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Abstract: In this work, the preparation of magneto-plasmonic granular nanostructures and their
evaluation as efficient substrates for magnetically assisted surface enhanced Raman spectroscopy
(SERS) sensing are discussed. These nanostructures consist of star-shaped gold Au shell grown
on iron oxide Fe3-xO4 multicores. They were prepared by seed-mediated growth of anisotropic,
in shape gold nanosatellites attached to the surface of polyol-made iron oxide polycrystals. In practice,
the 180 nm-sized spherical iron oxide particles were functionalized by (3-aminopropyl) triethoxysilane
(APTES) to become positively charged and to interact, in solution, with negatively charged 2 nm-sized
Au single crystals, leading to nanohybrids. These hybrids acted subsequently as nucleation platforms
for the growth of a branched gold shell, when they were contacted to a fresh HAuCl4 gold salt aqueous
solution, in the presence of hydroquinone, a reducing agent, for an optimized nominal weight ratio
between both the starting hybrids and the gold salt. As expected, the resulting nanocomposites
exhibit a high saturation magnetization at room temperature and a rough enough plasmonic surface,
making them easily attracted by a lab. magnet, while exhibiting a great number of SERS hot spots.
Preliminary SERS detection assays were successfully performed on diluted aqueous thiram solution
(10−8 M), using these engineered substrates, highlighting their capability to be used as chemical
trace sensors.
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1. Introduction

Star-shaped Fe3-xO4-Au core-satellites and core-shell nanoparticles provide interesting magnetic
and optical properties, making them appealing to broaden advances in magnetically assisted
surface-enhanced Raman spectroscopy (SERS) applications [1–7]. On one hand, the anisotropic,
in shape continuous or discontinuous gold structure with a thickness of less than 100 nm produces
local high electric field enhancement, proceeding at the end of the gold tips and/or at their junctions
(hot spots), for which the concentration of free electrons is high. So, when an external electrical
field, like a laser light, is applied, the surface plasmonic resonance becomes more effective, and then
SERS sensing activity more useful [8]. On the other hand, the magnetic properties of the iron oxide
component offer the opportunity to selectively enrich the target molecules and to separate the SERS
substrate from the whole matrix magnetically [9–13], for analysis. In this way, the analytical detection
procedure becomes simple and the cyclical use of the substrate is facilitated.
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Focusing on the growth of a branched gold shell on an iron oxide core [14–19], many experimental
material processing approaches exist: simple “one-pot” or complex “multi-step” ones; seed-mediated
and non-seed-mediated routes; and surfactant-mediated and non-surfactant-mediated protocols [20].
However, within this processing richness, seed-mediated growth is certainly the most efficient one,
since it allows better microstructural control and offers a stronger structural robustness. In practice,
it proceeds by growing gold nanocrystals at the surface of a preformed core particle, using various
reducing agents, such as hydroquinone [14–16], N,N-dimethylformamide (DMF) with PVP [17–19],
L-ascorbic acid [21] and citric acid [22], all of them being weak reducing agents. They also allow
gold salt redox reactions of high speed with an anisotropic gold crystal growth, which is useful for
our purpose. Moreover, when combined (e.g., hydroquinone and citric/citrate), these weak reducing
agents may present synergetic effects. For instance, hydroquinone produces Au0 nucleus preferentially
oriented along with their crystallographic (111) direction, which may continue to grow within the same
direction, favoring the production of branched tips, while citrate acts as a binding ligand contributing
not only to the nucleation process but also to the improvement of the colloidal stability of the final
products [22].

Besides, using this material engineering approach, it is crucial to maintain a high magnetization
in the final architecture, to make Fe3-xO4-Au easily recoverable by a lab. magnet, when dispersed in an
analyte solution. Hence, the use of highly magnetized magnetic multicores rather than single cores is
required, as is keeping the diamagnetic gold shell thickness as low as possible. Moreover, iron oxide
multicore particles often exhibit a superparamagnetic blocking temperature close to room temperature.
In these conditions, they are able to align very quickly along an applied external magnetic field and to
misalign also very quickly, when the magnetic field is off, becoming easily redispersible in a solution,
to be used again, when coated by an anisotropic in shape gold shell, as SERS substrates.

