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Abstract
Current international prognostic index is widely questioned on the risk stratifica-
tion of peripheral T-cell lymphoma and does not accurately predict the outcome for 
patients. We postulated that multiple mRNAs could combine into a model to im-
prove risk stratification and helping clinicians make treatment decisions. In this study, 
the gene expression profiles were downloaded from the Gene Expression Omnibus 
(GEO) database. Weighted gene co-expression network analysis (WGCNA) was used 
to screening genes in selected module which most closely related to PTCLs, and then 
built a mRNA signature using a LASSO Cox regression model and validated the prog-
nostic accuracy of it. Finally, a nomogram was constructed and the performance was 
assessed. A total of 799 WGCNA-selected mRNAs in black module were identified, 
and a mRNA signature which based on DOCK2, GSTM1, H2AFY, KCNAB2, LAPTM5 
and SYK for PTCLs was developed. Significantly statistical difference can be seen 
in overall survival of PTCLs between low-risk group and high-risk group (training 
set:hazard ratio [HR] 4.3, 95% CI 2.4-7.4, P < .0001; internal testing set:hazard ratio 
[HR] 2.4, 95% CI 1.2-4.8, P < .01; external testing set:hazard ratio [HR] 2.3, 95% 
CI 1.10-4.7, P = .02). Furthermore, multivariate regression demonstrated that the 
signature was an independently prognostic factor. Moreover, the nomogram which 
combined the mRNA signature and multiple clinical factors suggesting that predicted 
survival probability agreed well with the actual survival probability. The signature is a 
reliable prognostic tool for patients with PTCLs, and it has the potential for clinicians 
to implement personalized therapeutic regimen for patients with PTCLs.
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1  | INTRODUC TION

Non-Hodgkin lymphomas are clonal neoplasms that arise from 
lymphocyte at various stages of maturation,1 it estimated that 
77 240 new cases of non-Hodgkin lymphoma are expected in the 
United States, and 19 940 patents will die for this disease in 2020.2 
Peripheral T-cell lymphomas (PTCLs) are a subgroup of non-Hodgkin 
lymphomas which also characterized as a infrequency and hetero-
geneous aggressive behaviour diseases that associated with very 
dismal prognosis, representing 10%–15% of non-Hodgkin lympho-
mas (NHLs) in Western countries but up to 35% in some countries 
of Asian.3 Peripheral T-cell lymphomas (PTCLs) comprise more than 
30 distinct histologic subtypes including anaplastic lymphoma ki-
nase (ALK)-positive anaplastic large cell lymphoma (ALCL) and 
ALK-negative ALCL, extranodal natural killer (NK)/T-cell lymphoma 
(ENKTL), angioimmunoblastic T-cell lymphoma(AITL), and PTCL, 
not otherwise specified (PTCL-NOS) according to World Health 
Organization (WHO) classification system 2017.4 Numerous at-
tempts have been made to optimize the treatment approach, but 
no definitive standard therapy has been reached.5 The tradition-
ally combination regimens such as CHOP or a CHOP-like regimen 
which initially established for aggressive B-cell lymphomas are most 
widely used in PTCLs patient.6 However, outcomes for most patients 
treated with CHOP are still poor, with only 33%-43% with PTCLs 
achieving a complete response (CR) and 5-year overall survival 
(OS) barely exceeds achieving 38.5%.7 Given the poor outcomes in 
PTCLs, several novel drugs such as pralatrexate, Mogamulizumab, 
Chidamide, romidepsin, brentuximab vedotin, and Forodesine have 
been approved by FDA for the treatment of relapsed and refractory 
PTCLs recently,8 but none of these new drugs led to improvement 
of survival.9,10 Moreover, the role of stem-cell transplantation for 
PTCLs remains controversial in front-line settings.11 There may be 
a role for prognostic biomarkers in risk classification of PTCLs pa-
tients. High-risk patients could receive more intensive treatment 
to avoid insufficient treatment, whereas low-risk patients should 
choose low-intensity treatment regime to avoid excessive drug tox-
icity. Therefore, it is urgent to identify robust biomarkers for predict 
the prognosis of PTCLs, and discriminate patients who might benefit 
from the therapy.

