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ABSTRACT: An efficient new molecular orbital (MO) basis
algorithm is reported implementing the pair atomic resolution of the
identity approximation (PARI) to evaluate the exact exchange
contribution (K) to self-consistent field methods, such as hybrid and
range-separated hybrid density functionals. The PARI approximation,
in which atomic orbital (AO) basis function pairs are expanded using
auxiliary basis functions centered only on their two respective atoms,
was recently investigated by Merlot et al. [J. Comput. Chem. 2013, 34,
1486]. Our algorithm is significantly faster than quartic scaling RI-K,
with an asymptotic exchange speedup for hybrid functionals of (1 + X/
N), where N and X are the AO and auxiliary basis dimensions. The
asymptotic speedup is 2 + 2X/N for range separated hybrids such as
CAM-B3LYP, ωB97X-D, and ωB97X-V which include short- and
long-range exact exchange. The observed speedup for exchange in
ωB97X-V for a C68 graphene fragment in the cc-pVTZ basis is 3.4 relative to RI-K. Like conventional RI-K, our method greatly
outperforms conventional integral evaluation in large basis sets; a speedup of 19 is obtained in the cc-pVQZ basis on a C54
graphene fragment. Negligible loss of accuracy relative to exact integral evaluation is demonstrated on databases of bonded and
nonbonded interactions. We also demonstrate both analytically and numerically that the PARI-K approximation is variationally
stable.

1. INTRODUCTION

Modern Kohn−Sham density functional theory1,2 has become
the most widely used electronic structure method. A crucial
contribution to this success was Becke’s insight into the role of
exact exchange in approximations to the adiabatic connection
formula.3 This discovery led to the creation of the class of
methods known as “hybrid” functionals that include some
(usually empirically determined) weighted contribution from
exact exchange,4−6 as exemplified by the widely used B3LYP
functional. The use of hybrid functionals has yielded improved
results for thermochemical properties,3 molecular geometries,7

and vibrational frequencies.8,9 More recently developed hybrid
functionals such as M06-2X have yielded significant additional
improvements in accuracy.10,11

The role of exact-exchange has since been further refined
with the introduction of range-separated hybrid functionals,12,13

which hold particular promise for applications in the area of
time-dependent density functional theory.14,15 Local functionals
and standard hybrid functionals suffer from incorrect long-
range behavior of charge transfer excited states due to self-
interaction error of the transferred electron.16,17 Range-
separated hybrid functionals partition the Coulomb operator
into short and long-range components in order to smoothly
increase the weight of exact exchange toward unity in the long-
range limit, thus recovering the correct asymptotic behavior.
The development of systematically optimized functionals such

as the ωB97X-D functional18 led to significant improvements in
accuracy over first generation range-separated hybrids. Further
noteworthy improvements were recently reported in the
ωB97X-V functional.19

Unfortunately, large basis sets are required to obtain the
maximal accuracy which modern hybrid and range-separated
hybrid functionals can provide. Many studies have demon-
strated that a basis set of at least triple-ζ quality is required to
obtain results reasonably close to the basis set limit with hybrid
functionals.20−23 At least triple, and if possible quadruple-ζ
basis sets are needed for accurate thermochemistry, while at
least augmented triple-ζ basis sets are required for noncovalent
interactions if no counterpoise corrections are performed.19 In
this scenario, computation of exact-exchange typically con-
sumes the vast majority of the computation time for a hybrid
DFT calculation.
The K matrix required for the computation of exact exchange

is computed via the expression:

∑ μλ νσ= |μν
λσ

λσK P( )
(1)

The number of two-electron integrals appearing in (1) scales as
the fourth power of molecular size. Schwarz-inequality-based
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integral screening algorithms can reduce this scaling to nearly
O(M2) for sufficiently extended systems.24,25 In fact, linear
scaling algorithms can be obtained by exploiting the density
matrix sparsity that occurs in extended insulating systems, as is
done in the SONX26 and LinK27,28 methods. However, such
linear scaling behavior is in practice seldom obtained for small-
gap systems and/or with larger basis sets which can lead to
overlap ill-conditioning and resulting loss of density matrix
sparsity.
Even with the employment of screening algorithms, the

scaling of the evaluation of (1) remains fourth-order with
respect to increasing the average number of basis functions per
atom while molecule size is fixed. High-accuracy calculations in
large basis sets are therefore most severely inhibited by the
computational demands associated with exact exchange. With
the introduction of still-more sophisticated treatments of
electron correlation such as double-hybrid functionals,29−31

the need to compute efficiently with larger basis sets has only
become more pressing.32