So, in this paper, we report the preparation of such substrates and their use for the detection,
in water, of thiram molecules at very low concentrations (thiram is a well-known pesticide [23]).
The magneto-plasmonic building blocks were consecutively fabricated, starting from (i) the precipitation
in polyol of multicore iron oxide nanoparticles (core of the final hybrids); then, (ii) their surface
modification for the electrostatic attachment of ultrafine preformed negatively charged gold nanocrystals
(seed particles); and finally, (iii) the use of the resulting hybrid particles as seeds to grow a rough gold
shell thanks to the reduction of dissolved HAuCl4 salt in water with hydroquinone in the presence of
citrates. Within these experimental conditions and by varying the weight ratio r between the hybrid
seed particles and the gold salt precursor, a more or less continuous but anisotropic in shape gold layer
can be formed around the iron oxide particles, leading to more or less efficient magneto-plasmonic
nanostructures for SERS detection of analyte traces in water.

2. Experimental Section

2.1. Chemicals

Iron (III) chloride hexahydrate FeCl3.6H2O (98%), ethylene glycol anhydrous (EG, HO(CH2)2OH,
99.8%), poly(ethylene glycol) (PEG, MW = 10,000 g mol−1), sodium acetate anhydrous
(NaAc, CH3COONa, 99%), trisodium citrate (Na3C6H5O7, 99.9%), ammonium hydroxide (NH4OH,
25%) and gold (III) chloride trihydrate (HAuCl4.3H2O, 99.9%) were purchased from Sigma-Aldrich.
(3-aminopropyl)triethoxysilane (APTES, C9H23NO3Si, 99%), sodium hydroxide (NaOH, 99%),
hydroquinone (C6H4-1,4-(OH)2, 99%), tetrakis(hydroxymethyl) phosphonium chloride (THPC,
[(CH2OH)4P]Cl, 80%) and absolute ethanol (98%) were purchased from Merck. Deionized water was
used for all the preparations.

2.2. Characterization Tools

The crystalline structures of all the particles produced were checked by X-ray diffraction (XRD)
using a Panalytical X’pert Pro diffractometer, working in the Bragg-Brentano reflection geometry and
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equipped with a multichannel X’celerator detector and a cobalt X-ray tube operating at 40 kV and 40 mA.
The data were analyzed by the Rietveld method, using HighScore software (Panalytical) to determine
the cell parameters and the average crystal sizes of the investigated crystalline phases. Detailed
microstructural analysis was performed on aqueous suspensions sonicated for few minutes before
deposition of a few drops on specific grids for transmission electron microscopy (TEM) or scanning
electron microscopy (SEM) observations. TEM was carried out on a JEOL-100-CX II microscope
operating at 100 kV, and SEM was carried out on a Zeiss Supra 40 microscope operating at 5 to 10 kV
and equipped with an energy dispersive spectrometer (EDS). The recorded micrographs were analyzed
using the ImageJ software, and a lognormal statistical law was applied to the inferred size distribution
to determine the average particle size. Using the same suspensions, the hydrodynamic size distribution
was determined by dynamic light scattering (DLS) using a Zeta Nanosizer Malvern instrument
operating with a laser of 633 nm. This equipment also allows the determination of the zeta potentials
(ζ) of the particles. The isoelectric point of these particles was determined through zeta potential
measurements while varying the pH between 1 to 13, by adding HCl or NaOH to distilled water. The pH
value was exactly measured by a JENCO Electronics Microcomputer pH-VISION 6071 pH-meter.
UV-Visible absorption spectroscopy was also used to determine the plasmonic resonance band of all
the produced gold-containing particles. A Perkin Elmer Lambda 1050 spectrometer equipped with a
InGaAs and PbS 3-detector module was used for such a purpose, working in a transmission scheme.
Finally, a Quantum Design SQUID-5T magnetometer was used to measure the thermal variation of the
magnetization M(T) of the iron oxide-containing particles in the 2-330 K temperature range, in both
field cooling (FC) and zero-field cooling (ZFC) conditions for an applied dc magnetic field of 200 Oe.
Besides, the variation of the magnetization as a function of the magnetic field M(H) was also recorded
by cycling the magnetic field between -50 and +50 kOe at room temperature.