To date, the most widely used model for evaluating the prognosis 
of peripheral T-cell lymphoma is international prognostic index (IPI) 
that based on performance status, lactate dehydrogenase, extran-
odal involvement, stage and age, which was initially established for 
diffuse large B-cell lymphoma (DLBCL). However, Given the marked 
heterogeneity among the patients that diagnosed with PTCLs, the 
IPI score is far less satisfactory for distinguishing recurrence risk for 
PTCLs patients than for aggressive B-cell lymphoma.12 For example, 
even patients which categorized in the best risk group (IPI 0) still 
experience an extremely unfavourable outcome, the cause of this 
phenomenon is attributed to that IPI score only focused on clinical 
characteristics, with very few genomic information reflecting the 
molecular mechanism underlying the PTCLs biology. On the other 
hand, the lack of information on risk stratification brings the merits 

of limitations for clinicians to conduct individualized treatment strat-
egies. Recently, several gene expression biomarker signatures that 
based on gene expression profiling (GEP) and whole-genome meth-
ylation profiling have been build and used to predict the prognosis 
of human cancer,13-16 but none mRNA signatures have been utilized 
for PTCLs patients.

Weighted gene co-expression network analysis (WGCNA) is 
powerful screening approach and has been gradually valued in dis-
covery of novel biomarkers or therapeutic targets via construct free-
scale gene co-expression networks.17 In this study, we explore the 
correlation between PTCLs and gene sets by WGCNA. Furthermore, 
the univariate proportional hazards analysis and LASSO Cox regres-
sion were carried out to identify a mRNA signature which beyond 
clinical parameters and significant associated with PTCLs prognosis. 
Finally, a prognostic nomogram was established based on the com-
bination of signature and clinical characteristics.

2  | MATERIAL S AND METHODS

2.1 | Data sources and data processing

The raw data of GSE59307, GSE58445, GSE19069, GSE90597 and 
GSE53798 were downloaded from the Gene Expression Omnibus 
(GEO; http://www.ncbi.nlm.nih.gov/geo/) database, and all datasets 
except GSE90597 were built based on the GPL570 platform [HG-
U133_Plus_2]. A total of 14 samples of cutaneous T-cell lymphoma 
(CTCL) and 8 cases of healthy control specimens were obtained in 
GSE59307 (Figure 1A), whereas the GSE58445 and GSE19069 com-
prises 193 and 137 samples of PTCLs, respectively. In addition to 
this, 66 cases of ENKTL which is a subtype of PTCLs were included 
in GSE90597 and GSE53798 comprise by 26 cases of Diffuse large 
B-cell lymphoma.According to current WHO classification, CTCL is 
a subtype of PTCLs; therefore, GSE59307 was chosen to construct 
the co-expression network. The packages of 'simpleaffy',18 'affy-
PLM' and 'arrayQualityMetrics' were utilized to perform the process 
of quality assessment (QA), quality control (QC), background cor-
rection and normalization. The probe id in datasets which based on 
GPL570 platform was annotated by the 'hgu133Plus2' package, and 
probe id of GSE90597 was annotated by GPL10739 files.

2.2 | Co-expression network construction

The top 5000 variant of expression profiles in GSE59307 were 
used to construct a co-expression network by using the package of 
WGCNA, and the network topology was analysed with soft-thresh-
old power from 1 to 30. After determining the optimal beta value for 
the soft threshold parameter, the relational matrix can be converted 
into adjacent matrix, and then, it can be transformed into topological 
overlap matrix (TOM). Finally, average linkage hierarchical clustering 
was conducted to classify the highly correlated into modules accord-
ing to the measure of TOM-based dissimilarity measure.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53798
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53798
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59307
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2.3 | Clinically significant modules visualization and 
identity the hub genes

To identify the modules which are significantly related to PTCLs, the 
module eigengene (ME) was used to characterize the expression pro-
files of each module and the correlation between PTCLs. The relation-
ship of each genes with PTCLs was measured by gene significance 
(GS) value. Module significance (MS) represents the average GS of all 
genes that in the module. Finally, the module that highly related to 
PTCLs was chosen for further analysis. The connectivity of genes in 
module was quantified by the absolute value of the Pearson's corre-
lation, and the module membership (MM) was defined as the corre-
lation of module eigengenes (MEs) with genes. In present study, the 
intramodular hub genes were chosen with the criterion of GS > 0.2 
and MM > 0.8 to ensure the reliability of the results.