A variety of approaches have been used to improve the
efficiency of constructing K in large basis sets, the most
common of which is the application of the resolution of the
identity (RI) approximation, also frequently referred to as the
density fitting or DF approximation. In the RI approximation,
products of orbital basis functions are further expanded in an
auxiliary basis:

∑μλ| ≈ |μλC Q) )
Q

Q
(2)

This reduces the dimensionality of the integral tensors that
must be calculated from four to three. The use of the RI
approximation to compute exact exchange was introduced by
Früchtl,33 while the first direct implementation is due to
Weigend.34 Unfortunately, without further approximation the
RI-K algorithm scales fourth-order with molecular size, so
performance deteriorates relative to conventional integral
formation for extended systems. Hence, the application of RI-
SCF (self-consistent field) has historically been limited to
compact systems with large basis sets.33−35

It has been suggested that RI methods may be better
described as “inner projection” methods, as in the absence of a
complete auxiliary basis the RI approximation does not amount
to an insertion of a resolution of the identity, but rather the
insertion of an inner projection operator.36,37 The Cholesky
decomposition (CD) of the two-electron integrals has been
shown to be equivalent to the introduction of an inner
projection operator onto the space spanned by the orthogon-
alized Cholesky vectors.38 In this sense, the Cholesky
decomposition may be seen as generating an ideal auxiliary
basis for the particular problem at hand.37 CD methods
encompass many efficient algorithms. Since its introduction to
the electronic structure community by Beebe and Linderberg,38

CD has been used to formulate a variety of efficient electronic
structure algorithms, including the construction of the Fock
matrix36,39 and the evaluation of the CCSD(T)40 and SOS-
MP241 energies. CD methods are of great interest because they
produce an auxiliary basis that does not depend on the model
chemistry for which it was optimized, and thus can deliver
consistent performance across a variety of theoretical
methods.42 Additionally, CD methods allow for fine-grained
control of the accuracy of the approximation simply by varying
the decomposition threshold δ. This is in contrast to the RI
method’s reliance on preoptimized auxiliary basis sets, which

limits its accuracy to that attainable by the largest auxiliary basis
set trained for the given theoretical method. However, as
currently available RI auxiliary basis sets yield fitting errors in
the tens of μHartree per atom for absolute energies,34,43−45

which is negligible compared to orbital basis set errors, the
practical advantage provided by CD in terms of accuracy is
often minimal.
CD methods have historically suffered from the inclusion of

two-center functions in the resulting auxiliary basis, and
therefore required the expensive evaluation of four-center
integrals.42 The situation improves if the CD basis is restricted
to contain only one-center auxiliary functions; examples of such
methods include the one-center Cholesky decomposition42

(1C-CD) and the atomic Cholesky decomposition (aCD).46

The aCD and 1C-CD approaches have been used to obtain
more compact sets of Cholesky vectors, with a size ≈5 times
that of the orbital basis set found to yield acceptable
accuracy.42,46 For comparison, the RI approximation typically
requires an auxiliary basis set of 3−5 times the size of the
orbital basis set to obtain accuracy in the μHartree
range.34,43−45 Rigorous efficiency comparisons of RI and CD
methods are scarce; in one such study, Weigend has shown that
1C-CD is outperformed significantly by RI-J.47 However, more
recent work on so-called “method-specific” CDs, in which
Hadamard products involving the two-electron integrals are
decomposed instead of the two-electron integrals themselves,
has been shown to require a drastically smaller auxiliary basis37

and has been found to be competitive with RI for the
computation of exact exchange.47

The unfavorable scaling of RI-SCF can be mitigated through
the use of several types of local approximations. The RI
expansion coefficients are typically obtained in the Coulomb
metric by minimizing the Coulomb repulsion of the density
residual.48 The fitting coefficients thus obtained are highly
nonlocal; the expansion of a product on a given center contains
many numerically significant contributions from auxiliary
functions on distant atomic centers. A root cause of this is
local incompleteness of the auxiliary basis set, which leads to
the inclusion of off-center auxiliary functions in order to obtain
a better fit.46,49 The locality of the fit coefficients can be
improved, while still retaining accuracy in the fit, by minimizing
the residual repulsion based on an alternative local operator, a
so-called “local metric”. Perhaps the simplest and most drastic
local metric approach to density fitting is the overlap metric
first introduced by Baerends et al.50 The overlap metric was
subsequently employed by Vahtras et al. in SCF calculations
and was found to give errors an order of magnitude larger than
the Coulomb metric.51