2.3. SERS Substrates Preparation

SERS substrates were prepared according a multi-step synthesis route involving separated
preparation of iron oxide polycrystals and gold nanocrystals, attached together by electrostatic
interactions. (Figure 1). As explained hereafter, the resulting nanostructures were used as seeds in a
gold salt solution to grow a rough gold shell.
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Figure 1. A schematic description of the different experimental steps involved in the production of
star-shaped, Fe3-xO4-Au core-shell particles.

2.3.1. Synthesis of Iron Oxide Particles and Their Amine-Functionalized Counterparts

Submicrometer-sized magnetite-like (Fe3-xO4) particles (Figure 2) were synthesized by forced
hydrolysis in polyol. In detail, 1.02 g of hexahydrate iron(III) chloride, 2.91 g of anhydrous sodium
acetate and 1.03 g of polyethylene glycol (PEG) were dissolved in 40 mL of ethylene glycol (EG)
under mechanical stirring in a triple-neck round-bottom flask. The mixture was then heated up to
reflux (190 ◦C) for 12 h. Within these operating parameters, the precipitation of Fe3-xO4 proceeds in
close-to-solvothermal conditions, offering to the resulting particles a high crystalline quality. After
cooling down to room temperature, the particles were washed with ethanol and recovered by magnetic
decantation before being dried in air at 60 ◦C.
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Figure 2. (a) XRD pattern of the magnetite-like core particles. (b,c) SEM and TEM representative
micrographs of an assembly of these particles.

XRD pattern of the magnetite-like core particles matches very well with the ICDD card number
98-002-6410. The cell parameter and the average crystal size inferred from Rietveld refinements were
found to be: a = 8.378(5) Å and L = 10(1) nm respectively. SEM and TEM representative micrographs of
an assembly of these particles clearly evidence their polycrystalline nature and allow the measurement
of their final average size, which is 180(20) nm.

Dried particles were functionalized by APTES, a bifunctional ligand bearing, on one side,
ethoxysilane groups able to be attached to iron oxide particles, and on the other side, an amino group
able to be protonated at neutral pH conditions [24]. In a typical experiment, 225 mg of as-prepared
Fe3-xO4 particles were dispersed in 500 mL of ethanol. Then, 2 mL of APTES were added into the
reaction mixture under sonication for 30 min, and then under mechanical stirring. After that, 2 mL of
ammonium hydroxide were added, and the mixture was continuously stirred for 6 h. The resulting
powder was recovered by magnetic decantation after several ethanol washing steps. At the end,
the surface modified particles were dried in an oven at 60 ◦C. The grafting was confirmed by X-ray
photoelectron spectroscopy (XPS) and zeta potential measurement (Figure 3). Therefore, a net increase
of the zeta potential, at neutral pH, from 0 to +30 mV, and a shift of the isoelectric point (IEP) from
6.9 to 8.9, were observed in agreement with the attachment of ammonium groups at the surface of the
particles (Figure 3).
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Figure 3. High resolution XPS spectra of (a) Si 2s (153 eV) and (b) N 1s signals (402 eV characteristic of
protonated N) recorded on APTES grafted iron oxide particles, evidencing the signature of silane and
ammonium species on the surface of the analyzed particles. (c) Zeta potential as a function of the pH
measured on bare particles (isoelectric point (IEP) = 6.9) and the grafted to APTES ones (IEP = 8.9).
The continuous line (red or black) is just a guide for the eye.