2.4 | LASSO Cox Regression conduction and 
identification of a mRNA signature

Univariate Cox proportional hazards regression analysis was ap-
plied to assess the relationship between the expression of WGCNA-
selected genes and the overall survival (OS) of patients with PTCLs, 
genes which calculated with P < .05 were sorted out and chosen 

to screening the most valuable predictable mRNAs by performing 
the LASSO Cox regression analysis which depends on the R package 
'glmnet'.The optimal values of the penalty parameter λ were esti-
mated through 10-time cross-validations. The risk score of mRNA 
signature for each patient was calculated by the coefficient that 
from LASSO regression analysis and expression level of each mRNA. 
The risk score was constructed as follows:

n was the number of prognostic genes, expa was the expression 
value of gene a, and β was the regression coefficient. All PTCLs 
patients were separated into high- and low-risk groups according 
to median risk score that used as cut-off value. Kaplan-Meier esti-
mator was carried out to assess the prognostic value of the mRNA 
signature. Survival prediction based on the risk score was illus-
trated by using the 'survivalROC' package. Wilcoxon signed-rank 
was applied to compare the differential expression between high-
risk group and low-risk group of PTCLs. In addition, the protein 
expression levels of the six genes in the mRNA signature were vali-
dated by immunohistochemistry through using the Human Protein 
Atlas database (https://www.prote inatl as.org/) and their mutation 
status was explored by cbioportal database (https://www.cbiop 
ortal.org/).

Risk score=
∑n

a=1
expa ∗�a

F I G U R E  1   Identification of candidate genes in PTCLs. A, Clustering dendrogram of PTCLs and normal control. B, analysis of scale-free fit 
for soft-thresholding powers and 28 were selected as the best value. C, Dendrogram of genes clustered on a dissimilarity measure. D, Heat 
map of the relationships between modules and PTCLs by Pearson correlation

https://www.proteinatlas.org/
https://www.cbioportal.org/
https://www.cbioportal.org/


     |  87TU eT al.

2.5 | Immune landscape difference between high-
risk and low-risk PTCLs patients

CIBERSORT is a tool based on the principle of linear support vector 
regression to deconvolute the expression matrix and calculate the 
proportions of 22 types of infiltrating immune cells in each sample.19 
And only if P value of each sample less than 0.05 will be retained for 
subsequent analysis. Considering the small sample size of GSE90597, 
we combined the two datasets of GSE19069 and GSE90597 and used 
the combat function of the R software package of sva to remove batch 
effects and calculate the distribution of immune cells.20 Then, we 
analysed the immune differences between the high-risk and low-risk 
groups in the combined dataset and the GSE58445 dataset.

2.6 | Integrated analysis by combining the clinical 
factors and mRNA signature

To investigate the effect of the risk signature on the prognosis of 
PTCLs patients, univariate and multivariate Cox regression analy-
ses were conducted. The risk scores of six-mRNA signature and 
other clinical characteristics, including gender and age, were used 
as covariates. Moreover, the six mRNA which screened by LASSO 
Cox regression also were selected as candidate mRNAs to explore 
the difference in survival between high and low expression groups 
which performed by Kaplan-Meier survival analysis. Furthermore, 
the analysis concerning the correlation between risk score and cur-
rently available clinical characteristics was conducted.

2.7 | Association of a mRNA signature and response 
to chemotherapy

The dataset of GSE53798 was originally established for predicting 
sensitivity to chemotherapy drugs in CHOP (cyclophosphamide, 
doxorubicin hydrochloride, vincristine, prednisone) regime for dif-
fuse large B-cell lymphoma cell.21 Considering that the degree of 
malignancy of diffuse large B-cell lymphoma is comparable to that 
of some subtype of peripheral T-cell lymphoma, and currently treat-
ment of peripheral T-cell lymphoma is similarly to which used for dif-
fuse large B-cell lymphoma (DLBCL). So, in this part, we investigated 
whether the mRNA signature could predict patients' responses to 
chemotherapy of vincristine.

2.8 | Nomogram development and validation

The Cox regression model was used to perform the multivariable 
survival analysis and build nomograms. Calibration curves were se-
lected to assess the consistency between the actual survival and the 
predicted survival for the nomogram. Nomogram and calibration 
curves were performed with the package named rms. The C-index 
was utilized to measure the discrimination of the nomogram.

