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ABSTRACT

Trastuzumab is a remarkably effective therapy for patients with human epidermal 
growth factor receptor 2 (HER2) - positive breast cancer (BC). However, not all 
women with high levels of HER2 benefit from trastuzumab.

By integrating mRNA and protein expression data from Reverse-Phase Protein 
Array Analysis (RPPA) in HER2-positive BC, we developed gene expression metagenes 
that reflect pathway activation levels. Next we assessed the ability of these metagenes 
to predict resistance to adjuvant trastuzumab using gene expression data from two 
independent datasets.

10 metagenes passed external validation (false discovery rate [fdr] < 0.05) and 
showed biological relevance with their pathway of origin. These metagenes were 
further screened for their association with trastuzumab resistance. An association with 
trastuzumab resistance was observed and validated only for the AnnexinA1 metagene 
(ANXA1). In the randomised phase III Fin-her study, tumours with low levels of the 
ANXA1 metagene showed a benefit from trastuzumab (multivariate: hazard ratio 
[HR] for distant recurrence = 0.16[95%CI 0.05–0.5]; p = 0.002; fdr = 0.03), while 
high expression levels of the ANXA1 metagene were associated with a lack of benefit 
to trastuzmab (HR = 1.29[95%CI 0.55–3.02]; p = 0.56). The association of ANXA1 
with trastuzumab resistance was successfully validated in an independent series of 
subjects who had received trastuzumab with chemotherapy (Log Rank; p = 0.01).

In conclusion, in HER2-positive BC, some proteins are associated with distinct 
gene expression profiles. Our findings identify the ANXA1metagene as a novel 
biomarker for trastuzumab resistance.
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INTRODUCTION

The human epidermal growth factor receptor 2 
(HER2) gene encodes a tyrosine kinase receptor that 
controls important signal transduction pathways in breast 
cancer [1]. Amplification and overexpression of the HER2 
gene occur in approximately 20% of breast cancers and 
are associated with an aggressive clinical phenotype [2]. 
Trastuzumab, a humanized monoclonal antibody that 
targets HER2, has shown exceptional efficacy in the 
treatment of breast cancer [3]. In the adjuvant treatment 
of patients with breast cancer, five randomised trials have 
shown significant benefit with trastuzumab, reducing the 
rate of recurrence by approximately 50%, and the rate of 
death by approximately 30% [4–7].

While trastuzumab is a remarkably effective 
therapy in patients with HER2-positive breast cancer, 
not all women with high levels of HER2 respond to 
trastuzumab. The proposed mechanisms of trastuzumab 
action are diverse, but it is agreed that trastuzumab must 
be able to bind the HER2 extracellular domain and, in so 
doing, it inhibits the PI3K/Akt pathway, which leads to 
subsequent inhibition of cell proliferation and survival [8]. 
Mechanisms for primary trastuzumab resistance include 
compensatory signalling by other cell surface receptors, 
such as EGFR/HER3, and constitutive activation of 
downstream effectors or cross-talk pathways [8–10].

The Tumor Cancer Genomic Atlas project (TCGA) 
performed in-depth analyses of primary breast cancers 
using five different platforms (DNA copy number arrays, 
DNA methylation, mRNA arrays, microRNA sequencing 
and reverse-phase protein arrays) [11]. Its ability to integrate 
information across different platforms provided key 
insights; however, the practical translational interpretation 
of the data has been difficult, as the clinical part of the study 
was not performed in a randomised controlled manner. 
Here we developed an in silico bioinformatics approach 
integrating proteomic and gene expression data to uncover 
novel biomarkers associated with trastuzumab benefit. 
By integrating RNA and protein expression data from 
Reverse-Phase Protein Array Analysis (RPPA) in HER2+ 
breast cancer from the TCGA repository, we identified 
several gene expression metagenes that reflect the level of 
pathway activation according to the expression of proteins 
and/or phosphorylated-proteins relevant in cancer. Among 
the identified metagenes, only AnnexinA1 (ANXA1) 
was successfully associated with trastuzumab benefit in 
two independent datasets of subjects who had received 
trastuzumab in the adjuvant setting.

