + Cumulative dendritic distance 0.4404 River length + Mean dendritic stream length 0.5079

River length + Cumulative dendritic distance + Catchment
area

0.4353 River length + Mean dendritic stream length + Catchment
area

0.4757

River length + Cumulative dendritic distance + Catchment
area+ Mean dendritic stream length

0.4154 River length + Mean dendritic stream length + Catchment
area + Cumulative dendritic distance

0.4662

Maximum values are indicated by bold text.
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FIGURE 8 | Variation partitioning for Le’an River bacterioplankton communities. The effects on (A) dry season composition, (B) wet season composition, (C) dry
season networks, and (D) wet season networks are evaluated based on land use, water chemistry, and geographic distance parameter contributions (see
Supplementary Figure 6). Panels [a], [b], and [c] represent pure contributions of individual explanatory matrices; panels [d], [f], and [e] represent the combined
contributions of two explanatory matrices; panel [g] represents the joint contribution of three explanatory matrices. “Unexplained” indicates the proportion of the
variation which was not explained by any of our parameters.

be more intensive in downstream areas, and towns or mines
may influence middle reaches). However, inconsistent results
were reported in the Shaying River basin (Li et al., 2020),
where increased human land use reduces bacterioplankton
biodiversity and ecosystem functions. This disagreement may
be due to the sampling of different waterbodies under
multiple disturbances.

Community composition may be due to environmental
condition variations influenced by land use at the local or
regional level. Figure 2 supports the findings of other studies
conducted in other subtropical rivers, where a dominant role of
Proteobacteria were also observed (Ouyang et al., 2020; Wang Y.
et al., 2020). The richness and abundance of Proteobacteria
significantly rose along the HAILS gradient and with increasing
anthropogenic stress in the dry season (Figure 2). This may be
attributed to variations in environmental conditions influenced
by land use. Anthropogenic activity along rivers may increase
the quantities of nutrients and change the form and proportion
of nutrients and physicochemical variables (Yang et al., 2022).
The concentrations of NO3

−-N, NH4
+-N and TOC were higher

in the dry season than in the wet season, and NO3
−-N,

NH4
+-N and TP in the downstream regions were significantly

higher than in the upstream regions due to the influence of
mines and agricultural activities (Supplementary Figure 1).
The higher nitrogen content may lead to increases in the
relative abundances of Proteobacteria (Burkert et al., 2003).
The highest bacterioplankton community abundance in the wet
season was Actinobacteria, which is correlated with less eutrophic
conditions (Haukka et al., 2006). Increased precipitation may
dilute the river nutrient concentration (e.g., NO3

−-N) and
induce an increase in the relative abundances of Actinobacteria
(Supplementary Figure 5). Conversely, Cyanobacteria were
the third most abundant phylum during the wet season but
had very low abundance in the dry season. Cyanobacteria
have a total phosphorus (TP) threshold of 0.010 mg/L and
the probability that Cyanobacteria will become dominant over
other bacterioplankton species increases with increasing TP
to a maximum probability of about 80% when water TP
reaches or exceeds 0.100 mg/L (Bridgeman et al., 2012). The
reason for cyanobacteria being the third most abundant phylum

Frontiers in Microbiology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 806036

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-806036 April 29, 2022 Time: 9:4 # 13

Wu et al. Le’an River

during the wet season is likely attributed to the high level
of TP. Bacteroidetes are often enriched in the intestines of
humans or animals and can be effective fecal indicators (Ibekwe
et al., 2016; Shu et al., 2020). Thus, Bacteroidetes are detected
consistently across all the sites in both the dry and wet
seasons, suggesting that they came from anthropogenic inputs
(Dubinsky et al., 2012). These microbes can be active in microbe-
nutrient interactions.