3  | RESULTS

3.1 | Pre-processing of the datasets

All microarray data were converted into expression matrix after 
processing, 31 cases in GSE58445 and 11 cases in GSE90597 which 
lacking survival data were excluded in this study. In addition, after 
excluding unqualified samples, 162 patients in GSE58445 were ran-
domly divided into the training set (n = 98) and testing set (n = 64) 
according to a ratio of 6:4.

3.2 | Construction of weighted co-expression 
network and identification of key modules

To ensure build a scale-free network, the power of β = 28 (scale-
free R2 = 0.84) was selected as the best soft-thresholding param-
eter (Figure 1B). Next, co-expression modules were produced by 
method of dynamic tree cutting and make sure that the number 
of genes in each module is not <30 (Figure 1C). Additionally, by 
setting the parameter of MEDissThresas as 0.25, the modules 
that closely associated were merged into a larger one. Ultimately, 
there are five modules were generated in co-expression network, 
and black module demonstrated the strongest positive correla-
tion with PTCLs samples (weighted correlation = 0.91, P = 4e −9) 
(Figure 1D).

3.3 | Identification of the six-mRNA signature in 
training group patients

All 799 WGCNA-selected hub genes used to identify survival-re-
lated mRNA by univariable Cox survival analysis in training group 
dataset, 15 genes were pre-filtered based on P values < .05, and 
then, those genes were selected to preform LASSO Cox regression 
analysis in GSE58445 cohort (Figure S1). The risk score for predict-
ing the outcome of patients was calculated with the following for-
mula which based on the six mRNA: risk score = (0.2554 × DOCK2 
expression) + (0.2334 × GSTM1 expression) + (0.3123 × H2AFY 
expression) + (0.1719 × KCNAB2 expression) + (−0.2820 × LAPTM5 
expression) + (−0.1399 × SYK expression). According to the me-
dian of the risk score, all PTCLs patients were divided into high-risk 
(n = 49) and low-risk groups (n = 49). 5-year os was 12.2% for the 
high-risk group and 32.6% for the low-risk group, which were sig-
nificantly different in terms of overall survival(OS) ([HR] :5.6, 95% CI 
2.75-11.6, P < .0001).The 1-year, 2-year, 3-year, 4-year and 5-year 
areas under the curve were 0.793, 0.831, 0.778, 0.753 and 0.753, 
respectively (Figure 2B). Additionally, the mRNA signature can func-
tion as a novel indicator of the survival of PTCLs patients, which was 
confirmed by Kaplan-Meier curves (Figure 2A). Among these six 
mRNA, DOCK2, GSTM1, H2AFY and KCNAB2 significantly overex-
pressed in high-risk PTCLs patients compare to high-risk group and 
were associated with poor prognosis; LAPTM5 and SYK significantly 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53798
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
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overexpressed in low-risk patients compare to high-risk patients and 
related to prolonged prognosis(Figure 2C).

3.4 | Validation of prognostic and predictive 
accuracy of the six-mRNA signature in the 
internal and external testing group

The prognostic value of six-mRNA signature was further evaluated 
in the internal test set and external testing set. In the internal test-
ing cohort, the PTCLs were categorized 32 (50%) of 64 patients into 
the low-risk group and 32 patients (50%) into the high-risk group, 
and 5-year os was 9.37% for the high-risk group and 25% for the 
low-risk group, which were significantly different in terms of overall 
survival(OS) ([HR] :2.4, 95% CI 1.2-4.8, P < .01. Figure 2D). In the 
external testing cohort, the ENKTL which is a subtype of PTCLs 

was categorized 27 (49.09%) of 55 patients into the low-risk group 
and 28 patients (50.91%) into the high-risk group, and 5-year os was 
7.4% for the high-risk group and 28.57% for the low-risk group, ([HR] 
2.3, 95% CI 1.10-4.7, P = .02. Figure 2G). We also noted similar re-
sults in the total set of GSE58445, and 5-year os was 11.1% for the 
high-risk group and 29.6% for the low-risk group ([HR]: 3.3, 95% CI 
2.2-5.0, P < .0001 Figure S2). Prognostic accuracy of the six-mRNA 
based signature is also assessed by time-dependent ROC analysis. 
The 1-year, 2-year, 3-year, 4-year and 5-year areas under the curve 
for internal testing group were 0.655, 0.672, 0.663, 0.731 and 0.701 
Figure 2E). Similarly, the 1-year, 2-year, 3-year, 4-year and 5-year 
areas under the curve for external testing cohort set were 0.656, 
0.612, 0.656, 0.656 and 0.656, respectively (Figure 2H).