RESULTS

Identification of the RPPA-based gene expression 
metagenes

We first retrieved the clinico-pathological and 
the normalised gene and protein expression data (gene 

expression microarray and RPPA, respectively) from 
the public TCGA database of the TCGA (Figure 1 flow 
chart) [11]. Eighty-seven samples with available gene 
expression and RPPA data were HER2-positive. For each 
RPPA (phospho-) protein tested, we classified samples 
into three groups according to their protein expression 
levels. The patients expressing the protein at (1) low 
(lower quartile), (2) intermediate and (3) high (upper 
quartile) levels were classified into low, intermediate 
and high RPPA groups respectively (Figure 2A). Those 
thresholds were defined arbitrarily, as there is no clear 
cut-off reflecting the protein levels in the cell and we 
thought those were good indicators of the high or low 
protein expression level. By computing the genes with 
significant differential expression (t-test fdr ≤ 0.05) 
between the low and the high RPPA expression groups 
of each protein, we derived metagenes with expression 
levels that could potentially mirror protein activation 
levels (Figure 2B).

We consequently identified 139 gene expression 
metagenes corresponding to each of the tested RPPA 
proteins. Each metagene was externally validated using an 
independent dataset of HER2-positive BC (the Responsify 
dataset), for which RPPA and gene expression data were 
available. 10 metagenes passed an external validation 
step using the independent novel responsify set (Pearson 
correlation index greater than 0.5 and significant predictive 
performance with area under the curve of the receiver 
operating curves-AUC fdr ≤ 0.05) (Figure 2C– 2D, 
supplementary Tables 1 and 2).

Although we did not develop these metagenes to 
replace proteomic analysis, these results confirmed that, 
in HER2-positive BC, some proteins are associated with 
distinct gene expression profiles.

Biological relevance of the RPPA-based 
metagenes

We next sought to assess the biological relevance 
of the RPPA-based metagenes using different 
approaches. A comparison of the metagenes to the 
reference classes of the Gene Ontology and the mSigDB 
signatures of the Broad Institute [12] showed that the 
metagenes included a high number of functionally 
related genes that could capture the corresponding 
protein/pathway activation (Supplementary Table 
3-4). The comparison of the RPPA-based metagene 
patterns with the RPPA proteomic data demonstrated 
a significant similarity (Rand Index = 0.52). The 
RPPA-based gene expression metagenes clustered in 
related functional groups similar to the ones generated 
using the RPPA data (Figure 3A–3B). Finally, by 
applying a clustering algorithm to a network built by 
linking all significantly intersecting metagenes, we 
identified two main sub-networks according to their 
ER status, namely ESR1up/GATA3up and ESR1down/
GATA3down, respectively (Figure 3D). This is in line 
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with the TCGA gene expression analyses, which showed 
that HER2 positive tumors were clustered into two 
similar major groups based on their ER status [11].

Similar results were found using the Fin-her FFPE-
derived dataset (Figure 3C). The comparison of the 
RPPA-based metagene patterns derived from the TCGA 
dataset with the ones generated using the Fin-her dataset 
showed a high similarity (Rand index = 0.54) (Figure 3C). 
Of note, the ESR1 and GATA3 RPPA-based metagenes 
known to be associated with ER-positive tumours were 
significantly correlated with ER status determined by IHC 
(p = 2.36e−20, p = 1.55e−16 respectively) (Figure 3E,3F), 
while lymphocyte-specific protein tyrosine kinase (Lck) 
and spleen tyrosine kinase (Syk) RPPA-based immune-
derived metagenes significantly correlated with TILs levels 
(Lck; R = 0.53, p = 2.44e-15 and Syk; R = 0.62, p = 4.14e−22) 
(Figure 3G,3H). Altogether, these results demonstrate 
that RPPA-based gene expression metagenes mirror the 
proteomic status of the samples for selected pathways.