Human activity intensity in freshwater environments
can significantly influence bacterioplankton community
assembly, through impacts on deterministic and stochastic
process balance. Stochastic and deterministic processes work
concurrently and symbiotically in natural ecosystems. We
found here that stochastic processes are more important in
shaping the bacterioplankton community assembly in the upper
reaches and the species dispersal of bacterioplankton taxa
was higher in the wet season than in dry seasons (Figure 4).
When the stable environments in the upper reaches are
disturbed by anthropogenic activity, niche-based selection
strengthens and bacterioplankton communities become less
characterized by stochasticity. Freshwater bacterioplankton
can become exposed to lower physiological stress at low
human activity intensity levels, and they can then grow and
reproduce more freely, which results in the dominance of
stochastic processes (Wu B. et al., 2021). Jiao S. et al. (2020)
found that in low environmental stress ecosystems which
experience lower environmental heterogeneity or under less
competitive interactions between environmental generalists,
stochastic assembly mechanisms can overrule deterministic
processes. Conversely, strong selective pressure may be
experienced by freshwater bacterioplankton when human
activity intensity increases. Dini-Andreote et al. (2015) found
that increased allochthony may lead to an increase in stochastic
processes during the wet season under other environmental
factors which do not impose strong selection. Our C-score
results demonstrated that the value of standardized effect size
(SES) increased with anthropogenic intensity, suggesting that
community assembly is more strongly by deterministic processes
under such activity (Figure 5). When environmental pressure
increases dramatically, due to such things as alkalization,
acidification, or eutrophication, important taxa activities that
are sensitive to these pressures (especially immigrants with
small populations) are suppressed (Wang L. et al., 2021). Thus,
neutrality is weakened, and niche-based selection leads the
community as human activity intensity increases. In addition,
the bacterioplankton communities show wider niche breadths
(especially in the wet season) under low human activity intensity
than at the medium/high human activity intensity conditions
(Figure 6). This indicates that community assembly is more
influenced by deterministic processes at high human activity
intensity. This may be since deterministic processes tend to
have a stronger effect on habitat specialists with a narrow
niche breadth than on generalists with a wide niche breadth
(Pandit et al., 2009).

Human activity intensity promotes destabilizing properties
in the bacterioplankton interactive network. Network modules
may act as network stability indicators of important ecological

processes following the disturbance of human activity intensity
changes (Yuan et al., 2021). Therefore, our results demonstrate
that an increase in human activity intensity of about 10%/10%
will reduce co-occurrence network stability of bacterioplankton
community by an average of 0.62%/0.42% in the dry and
wet seasons, respectively (Figure 7). The greater the number
of modules, the more bacterioplankton taxa distributed in
multiple tiny modules in the upper reaches. This indicates
that multiple inter-OTU communications may have been
obstructed (Feng et al., 2014). Accordingly, an individual
disturbance might be constrained to only one small module,
which minimizes other modules, and thus the stability of
bacterioplankton co-occurrence networks can improve (Liu Z.
et al., 2018). Conversely, for the assemblages living through
heavy influence of the mining (e.g., the Dexing Copper
Mine) areas or farmlands, the networks were discerned
with high average clustering coefficients, average degrees,
and less numbers of module (Table 1). A community
network under strong anthropogenic activity would break
down the boundaries between different modules, strengthen
the interconnections between different bacterioplankton
taxa, and enhance resource transfer efficiency, so that they
would be able to cope with environmental perturbations
through mutual cooperation (Deng et al., 2012). This result
is similar to that reported by Wu M. et al. (2021). The
interactions among bacterioplankton taxa can intensify
(higher connectivity, more nodes, and links), increasing the
connectivity among modules, and merging them into fewer but
larger modules which ultimately decrease the modularity and
stability of the network.

The ratio of modularity in the bacterial networks decreased
significantly along human activity intensity spatial gradient,
consistent with the general fitness tendency of NCM. The more
modules, the more niches overlap between each other, and a
higher overlap of niches produces neutral scenario (Banerjee
et al., 2016; Carmel et al., 2017). Consequently, networks
of more neutrally assembled communities (especially in the
upper reaches) likely have a greater number of modules than
those mainly shaped by deterministic selection and maintain
a stable structure for neutrally assembled communities in low
interference condition. In addition, our results indicate that
bacterioplankton communities in the upper reaches had wider
niche breadths than the middle and lower reaches (Figure 6),
meaning that they can adapt to many environmental niches
(Mo et al., 2021). This pattern is closely associated with
bacterioplankton diversity and richness. Thus, human activity
intensity may affect bacterioplankton diversity and richness, and
consequently impacts network structure.