2.3.2. Synthesis of Hybrid Seed Particles

First, gold NPs of about 2 nm in size, which were negatively charged were prepared by the
well-known Duff Baiker’s method [25]. In practice, 3 mL of an aqueous solution of sodium citrate
(1 wt%) were dispersed in 80 mL of deionized water by sonication, and 0.4 mL of sodium hydroxide
(1 M) was added to the mixture. About 1 mL of THPC (80 mM) was then dropped. After that,
hydrochloride gold salt was continuously added to the reaction solution under stirring for 10 min.
The as-produced gold single crystals, decorated at their surface with citrate ligands, were then
electrostatically assembled to the positively charged polyol-made iron oxide polycrystals. The resulting
hetero-nanostructures (Figure 4) were subsequently recovered by magnetic decantation and washed
several times with water and then ethanol, before being dried in air at 60 ◦C. SEM micrograph of an
assembly of Fe3-xO4-Au hybrids and its related EDS spectrum highlights the presence of 2.6 wt% of
gold. In the insert, a TEM picture of one representative hybrid is given. Then, UV-Vis spectrum of gold
colloid (black line) has been compared to those of Fe3-xO4 functionalized by APTES (green line) and
then coated by gold satellites (red line); the plasmonic absorption at 500 nm confirms the attachment
of gold nanocrystals in the hybrids. Zeta potential distribution (red line) of the hybrids compared
to that of Fe3-xO4 particles just coated with APTES (green line) when dispersed in deionized water,
points out the net decrease of the surface charge from +27 mV to −21 mV, evidencing gold nanocrystals’
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attachment. Finally, hydrodynamic size distribution has been inferred from DLS measurement on the
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In the insert, a TEM picture of one representative hybrid. (c) UV-Vis spectrum of gold colloid (black line)
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(red line). (d) Zeta potential distribution of the hybrids (red line) compared to that of Fe3-xO4 particles
just coated with APTES (green line) when dispersed in deionized water. (e) Hydrodynamic size
distribution as inferred from DLS measurement on the same suspensions (the size polydispersity index
PDI was found to be 0.48 before grafting and 0.07 after grafting).

2.3.3. Synthesis of the Star-Shaped Fe3-xO4-Au Core-Shell Nanoparticles (NSs)

Star-shaped core-shell particles (NSs) were prepared by the reduction of HAuCl4 salt in the
presence of the previously prepared hybrid seed particles. Typically, 0.9 mL of an aqueous solution
of sodium citrate (1 wt%) was mixed to a given mass of auric salt (1 mg) and variable masses of
seed particles (from 10 to 0.5 mg) in 8 mL of deionized water. The seed/HAuCl4 weight ratio, called
r, was thus varied from a value of 10 to 8, 4, 2 and 0.5 in order to produce a series of composite
particles of different chemical compositions and present different microstructures (from core-satellites
to core-shell). The mixture was sonicated and stirred to ensure the dispersion of the seed particles in
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the reaction solution. About 3.3 mg of hydroquinone, the reducing agent, dissolved in 1 mL deionized
water, was added to the previous mixture. The solution was continuously mechanically stirred for
10 min. The resulting particles were then separated by magnetic decantation and washed several times
with deionized water.

2.4. Magnetically Assisted SERS Sensing

The as-prepared NSs were dispersed in 5 mL of analyte solution for 2 h to ensure the adsorption
of the molecules on the surface of the particles. The analyte solution consisted of thiram diluted in
deionized water at different concentrations, 10−5

, 10−6, 10−7 and 10−8 M. Subsequently, NSs were
collected on the substrate surface by applying an external magnetic field. The substrates were taken
out and rinsed with deionized water. The samples were dried in an oven for 10 min prior their analysis
by SERS (Figure 5).
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Raman spectroscopy was conducted on a Jobin-Yvon LABRAM HR800 micro-spectrometer using
a 633 nm laser source with a power of 64 µW. All spectra were taken with an exposure time of 3 s,
and 10 accumulations and recorded within the 0–2280 cm−1 spectral range. The spectral resolution
was less than 1.5 cm−1. For each sample, three SERS spectra at different positions of the substrate were
performed and then averaged before being plotted.