RRPA-based gene expression association with 
trastuzmab benefit

The 10 metagenes (Supplementary Table 2) that 
passed the external validation were further screened for 

their association with trastuzumab benefit using gene 
expression dataset from the prospective randomised Fin-
her trial. The patients with available gene expression 
data who were involved in our sub-study were 
representative of the entire population, and there were no 
substantial differences between their patient and tumour 
characteristics and patients not included (Table 1 and 
figure S1). An association (arbitrary multivariate Cox 
regression cut-off p ≤ 0.05) with benefit from trastuzumab 
was observed for six metagenes, but only AnnexinA1 
(ANXA1) was found significant after correcting for 
multiple comparisons (fdr = 0.03) (Figure 4A). Forest 
plot analysis demonstrated that tumours expressing 
low levels of the metagene derived from ANXA1 
(dichotomised at the median) showed a benefit from 
trastuzumab (multivariate: hazard ratio [HR] = 0.16 [95% 
CI 0.05–0.5] p = 0.002; fdr = 0.03). Conversely, high 
expression levels of the ANXA1 metagene were associated 
with a lack of benefit to trastuzumab (HR = 1.29 [95% 
CI 0.55–3.02]; p = 0.56) (Figure 4A). ANXA1 association 
with reduced benefit from trastuzumab was confirmed 
on the independent Responsify dataset of HER2-positive 
BC patients treated with trastuzumab in the adjuvant 
setting (Log Rank p = 0.01) (Figure 4B). By contrast, in 
a cohort of HER2 positive patients which did not receive 

Figure 1: Metagene building and assessment procedure. 
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adjuvant trastuzumab (retrieved from gene expression 
databases previously described in [13]), the ANXA1 
metagene had no significant prognostic value (Log Rank; 
p = 0.42), suggesting that ANXA1 is predictive rather than 
prognostic. We therefore sought to further explore ANXA1 
metagene predictive ability in the Fin-Her dataset using 
Cox univariate and multivariable analysis as continuous 
variable and interaction tests. Interestingly, the ANXA1 
metagene provided independent predictive information for 
patients with ER-negative breast cancer with a significant 
multivariate interaction test of p = 0.005 (Table 2). As 

ANXA1 metagene was found to be negativity associated 
with ER (R = −0.3, p < 0.001), it suggests that in the 
HER2+/ER- subgroup, ANXA1 metagene may identify 
patients with trastuzumab resistance.

DISCUSSION

In the present study, we integrated RPPA and gene 
expression data to systematically interrogate protein 
pathway activation. To our knowledge, this is one of the 
first studies to use such a methodology and to demonstrate 

Figure 2: Schematic description of metagene building and assessment. A. For each (phospho-) protein tested with RPPA in the 
TCGA repository, generation of groups of patients expressing low (red), intermediate (blue) and high (green) protein levels. B. Metagene 
computation based on significant differential expression of genes discriminating each of the low and high expression groups (t-test). 
C. External validation of each metagene by evaluating whether its expression correlates (Pearson Correlation Index > 0.5) with the RPPA 
expression values in the independent “Responsify” dataset. D. ROC curve demonstrating predictive ability of the different metagenes as 
continuous variables to predict RPPA proteomic data in HER2-positive tumors in the external Resposnify repository. 10 metagenes passed 
external validation (fdr < 0.05) and were further screened for their association with trastuzumab benefit.
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Figure 3: Ability of the model to identify groups of functionally related genes in the different sets. A–C. Heat map 
representation of the correlations between (A) the protein expression values within the TCGA dataset, (B) the metagene expression within 
the TCGA dataset, (C) the metagene expression within the Fin-her dataset. Cells are coloured according to Pearson correlation coefficient 
values, with green indicating positive correlation and red negative correlation. D. Network representation of the metagenes. Each node 
represents the genes up- or down-regulated in the metagene. Edges show metagenes sharing a significantly high number of genes. The 
use of a network clustering algorithm showes the tendency of these metagenes to cluster together according to their ER-status. E–F. (E) 
ER-alpha and (F) GATA3 RPPA-based metagenes known to be associated with ER-positive tumours were able to predict pathological ER 
status in the Fin-her dataset. G–H. Correlation of the immune related metagenes (G) Lck and (H) Syk with the percentage of TILs in the 
Fin-her dataset.
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that RPPA-based gene expression metagenes may be able 
to reflect proteomic activation status using FFPE samples.