In the internal verification cohort, the expression distribution of 
6 genes between the high and low two groups is consistent with the 
test group (Figure 2F). In the external verification cohort, DOCK2 

F I G U R E  2   Prognostic and predictive value of the mRNA signature. A,D,G, Kaplan-Meier survival curves for training group, internal 
testing group and external testing cohort of PTCLs patients. B,E,H, Time-dependent ROC curves of 1, 2, 3, 4, 5 years for the six-mRNA 
signature in training group, testing group and all cohort. C,F,I, Box plot visualization of the expression levels of DOCK2, GSTM1, H2AFY, 
KCNAB2, LAPTM5 and SYK in different risk group

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445


     |  89TU eT al.

and H2AFY significantly overexpressed in high-risk PTCLs patients 
compare to high-risk group and there is no statisticaldifference in 
the expression level of the remaining four genes between the high 
and low two groups (Figure 2I). Moreover, we explored the impact 
of expression of these six mRNA on the prognosis of all PTCLs, and 
the median expression value of the selected genes was set up as 
cut-off value in GSE58445, and fond high expression of LAPTM5 
and SYK is a protective factor for prognosis of PTCLs; however, high 
expression of DOCK2, GSTM1, H2AFY and KCNAB2 is a risk factor 
to prognosis (Figure 3). Furthermore, we analysed the correlation 
between the expression of six genes and survival in GSE90597, and 
X-tile software was used to find the best cut-off value. We found 
that the high expression of GSTM1, H2AFY and KCNAB2 is nega-
tively correlated with the prognosis, and LAPTM5 and SYK are pos-
itively correlated with the prognosis, which in line with the result in 
dataset of GSE58445 (Figure S3).

3.5 | External validation of the protein expression 
levels and genetic alteration of the six mRNA

Protein expression levels in PTCLs which obtained and visualized by 
Human Protein Atlas database showed that DOCK, GSTM1, H2AFY 
and SYK represent medium to high degree positive in immunohisto-
chemistry staining results. However, KCNAB2 shows weak positive 
and LAPTM5 shows negative staining (Figure 4A). All the results of 
protein expression levels are basically consistent with genes coef-
ficient in our mRNA results. Among the 43 PTCLs patients enrolled 
in Cancer Genomics database of cBioportal, all six mRNA have no 
genetic alterations (Figure 4B).

3.6 | Distribution of immune cells in different 
risk groups

After completion of CIBERSORT immune analysis, we found that the 
two cohorts of PTCLs patients generally have similar immune cell 
distribution; additionally, naive B cells are statistically different in the 
high-risk and low-risk groups in both two cohorts. In the GSE58445 
cohort, 81 cases PTCLs in each of the low-risk group and the high-
risk group showed a significant difference in the presence of 6 im-
mune cells types (naive B cells, memory B cells, resting natural killer 
cells, M1 macrophages, resting mast cells, eosinophils) (Figure 5A).
In the combinational cohort which incorporated by GSE19069 and 
GSE90597 dataset, 99 cases PTCLs in the low-risk group and 92 
PTCLs cases in the high-risk group showed a significant difference in 
distribution of 4 immune cells types (naive B cells, activated CD4 + T 
cells, activated NK cells and resting dendritic cells) (Figure 5B).

3.7 | Independent prognostic role of the 
mRNA signature

To confirm the value of mRNA signature in assessing PTCLs patients’ 
prognosis, we performed univariate and multivariate Cox regres-
sion analyses in training group and testing dataset by including age, 
gender and mRNA signature as explanatory variables. Clinical char-
acteristic parameters were grouped according to the International 
Prognostic Score (IPI) criteria: Age ≥ 60 Years. In training group, gen-
der and mRNA signature were significantly correlated with OS by 
using univariate Cox regression. After multivariate adjustment using 
the factors above, the mRNA signature remained a powerful and 

F I G U R E  3   Survival analysis of DOCK2, GSTM1, H2AFY, KCNAB2, LAPTM5 and SYK in GSE58445 PTCLs cohorts (A, DOCK2; B, 
GSTM1; C, H2AFY; D, KCNAB2; E, LAPTM5; F, SYK)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
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independent prognostic factor for PTCLs patients (mRNA signature: 
HR = 5.6, 95% CI = 2.75-11.6, P < .0001) (Table 1), the same results 
were also seen in testing group (internal testing cohort: HR = 2.7, 
95% CI = 1.31-5.6, P = .0007; external testing cohort: HR = 2.64, 
95% CI = 2.64, P = .02),suggesting that the risk prognostic signature 
independent impact on prognostic of PTCLs patients.