3. Results and Discussion

3.1. Gold Shell Growth

The growth of a continuous Au shell was accomplished by combining molecular self–assembly
technique and colloidal growth chemistry. It took place around Au seeds present on the surface of
Fe3-xO4 spherical polycrystals. While decreasing the r weight ratio between the seed particles and the
gold salt reagent, the morphology of the resulting composite particles evolves from an incompletely
coated core to a completely coated one. The growth mechanism for the formation of the gold shell can
be depicted. At the beginning, the remaining Au3+ precursor is distributed in the reaction solution,
while the number of gold seed particles is increased in direct proportion to r value. As a result, the gold
crystals, that are formed on the surface of the magnetic seed particles, are larger. Figure 6(1) presents
the SEM images of these nanocomposites for different r values (from 10 to 0.5). At the beginning,
the morphology of the particles is mainly spherical, like that of the magnetic particles. Then, SEM
images indicate that the gold nanocrystals are growing from the surface of the magnetic particles,
forming larger and larger islands, which then coalesce. The inter-island distance decreases until
they merge together, leading to a continuous gold coating, but also larger in size composite particles.
The thickness of the gold layer is between 10 and 50 nm when the r value decreases from 10 to 0.5. It is
interesting to notice that the gold shell is rough and that a star-shaped morphology is obtained for the
smallest values of r. The reason is that both hydroquinone and sodium citrate interact synergistically
to direct the shape-controlled growth of the seeds, preferentially from high-index faces (namely (111)
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surface), leading to the beginning of an anisotropic growth. It could be evidenced on the XRD patterns
(Figure 6(2a) on which the high intensity diffraction peaks at 2θ positions of 44.7, 52.1, 76.8, 93.5
and 99.1◦ correspond to the (111), (002), (022), (113) and (222) planes of face-centered cubic gold
phase. The highest diffraction peak corresponded to the highest energy facet (111) and permitted the
preferential deposition along the growth direction of Au0. In addition, several peaks of low intensity
appear to correspond to the cubic spinel iron oxide pattern without any shift, in agreement with the
fact that gold growth does not affect the chemical nature or the crystallographic structure of the starting
magnetic polycrystals. Of course, as the gold shell becomes thicker and rougher as the intensity of
the gold diffraction peaks in the composite patterns becomes higher, the intensity of the iron oxide
diffraction peaks becomes lower.
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Figure 6. (1) SEM images of γ-Fe2O3-Au NSs with different seed/HAuCl4 ratios of (a) r = 10, (b) r = 4,
(c) r = 2, (d) r = 0.5. The scale bars are 200 nm in both figures; (2) XRD patterns (a) and UV-Vis spectra
of Fe3-xO4-Au NSs with different r values (b).

To complete these microstructural investigations, the UV-Visible spectra of the aqueous suspensions
of all the produced composite particles were recorded. Interestingly, all the collected spectra exhibit
a strong absorption related to the plasmonic properties of their gold component (Figure 6(2b).
The maximum absorption wavelength is directly dependent on the morphological properties of the
samples. Additionally, by comparing the spectra to each other, while decreasing their r value, it
appears that their plasmonic band is red-shifted from 530 to 680 nm when r decreases from 10 to
0.5. The origin of this shift is clearly the evolution of the morphology of the composite particles—the
gold branched ones, absorbing much more in the red region than the more isotropic ones (gold is
fully covering the core component). Hence, varying the thickness of the gold shell leads to different
wavelength absorption peaks. At ratio values of 10 and 4, the particles exhibit the plasmonic feature of
individual Au NPs on the iron oxide surface. The junctions and ends of tips produce a rough surface
for SERS activity.

At the end, the colloidal stability of all the produced composite particles was checked. In practice,
DLS measurements were performed in water, and the hydrodynamic size distribution of each prepared
colloid was measured. A monomodal hydrodynamic size distribution with relatively low PDI values
was observed in all the cases. The average hydrodynamic diameters were found to be larger than those
inferred from SEM observations, and they were also found to be dependent on the nominal r ratio
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value (see Figure S1 and Table S1 in the supporting information section: the diameter increases when r
decreases. Typically, it ranged between 225.4 and 422.2 nm for the engineered magneto-plasmonic
composite particles, the highest value corresponding to the smallest r value (r = 0.5), and in reverse,
the lowest value corresponding to the highest r value (r = 10).