The same general approach was used in two studies 
to link upstream signalling pathways to downstream 
transcriptional response by exploiting RPPA and mRNA 
expression in breast cancer. While demonstrating the 
robustness of the approach, both studies lacked external 
confirmatory prospective randomised cohorts and datasets 
[14, 15].

One of the strengths of our study is the use of gene 
expression data derived form a prospective clinical trial 
that randomised patients with HER2-positive breast 
cancer to receive treatment with or without trastuzumab. 
Moreover, the Responsify dataset, in which both RPPA 

and RNA expression data were available for patients 
with HER2-positive breast cancer who were treated with 
trastuzumab in the adjuvant setting with the more standard 
duration of one year, enabled us to perform an external 
validation of the data in this specific subset of patients.

For the first time, we have demonstrated an association 
between ANXA1 and trastuzumab resistance. ANXA1 is a 
37 kDa calcium and phospholipid binding protein that is 
involved in inflammatory processes, cell proliferation, and 
the regulation of cell death and carcinogenesis [16]. Previous 
research using tissue microarray analysis has shown that in 
some breast cancers, ANXA1 loss leads to faster tumour 
growth [17] and cancer progression [18]. ANXA1 expression 
has also been found to be associated with a highly invasive 

Figure 4: Interaction between RPPA-based metagenes and trastuzumab efficacy. A. Forest plots in the Fin-her dataset 
indicate Multivariate Cox regression hazard ratios (HRs) and 95% confidence intervals (CIs) for trastuzumab benefit for distant disease-
free survival (DDFS) according to the metagene. B, C. Kaplan-Meier plots comparing high versus intermediate and low metagene levels in 
adjuvant trastuzumab-treated patients in the Responsify dataset (B) and a cohort of HER2 positive patients which did not receive adjuvant 
trastuzumab (C).
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basal-like breast cancer subtype and to promote metastasis 
formation by enhancing the TGFβ/Smad signalling pathway, 
which in turn facilitates an epithelial mesenchimal transition 
switch [19]. Our results regarding DJ-1 metagene, a negative 

regulator of PTEN that indirectly activates pAkt [20], are 
also in line with previous pre-clinical data supporting the 
role of the Akt/mTOR pathway with trastuzumab resistance 
[21, 22]. However, this association was not validated in the 

Table 1: Fin-her patient characteristics.
Characteristic subclass Whole 

HER2 
positive 
cohort  
(N = 231)

Cohort 
with Gene 
expression 
(N = 202)

P value With 
trastuzumab 
(N = 100)

No 
trastuzumab 
(N = 102)

P 
value

Age < 50 108 94 1 51 43 0.26

>= 50 123 108 49 59

Tumor stage T1 81 74 0.94 33 41 0.49

T2 135 115 60 55

T3 14 12 7 5

NA 1 1 0 1

Nodal status Negative 37 29 0.73 80 93 0.04

1–3 194 173 20 9

Histological grade 1 5 5 1 3 2 0.57

2–3 220 191 93 98

NA 6 6 4 2

ER status Positive 109 97 0.93 46 51 0.66

Negative 122 105 54 51

Histology Ductal 208 181 1 87 94 0.56

Lobular 21 19 11 8

NA 2 2 2 0

Table 2: Cox univariate and multivariable analysis of ANXA1 metagene treated as a continuous 
variable, in the Fin-her study. 