Select few keystone taxa play pivotal roles in the construction
of bacterioplankton communities. Module hubs and connectors
may be considered keystone species, as they play important
roles in maintaining network structure relative (Tylianakis and
Morris, 2017). The disappearance of these keystone taxa may
cause modules and networks to disassemble, thus keystone taxa
likely support ecosystem stability (Wang X. et al., 2021). The
large majority of nodes are classified as peripheral modules
except for one network in the middle reaches in which is
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classified as a module hub (Proteobacteria). The nodes with
the top three highest degrees indicated that Proteobacteria,
Bacteroidetes, and Actinobacteria were the dominant phyla
and keystones in the Le’an River bacterial networks and were
unaltered by spatial and temporal distribution (Supplementary
Figure 6). Dominant phyla can impact ecosystem exclusively
by virtue of sheer abundance (Banerjee et al., 2018). Keystones
and module hubs can play the same roles in the dynamics
of communities; in particular, keystones are crucial in
maintaining taxa coexistence and adapting communities to
their environments.

Water chemistry had a stronger influence on bacterioplankton
communities (especially composition) than did geographic
distance and land use in the dry season in the Le’an River.
Likely sources of NO3

−-N include wastewater from mining,
agricultural, and domestic sources (Wang et al., 2019). Cl−
is also a common indicator of domestic wastewater (Lim
et al., 2017). Strong influences of collective allochthonous
input is also suggested by significant positive correlations
between NO3

−-N concentration and other water chemistry
parameters (Supplementary Figure 9). Half of our water
chemistry parameter levels were significantly larger in the
dry season than in the wet season (Supplementary Table 2
and Supplementary Figure 1). Nutrient concentrations can
have a considerable influence on bacterioplankton composition
since nutrient concentration changes directly impact substrate
concentrations and bacterial nutrient metabolism (Sun et al.,
2021). Thus, the dominance of environmental factors in
bacterioplankton composition variations may be attributed to
decreasing water levels in the dry season, which results in higher
nutrient (e.g., nitrogen) concentrations.

The bacterioplankton community (especially the
bacterioplankton networks) is more influenced by geographic
distance and land use than the water chemistry in the wet
season. Geographic distance and land use contributes to
community variation more than other environmental factors
(Figure 8). Forest areas are the most important and best
subset of land use variables to explain bacterioplankton
community (especially the bacterioplankton composition)
variations (Tables 2, 3). The reduction of forest land in the
middle and lower reaches can increase soil erosion, sediment
transport and the abundance of non-freshwater bacteria
attached to the river, and therefore intensify the interactions
among bacterioplankton taxa (Bussi et al., 2017). In the wet
season, river length and mean dendritic stream length are
the best geographic distance parameter subsets to explain
bacterioplankton community dissimilarities (Table 2). The
influence of river flow can also be significant. Water levels are
higher in the wet season, and as river flow increases, the river
connectivity and habitat homogeneity can also increase, which
can assist the passive movement of microorganisms over great
distances (Wang et al., 2015). Smaller bacterioplankton taxa
disperse more easily and cannot readily counteract downstream
flow. A more significant distance-decay relationship can also
support the significant effect of geographic distance in the wet
season (Supplementary Figure 7). Liu T. et al. (2018) found
that mean dendritic stream length best explained the spatial

similarity of bacterioplankton communities in the Yangtze River.
Domestic wastewater is an important source of allochthonous
bacteria, confirmed by the importance of NO3

−-N and Cl− in
community variation (Table 2). In the wet season, the input of
allochthonous bacteria increases due to runoff from multiple
sources (Wang et al., 2019). Thus, the influence of geographic
distance and land use also increases in the wet season. In
addition, much of the unexplained variation could be attributed
to other biotic interactions, such as competition, trophic
interactions, and unmeasured environmental or biological
factors (He et al., 2021).

CONCLUSION

Deterministic and stochastic processes can both be important
in bacterioplankton communities. Here, we merge these
conceptual mechanisms along with co-occurrence networks
into bioinformatic analyses of bacterioplankton communities
and find that deterministic processes can increase species
richness and diversity. This can be particularly true along
the spatial gradient of human activity intensity. However,
the influence of stochastic processes diminishes, and niche-
based selection imposes more constraints on communities.
We also find the magnitude of stability in bacterioplankton
community networks along the human activity intensity
spatial gradient that was quantitatively associated with
human activity. Water chemistry (especially NO3

−-N and
Cl−) is the major driver of bacterioplankton composition
and networks during the dry season, while geographic
distance (especially river length and mean dendritic
stream length), and land use (especially forest regions)
are the major drivers in the wet season. However, further
investigations are still required to better elucidate these
processes and the reliability of the factors determined here,
such as consideration of seasonal and yearly assessment of
bacterioplankton taxa.
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