Then, the magnetic properties of all the produced iron oxide particles and their related star-shaped
gold-based composites were investigated using a SQUID magnetometer. The measurements were
conducted on the particles in their powder forms. The variation of their magnetization as a function
of the magnetic field M(H) was thus measured at 5 and 300 K, as well the field-cooled (FC) and
zero-field-cooled (ZFC) thermal variations of their magnetization. The recorded plots are presented
in Figure 7 only for the particles corresponding to the largest iron oxide core size, since they exhibit
higher magnetization at room temperature and higher blocking temperature.
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Figure 7. (a) Magnetization curves measured at 300 K; (b) ZFC- and FC-M(T) curves measured at
200 Oe on γ-Fe2O3-NH2 NPs and γ-Fe2O3-Au NSs (r = 0.5 and 4). The continuous line is just a guide
for the eye.

The M(H) curves recorded at room temperature (RT), on both bare iron oxide particles and their
star-shaped gold-based composite particles, are all characteristic of soft ferrimagnets. They exhibit
a hysteresis feature with a non-zero but very low remanence (10 emu g−1) and coercivity (62 Oe).
These curves appear as almost completely reversible, without significant remanence and coercivity
(Figure 7a). These results suggest that there is no significant magnetic interaction between the particles,
remaining after removing the external magnetic field: this should facilitate their further dispersion in
liquid media. The saturation magnetization of pristine iron oxide is found to be 76 emu g−1, while it
is 46.5 emu g−1 for the composite particles, corresponding to NSs prepared starting from a r value
of 4. This magnetization decrease is of course due to the diamagnetic contribution of the gold shell.
The M(T) curves recorded on the two same samples are characteristic of a superparamagnetic behavior
but with a blocking temperature significantly higher than RT (Figure 7b). TB is usually dependent
on the magnetic particle size, which is here large enough to block their magnetization over thermal
fluctuation at RT. It is also dependent on the mutual dipolar interactions which are here particularly
attenuated in the composite sample due to the presence of the gold shell.

3.2. Toward Magnetically Assisted SERS Sensing

SERS signals are located on the surfaces of metal nanostructures with strong electromagnetic
fields mainly localized in spatially narrow regions such as tips, edges and vertices. The γ-Fe2O3-Au
composite particles, with a magnetic core of 180 nm in diameter and a gold shell thickness of 20 nm
(corresponding to a r experimental synthesis parameter of 4), are the most appropriate to be used as
SERS substrates: they exhibit a SPR band around λ = 600 nm close to the wavelength of the laser source
and a RT magnetization of 46 emu g−1, high enough to make their magnetic collection easy-to-achieve
in a water suspension.
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In practice, analyte aqueous solutions containing a given contaminant (namely, thiram) were
prepared by dissolving a certain amount of thiram (balance accuracy = 10−5 g) in 2000 mL of water
(leading to an error of about 2 × 10−8 mol L−1 on the concentration of thiram); then, the selected
magnetic-plasmonic particles were dispersed, at different concentrations, to form stable colloids. They
were then collected onto SERS substrate by applying an external magnetic field. Homogeneously
distributed aggregates were formed spontaneously on the substrate wafer after water evaporation.
The SERS measurements were carried out to detect thiram on the substrate for different solute
concentrations: 10−5 M, 10−6 M, 10−7 M and 10−8 M. According to theoretical calculations, molecules
located at the junction between aggregated plasmonic particles can enhance SERS signal over 10 orders
of magnitude. Raman spectra of thiram randomly collected from different positions on the substrate
were recorded and plotted in Figure 8 and compared to pure solid thiram.Nanomaterials 2020, 10, 294 10 of 13 
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Interestingly, the characteristic peaks of thiram, positioned at 560, 934, 1147 and 1380 cm−1,
corresponding to the ν(S-S) stretching mode; ν(CH3N) and ν(C=S) stretching mode; ρ(CH3) rocking
mode and νas(CN) stretching mode; and δs(CH3) deformation mode and ν(CN) stretching mode,
respectively, are clearly evidenced in the spectra collected on the engineered substrates (Figure 8a).
These results indicate that thiram can be well detected using the present magneto-plasmonic particles,
even at solute concentrations as low as 10−8 M. This result clearly evidences that γ-Fe2O3-Au based
substrates are highly sensitive and promising for the detection of target molecules.