DDFS prognostic value of ANXA1 metagene 
(No trastuzumab)

DDFS prognostic value of ANXA1 metagene 
(trastuzumab)

Univariate Multivariate Univariate Multivariate P 
interaction

HR CI 
95% P HR CI 

95% P HR CI 
95% P HR CI 

95% P

All 0.76 [0.52 – 
1.1] 0.14 0.78 [0.53 – 

1.15] 0.53 1.06 [0.641 
– 1.75] 0.81 1.15 0.68 – 

1.91 0.59 0.3

ER+ 0.74 [0.41 – 
1.33] 0.31 0.7 [0.36 – 

1.35] 0.36 0.52 [0.28 – 
0.96] 0.03 0.66 0.32 – 

1.35 0.26 0.41

ER- 0.74 [0.46 – 
1.2] 0.22 0.78 0.44 – 

1.38] 0.44 2.4 [1.36 – 
4.45] 0.0028 2.0 0.97 – 

4.15 0.06 0.005

For multivariate analysis, we considered the following variables: age, tumor size, grade, nodal status, 
and ER status. The interaction test is for the multivariate analysis
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independent Responsify dataset and did not pass the false 
discovery rate threshold.

Overall, our finding that RPPA-based, gene 
expression metagenes predict lack of benefit to 
trastuzumab through ANXA1 raises new questions 
regarding the postoperative management of HER2-
positive breast cancer. If confirmed by future prospective, 
randomised, controlled studies (such as ALTTO or 
APHINITY) this RPPA-based gene expression signature 
could be used to direct the rationale for adjuvant treatment 
and research in HER2-positive breast cancer.

MATERIALS AND METHODS

Study cohorts

Our study used two study cohorts, one from the 
Fin-her trial, the other from the Responsify study. The 
Fin-her trial is a multicentre phase 3 randomised adjuvant 
breast cancer trial that enrolled 1010 patients [4, 23] 
(The trial identifier is ISRCTN76560285, Supplementary 
Figure 1 [CONSORT diagram]). The women were 
randomly assigned to receive three cycles of docetaxel 
or vinorelbine, followed by three cycles of fluorouracil, 
epirubicin, and cyclophosphamide. Out of the 1010 
patients, 232 patients with HER2-positive breast cancers 
were further randomised to 9 weeks of trastuzumab or no 
trastuzumab. Two-hundered and two of the 232 HER2-
positive tumour samples collected had sufficient RNA 
with good quality for gene expression analysis. The 
clinical pathological characteristics of the HER2-positive 
patients with available gene expression data (n = 202) 
were compared with the general series (n = 231).

The patients with available gene expression data 
who were involved in our sub-study were representative 
of the entire population, and there were no substantial 
differences between their patient and tumour 
characteristics and patients not included (Table 1). The 
study participants provided written informed consent 
to allow further research analyses to be carried out on 
their tumour tissue. The primary end point of Fin-her, 
distant disease-free survival (DDFS), has been previously 
reported to be superior for the trastuzumab-containing 
arms after a median follow-up of 62 months [4].

The determination of hormone receptor status and 
HER2 expression by immunohistochemistry (IHC) was 
required locally and was performed according to the 
guidelines of each institution during the time of the study. 
Samples were considered hormone receptor positive if 
their level of oestrogen receptor (ER) and/or progesterone 
receptor (PR) was ≥ 10%. All patients with hormone 
positive tumours received five years of endocrine therapy. 
When HER2 expression was scored as 2+ or 3+ (on a scale 
of 0, 1+, 2+, or 3+), the number of copies of the HER2 
gene was centrally determined by means of chromogenic 
in situ hybridisation (CISH) in reference laboratories.

The Responsify dataset (as part of a consortium 
supported by the European Commission under its 
Framework 7 Programme) is composed of 108 HER2-
positive early stage breast cancer samples treated with 
adjuvant trastuzumab for one year, provided by Institut 
Jules Bordet (IJB) and Katholieke Universiteit Leuven 
(KUL). Gene expression, RPPA and clinical outcome data 
were available.