3.8 | Association of the mRNA risk score 
with Clinical characteristics and the role of risk 
stratification on response to chemotherapy

In order to figure out the impact of different PTCLs subtypes and 
clinical features on risk scores, we analysed the risk differences 
between samples with different pathological types and different 

clinical characteristics according to the available information in the 
GEO dataset. The risk score of AITL, ALTL, ENKTL and PTCL-NOS 
in dataset of GSE58445 has no obvious difference (Figure 6A), as 
the same results of status of gender and age impact on risk score 
(Figure 6B,C). Compared with other types of lymphoma, adult 
T-cell leukaemia/lymphoma (ATLL) has the lowest risk score and 
T-cell leukaemia/lymphoma (T-ALL) has the highest score in data-
set of GSE19069(Figure 6D), and there is no statistical differ-
ence in risk score between different ages and different genders in 
GSE19069(Figure 6E,F). Apart from this, we investigated whether 
the mRNA signature could predict patients’ response to chemother-
apy in GSE53798. More patients with high risk exhibited resistant 
to vincristine compare to low-risk patients (Figure 6G), which may 
partly explain why high-risk PTCLs patients have a worse prognosis 
than low-risk PTCLs patients.

F I G U R E  4   Expression and genetic alterations of the four predictive genes. A, The representative protein expression of the six mRNA in 
PTCLs . Data were from the Human Protein Atlas (http://www.prote inatl as.org) online database. B, Genetic alterations of the six mRNA in PTCLs

F I G U R E  5   Differential distribution of immune cells between the high risk and low risk group. A, GSE58445 dataset. B, Combinational 
cohort which incorporated by GSE19069 and GSE90597 dataset

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53798
http://www.proteinatlas.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19069
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
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Variable

Univariate analysis Multivariate analysis

HR 95% CI P P HR 95% CI P

Training group

Risk (High/Low) 4.30 2.40-7.40 <.001 5.60 2.75-11.6 <.001

Gender (Male/Female) 3.00 1.50-5.90 .0016 1.90 0.88-3.90 .10

Age (≥60/<60 y) 1.20 0.61-2.10 0.65 1.70 0.88-3.30 .118

Internal testing group

Risk (High/Low) 2.40 1.20-4.80 .01 2.70 1.31-5.60 .007

Gender (Male/Female) 0.69 0.33-1.40 .32 0.82 0.39-1.80 .62

Age (≥60/<60 y) 1.70 0.82-3.60 .15 1.86 0.89-3.9 .10

External testing group

Risk (High/Low) 2.30 1.10-4.70 .023 2.64 1.16-62 .02

Gender (Male/Female) 1.70 0.75-3.70 .21 1.67 0.70-3.95 .24

Age (≥60/<60 y) 3.00 1.40-6.10 .003 3.15 1.41-7.02 .005

TA B L E  1   Univariate and multivariate 
Cox regression analyses of the mRNA 
signature in PTCLs patients

F I G U R E  6   Distribution of the mRNA risk score in distinct clinical characteristics and the role of risk stratification on response to 
chemotherapy. A,D, Differences in risk score among different PTCLs subtypes. B,E, The risk score was group by age. C,F, The risk score was 
group by gender. G, Risk stratification on response to vincristine chemotherapy
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3.9 | Establishment of the nomogram and 
assessment of predictive value of mRNA signature

In order to develop a convenient clinical tool that could facilitate cli-
nician to predict overall survival (OS) probability of every patient, a 
nomogram which included a mRNA signature, age and gender was 
constructed to predict the 1-, 3- and 5-year OS of PTCLs patients 
(Figure 7A,C).The calibration curve also illustrates high consistency 
between predictive survival time and observation survival time for 
the probabilities of 3- and 5-year OS in the PTCLs cohort. In the 
GSE58445 dataset, the Harrell's concordance index for OS was 
0.722 (Figure 7B).In the GSE90597 dataset, the Harrell's concord-
ance index for OS was 0.684 (Figure 7D), it means that the calibra-
tion plots for the 3- and 5-year OS rate were estimated well in entire 
PTCLs patients.