Moreover, focusing on the most intense thiram band, centered at 1380 cm−1, the plot of log of
its intensity as a function of log of thiram concentration (Figure 8b) shows a quantification region
(between 10−8 and 10−5 M) with a linear relationship, which can be expressed by:

log(I1380) = 0.43 × log[thiram] + 6.12 (1)

For a thiram concentration higher than 10−5 M, the Raman intensity is constant or slightly
decreased, which may be due to the saturation of the adsorption of thiram on the SERS hot spots.
The analytical enhancement factors (AEF) are estimated from:

AEF = (ISERS/CSERS)/(IRS/CRS) (2)

where ISERS is the SERS signal at CSERS concentration of thiram, and IRS is the Raman signal under
non-SERS conditions at CRS concentration of thiram. By applying this equation and the previous one,
an AEF of 2 × 105 was found for the present engineered magnetic SERS substrate. This is a pretty
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good value regarding the existing literature. Among the most relevant studies closest to ours, we can
mention that Han et al. reported the synthesis of Fe3O4-Au core-satellite and core-shell nanocomposites
prepared by thermal decomposition followed by seed-mediated growth; these latter have been used to
detect thiram on apple peel and demonstrated a better sensitivity for SERS detection of this pesticide
than core-satellite equivalents. AEF of core-shell nanoparticles have been evaluated, using the same
method, to be 3.76 × 105, nearly fifteen times higher than that of core-satellite systems (2.56 × 105) [26].
Other studies dealing with hetero-nanostructures composed of iron oxide and silver components,
and prepared by different synthetic routes, present experimental AEF values of ca. 2 × 108 while
theoretical calculated ones were found to be 5–6 × 108 [27,28]. By the way, all the authors underlined
the difficulties to estimate this AEF but concluded that their systems were suitable for portable Raman
spectrometers for rapid detection. Besides, a main drawback of several systems reported in the
literature could be the production of individual gold particles during the coating process that could
enhance the AEF. In our case, the enhancement factor could be lower since we recovered the magnetic
hybrids through magnetic decantation; hence the gold particles were removed in the supernatant.
Indeed, a major advantage of the polyol process is the very good control over the crystallinity leading
to high magnetizations, close to the bulk. However, from a structural point of view, the objective
would be to sharpen the absorption peak more (<150 nm) in the (N)IR region to improve the sensing
performance [29].

Therefore, our value clearly evidences that the magneto-plasmonic hybrid particles presented in
this paper, synthesized by the polyol process combined to seed-mediated growth, may be considered
as good candidates for the SERS detection of pesticides.

4. Conclusions

We successfully developed a new, efficient chemical strategy to prepare star-shaped Fe3-xO4-Au
NSs for magnetically assisted SERS sensing. In practice, polyol-made magnetite-like 180 nm sized
polycrystals, functionalized by APTES, were electrostatically interacted with citrate-made 2 nm sized
gold single crystals. The resulting hybrids were used as seeds to grow—in a fresh auric solution,
containing hydroquinone—gold islands, which progressively became adjacent and branched. In the
end, for an optimized nominal seeds/HAuCl4 weight ratio, the desired NSs presented a magnetization
of 46.5 emu g−1 at room temperature, and plasmonic resonance absorption at around 650 nm, making
them valuable for magnetic separation and SERS application. Dispersed in a fresh very diluted (10−8

M) analyte solution of thiram, they were then collected by a magnet deposited on a silicon sheet and
successfully used as SERS substrates for thiram trace detection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/294/s1,
Figure S1: DLS measurements of FexO4-Au NSs using hydroquinone as reducing agent with different r ratios:
a) FexO4-NH2, b) r = 10, c) r = 4, d) r = 2, and e) r = 0.5; Table S1: Summary of the main data: size (SEM),
hydrodynamic diameter, PDI and SPR of FexO4-Au NSs using hydroquinone as reducing agent with different r
ratios of 10, 4, 2 and 0.5.
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