Gene expression arrays

Of the available Fin-her HER2 samples, gene mRNA 
expression data was produced from 202 samples. All 
samples were re-evaluated to ensure tumour was present 
in the specimen. RNA was extracted from formalin-fixed, 
paraffin-embedded (FFPE) primary breast tumour tissue. 
Gene expression was measured using Affymetrix U219 
GeneChips™ as per Affymetrix protocols on 96 well 
plates at AROS Applied Biotechnology A/S, Denmark. 
Affymetrix expression data were normalised using the 
RMA approach followed by a batch effect correction (affy 
(v.3.1.2) and SVA (v.3.10.0) packages of the R (v 3.1.2)/
Bioconductor (v. 2.6) suite) [24]. When multiple probe sets 
mapped to the same official gene symbol, we computed 
the average value of their intensity. The Fin-her data is 
available at: http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?token=wfermmkijzktzcb&acc=GSE65095.

The Responsify expression dataset was produced 
using an Affymetrix HG-U133Plus2 platform at the 
J-C. Heuson Breast Cancer Translational Research 
Laboratory (BCTL) at IJB. Expression values were 
computed using the fRMA normalization method [25] 
(fRMA (v1.16.0)R/Bioconductor package). Again, 
when multiple probe sets mapped to the same official 
gene symbol, we computed the average value of their 
intensity. From the Responsify dataset, a total of 
97 samples corresponding to 95 unique patients were 
processed. Appropriate quality assessments were 
conducted on the resulting files and 94 samples passed 
quality assurance for further analysis. The Responsify 
data is available at: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?token=ulwbuuwgpzqphsh&acc= 
GSE58984.

Other gene expression datasets of expression 
profiles from HER2 positive breast tumors were retrieved 
from public databases or authors’ websites (previously 
described in [13]). To ensure comparability of expression 
values across multiple data sets we performed a 0.95 
quantile normalization.

Tumour infiltrating lymphocyte (TILs) 
evaluation

Evaluation of TILs was performed exactly as 
previously described [26, 27]. Two pathologists performed 
the readings independently and were blinded to clinical 
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outcome; the mean value of two assessments was used for 
the current analyses. The correlation coefficient between 
the two pathologists was 0.77 (p < 0.001) and 0.49 
(p < 0.001) for stromal and intratumoral TILs respectively.

RPPA

Protein levels were assessed for the Responsify 
cohort in the laboratory of Professor Gordon Mills at the 
MD Anderson Cancer Center (Houston,TX) using RPPA 
as previously described [11]. Briefly, the tumour or cell 
lysates were diluted for and arrayed on nitrocellulose-
coated slides. The samples were then probed with 
antibodies and visualised by colorimetric reaction. Finally, 
the slides were scanned and their density was quantified 
by Array-Pro.

Computation of RPPA-based metagenes

We downloaded clinicopathological, normalised 
gene expression and RPPA data from the publicly 
available TCGA database using its online bioinformatics 
tools [11]. Eighty-seven samples with available gene 
expression and RPPA data were considered to be 
clinico-pathologically HER2-positive. Pathologically 
positive HER2 samples included those with HER2 
IHC 3+ readings or a positive result on fluorescence 
in situ hybridization (FISH) for HER2 amplification 
(HER2:Chr17 ratio ≥ 2). Each of the 141 RPPA 
assay samples available was assigned to one of two 
sample groups : the “low” or “high” groups of protein 
expression levels corresponding to the lower quartile 
or upper quartile of the expression level (Figure 2A). 
To identify the genes that were differentially expressed 
between low and high expression groups, we performed 
a differential gene expression analysis using a Student 
t-test with robust estimators of the central tendency 
and of the dispersion comparing high versus low 
RPPA expression tumours. 139 RPPA assays delivered 
differentially expressed metagenes (set of significantly 
differentially expressed genes [fdr ≤ 0.05]). Adjusted 
p-values (fdr) were computed using the Benjamini-
Hochberg multi-testing correction method.