4  | DISCUSSION

Peripheral T-cell lymphoma is an aggressively lymphoproliferative 
disease that seriously threatens human health, and most patients 
with PTCLs have a poor prognosis due to the combination of the lack 
of specific treatment and an aggressive clinical process.22 However, 
molecular risk stratification which based on gene expression profile 

(GEP) into some type of human cancer has opened an avenue for 
clinicians to personalized medicine and brought enthusiasm for re-
searchers to applicate to other cancer types.23 Until recently, PTCLs 
were lagged behind in terms of risk classification unfortunately. In 
the present research, we developed a prognostic signature that 
based on six genes (DOCK2, GSTM1, H2AFY, KCNAB2, LAPTM5 
and SYK) for PTCLs and validated it in internal test datasets and ex-
ternal test datasets. Complementary value of clinical characteristics 
and molecular were further leveraged and showed that combination 
of both could accurately predict the overall survival of PTCLs.

There is an increasing application of risk signature used for pre-
dicting prognosis of cancer patients due to the carcinogenesis and 
development of tumours are the interaction of multiple genes.23,24 
On the other hand, the risk signature based on multigenes usu-
ally shows better performance in predicting the prognostic value 
than an individual gene or clinical characteristic risk classifier.25 
Therefore, in our study, we built a multi-mRNA-based signature 
with the LASSO Cox regression model to predict overall survival 
of PTCLs, and the prognostic and predictive accuracy of this signa-
ture was assessed in training group and testing patient groups. By 
utilizing this mRNA signature to the PTCLs patients, significantly 
statistical difference was depicted in the survival curve between 
high-risk group and low-risk group. Compared with wen yin's re-
port of 5 genes signature predicting the survival of Glioblastoma 

F I G U R E  7   Nomogram and calibration plot for GSE58445 cohort and GSE90597 cohort. (A,C) The nomogram was constructed for 
predicting1, 3, 5-year survival rate of PTCLs patients. (B,D)The calibration curves for predicting patient survival at 3 and 5 years in the 
cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90597
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multiforme and jie zhu's research of 6 genes signature discrimi-
nating the high-risk and low-risk group of lung cancer,26,27 our 
signature classifier show better performance. Additionally, we 
also demonstrated the predictive value of the mRNA signature 
for chemotherapy of vincristine in DLBCL and that may helpful 
for predicting the sensitivity of PTCLs to vincristine. Moreover, 
to accurately predict the outcome of each individual PTCLs pa-
tient, we combine clinical characteristics and 6-mRNA signature 
to construct nomograms, and we had evaluated the calibration 
of the nomogram according to the calibration curve. In our study, 
the c-index for the nomogram in two group patient was 0.722 and 
0.684, respectively (3-, 5-year OS), significantly higher than previ-
ous research that used to predict the prognosis of non-small-cell 
lung cancer patients,28 showing that there is distinguished consis-
tency between predicted survival probability and actual survival 
proportion, and indicating our nomogram that based on the six 
genes signature is a promising tool for predicting the outcome of 
PTCLs patients and can be useful for clinicians to implement per-
sonalized treatment.

In this context, KCNAB2, H2AFY, DOCK2 and GSTM1 in our 
signature significant high expression in high-risk group compare to 
low-risk group and related to poor prognosis, and all genes except 
KCNAB2 in signature have been reported to be involved in cancer. 
Potassium voltage-gated channel subfamily A regulatory beta sub-
unit 2 (KCNAB2) is a component of voltage-dependent potassium 
channels (KCh) proteins,29 and it has been documented that KCh 
proteins play an important role in controlling tumour cell prolif-
eration in the early stages of G1/S transition and even during.30 
Among all potassium channel proteins, some have been consid-
ered as promising tumour markers, such as KCNK5, KCNQ1OT1, 
KCNH2 and KCNN4.31,32 KCNAB2 in our study significant highly 
expressed in high-risk group, indicating it may be involved in the 
disease progression of peripheral T-cell lymphoma. KCNAB2 in our 
mRNA signature almost never be reported in cancer pathogene-
sis or disease progression may be due to its tissue specificity.29 
H2AFY is one alternatively exon-spliced isoform of macroH2A, 
generally expressed in tissues that with active cell proliferation33 
and the overexpression of the H2AFY in tumour sample could fur-
ther increase aggressiveness of tumour cells and gave rise to me-
tastasis by decreased the expression level of SOD3.34 It has been 
reported that H2AFY is significantly augmented in breast cancer 
cells and hepatocellular carcinoma (HCC) compared with normal 
control cells,35 up-regulated H2AFY also related to poor progno-
sis of breast cancer by driving overexpression of HER-2 and might 
favour HCC progression through pathway of p38 MAPK.36,37 
DOCK2 as a guanine nucleotide exchange factor (GEF) belongs 
to the dedicators of cytokinesis (DOCK) family, which originally 
identified in hematopoietic cell, and now it is also studied in B-cell 
lymphoma and prostate cancer.38 DOCK2 has the functions of 
activating small G proteins such as Rac1/2 and subsequently ac-
tivates downstream pathways which involved in survival, prolifer-
ation and migration of cancer.39 It has also been demonstrated that 
DOCK2 was abnormally elevated expressed in B-cell lymphoma 