The expression levels of these metagenes in the 
gene expression datasets (Fin-her and Responsify) were 
computed using the metagene score described as follows:

Let S be a metagene (gene signature) composed 
of n genes (s1, …, sn) presenting a coefficient (-1 or 1, 
reflecting its down or up-regulation respectively). Let E 
be the set of expression values of the genes of S in one 
expression experiment. The metagene score (sigscore) is 
calculated by computing the sum of the products of the 
gene coefficient in the module (si) by the corresponding 
gene expression value (ei) according to the following 
formula.

Sigscore = a
n

i=1

ei*si

The metagene score is the scalar product of the 
coefficient of the genes in the metagene and the gene 
expression values.

To assess the performances of the metagenes, 
we compute the metagenes score in the Responsify 
dataset and kept only the metagenes for which the score 
was highly correlated with the RPPA expression level 
(Pearson correlation index ≥ 0.5) and which achieved high 
predictive performances in ROC curves (fdr ≤ 0.05).

Network representation of the intersecting 
metagenes

The network linking the intersecting metagenes 
(at least 5 common genes) was displayed with the yED 
software and data were clustered using the MCL graph 
clustering algorithm (http://www.yworks.com/en/
products_yed_about.html) [28].

Intersection between RPPA derived metagenes 
and functional classes

To determine whether the size of the intersection 
between a metagene sigA of size Na and a functional 
class sigB of size Nb was significant, we computed the 
hypergeometric p-value, which grossly corresponds to the 
probability of being wrong when estimating that having 
an intersection of size n genes is due to chance only when 
considering N genes in total.

Pual = P(X ≥ n) = a
Nb

i=n

aNa

i
b · aN − Na

Nb − i
b

aN

Nb
b

Where 
ax

y
b

 corresponds to the number of ways to 
choose y elements from a set of x elements. The p-value 
was then corrected using the Benjamini-Hochberg method.

These computations were performed using the 
compare-classes tool of the RSAT/Neat suite of tools [29]. 
This methodology was used to evaluate the ability of the 
model to identify groups of functionally related genes by 
comparing each metagene to the functional classes of the 
Gene Ontology and of mSigDB.

Statistical analysis

For the outcome analysis, patients were scored 
according to each metagene and dichotomised at the 
median expression level. The primary outcome was distant 
disease free survival (DDFS), which was defined by the 
time interval between the date of randomisation and the 
date of first cancer recurrence outside of the ipsilateral/
locoregional region or to death, whichever occurred first.
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Patients alive at the last visit without documented 
evidence of distant metastases were censored. 
Associations between the different metagenes and 
ER status were investigated with a t-test, while the 
association among metagenes was estimated by 
computing the hypergeometric significance of their 
intersection. The Kaplan Meier method was used to 
generate survival curves, and the log-rank test was 
used to compare survival distributions. Univariate 
and multivariate models were computed using Cox 
proportional-hazards regression. Possible interactions 
with trastuzumab treatment were tested using a Wald 
test after adding a trastuzumab main effect and a product 
interaction term in the Cox model. Interaction effects 
were displayed using forest plots.

The Rand index is a metric ranging from 0 to 1 
which describes the similarity between two clusters. 
We computed the Rand indices between the correlation 
matrices after applying a hierarchical clustering (Euclidian 
distance, complete linkage) and a partition into three 
classes with package flexclust (v 1.3–4) of R. Analyses 
were performed using the R statistical suite together 
with the genefu (v. 1.14.0), survival (v. 2.38–1) and 
rmeta (v. 2.16) Bioconductor packages. Our data were 
reported according to the essential elements of REMARK 
(reporting recommendations for tumour marker prognostic 
studies’’) [30]. ROC curves and associated p-values 
were computed using the pROC (v1.8) package of 
R/ Bioconductor [31].
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