and the overexpressed DOCK2 correlated with the reduced prog-
nosis of chronic lymphocytic leukaemia.40,41 GSTM1 (glutathione 
S-transferase M1) is a member of the family of cytosolic GSTs, and 
the null genotype of GSTM1 has been proven to be associated 
with risk of colorectal cancer, renal cell carcinoma, oesophageal 
cancer, nasopharyngeal cancer and bladder cancer.42-46 LAPTM5 
(lysosomal-associated protein transmembrane 5) is a membrane 
protein that can inhibit the expression of T-cell receptor (TCR) and 
play a positive role in migration and invasion of ovarian cancer cell 
but play a negative regulator of T-cell or B-cell receptor down-
stream signalling.47-49 SYK (spleen tyrosine kinase) is an important 
component involved in immune receptor signal transduction and 
is found to be highly expressed in most PTCLs.50 Moreover, the 
inhibitor of SYK was shown to not only inhibit T-cell lymphoma cell 
lines proliferation but also induce apoptosis.51 In our study, the 
prognosis of the SYK high-risk group is better than that of the low-
risk group, which may be attributed to the absent expression of 
SYK in some lymphoma with worse prognosis.52 But it cannot be 
ruled out that it has a protective effect in some subtype of PTCLs, 
because it has been reported that SYK has a protective effect in 
some solid tumour.53-55

Genomic changes have been shown as the cause of carcino-
genic and progression of tumours, but in recent analyses infer 
that the changes in the tumour microenvironment (TME) are also 
closely related to cancer prognosis and have influence on the 
response of immunotherapy.56 The high infiltration of B cells in 
tumours has been demonstrated to be associate with patients pro-
longed survival57 and unique role for B cells in antitumour immu-
nity may be responsible for this phenomenon.58 To explore the 
composition of the immune microenvironment of PTCLs, the scale 
of value of immune cells in the high- and low-risk groups was cal-
culated and analysed. The proportion of naïve B cells is significant 
higher in the low-risk group than in the high-risk group, which in 
line with the Javeed Iqbal's research that the signatures of B cell 
predicted a favourable outcome of PTCLs.59 In addition to this, the 
presence of B cell in tumours could promote immunotherapy re-
sponse,60 and it suggests that low-risk group PTCLs may be more 
effective for immunotherapy.

Limitations of the present study should be acknowledged. Firstly, 
the sample size might not be adequate and may lead to selection 
bias. Secondly, lack of complete clinical characteristics and absent 
comprehensive analysis of signature and clinical features. What's 
more, additional genetic and experimental studies are required to 
elucidate the mechanism and the function of these genes that are 
included in signature which in the carcinogenesis and progression of 
PTCLs. Finally, our results in more larger samples or more external 
independent datasets need further validation.

5  | CONCLUSION

In conclusion, this is the first study to investigate the ability of 
mRNA risk signature as novel prognostic biomarkers for PTCLs. 
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In present research, we identified a six-mRNA based signature 
for predicting OS of PTCLs and the mRNA signature has showed 
power performance to stratify all PTCLs patients into low and high 
risk group. Moreover, A nomogram which integrated mRNA sig-
nature and clinical characteristics potentially offers good value 
for clinicians implementing personalized therapeutic regimen for 
patients with PTCLs.
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