In an attempt to combine the locality of the overlap metric
with the accuracy of the Coulomb metric, Jung et al. introduced
an attenuated Coulomb metric with rapid decay with
interelectronic distance and similar RI errors to the full
Coulomb metric.49 The attenuated Coulomb metric has
subsequently been employed by Reine in conjunction with
localized MOs to implement reduced-scaling RI-SCF.52 In an
analogous development for CD methods, Aquilante et al. have
shown that aCD methods yield a set of fit coefficients with
spatial locality that increases as the decomposition threshold is
decreased.46 This is a consequence of a more complete CD
auxiliary basis reducing the need to include off-center auxiliary
functions in order to represent on-center products.
An alternative ubiquitous approach to constructing K

economically is a family of RI approximations employing
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local fitting domains. Instead of expanding each orbital basis
function product using a fitting basis set spanning the entire
molecule, a subset of the full fitting basis is chosen for each
orbital product. There have been numerous applications of
local fitting domains to RI-SCF.35,53−55 In the first develop-
ment in this area, Polly et al. developed a linear scaling
algorithm using local atomic fitting domains in conjunction
with localized orbitals.53 Sodt and Head-Gordon have
developed the ARI-K algorithm, wherein each pair of orbital
basis functions is expanded using the auxiliary basis functions
on the atoms in a certain radius around their parent atoms.35

Very recently, Mejiá-Rodriǵuez et al. have developed the LDF-
HF algorithm, which builds upon the work of Polly et al. with
localization of the molecular orbitals at each SCF cycle in order
to obtain very compact local fitting domains.56

Yet another unique approach to improving the locality and
scaling of exchange matrix construction is the pseudospectral
approach of Neese et al, in which one coordinate in the
integrals from (1) is integrated by numerical quadrature.57 The
locality of the grid points coupling to the AO basis is exploited
to obtain a conditionally linear scaling algorithm. This approach
has been shown to yield equal or superior speedups to RI-K
with comparable accuracy.58 However, to our knowledge its
performance has not been benchmarked relative to local density
fitting methods.
The focus of this work is the construction of K using a

drastically local form of the RI approximation, which we shall
designate by the name used by Merlot et al. as the Pair Atomic
Resolution of the Identity (PARI) approximation.54 In this
approach, a given pair of orbital basis functions is expanded
using only auxiliary basis functions on either of the parent
atoms. This fitting approach was explored in early work by
Baerends et al.59 and subsequently by several others.60−62

When used with Dunlap’s robust fit functional,63 the PARI
approximation has been found to give surprisingly accurate
results.54,55 However, it has been demonstrated that the use of
the PARI approximation for the construction of J can lead to
unphysical “attractive electron” states.54,55 Merlot et al. have
explained this behavior on the basis of the loss of a positive
semidefinite integral tensor, and have shown that this problem
manifests for any local RI approximation employing the Dunlap
functional. They attempted to correct this problem through
local completion of the auxiliary basis using the Cholesky
decomposition, but this approach resulted in the loss of all
performance improvements derived from the PARI approx-
imation.54 Hollman et al. have taken a different approach by
computing subsets of the two-electron integrals analytically, and
employing the PARI approximation for the remainder.55 We
circumvent this variational stability issue entirely by using
PARI-K alone, without PARI-J. We will analytically demon-
strate that the use of PARI-K alone is variationally stable, and
empirically demonstrate that PARI-K yields negligible errors
compared to exact integral evaluation. The J matrix can in turn
be constructed by one of several pre-existing efficient highly
efficient algorithms.34,64

Merlot et al. have used the PARI approximation and the
Dunlap functional63 to create a new algorithm, PARI-K, for the
construction of K.54 These authors report an impressive
speedups of between 5 and 7-fold for their PARI-K algorithm
relative to the LinK algorithm,measured on systems of up to 42
atoms in a triple-ζ basis set. However, their algorithm involves
contraction of three-center RI integrals over the full auxiliary
basis with density-contracted fit coefficients:

∑ νσ+ = |μν
σ

σ
μK d Q( )

Q
Q

(3)

The auxiliary index Q is coupled by sparsity to the AO-basis
index μ as follows: for a given μ, all Q auxiliary basis functions
on atoms with at least one basis function that has non-
negligible overlap with μ is significant. The scaling of this term
is thus asymptotically quadratic, just like direct evaluation of the
two electron integrals, which is highly desirable. However, it
suffers from the same unfavorable scaling of O(N4) with respect
to basis set size for fixed molecular size, but with an improved
prefactor based on the number of FLOPs required to sum over
Q versus the FLOPs required to form a given two-electron
integral directly. We shall demonstrate that dramatic improve-
ments in performance can be obtained via an MO basis
algorithm. In our algorithm, the two and three-center quantities
evaluated separately in Merlot’s formulation are evaluated
simultaneously in the MO basis. Unlike Merlot’s algorithm, the
scaling of our algorithm remains fourth-order; however, we
demonstrate by numerical experiments that our algorithm
performs fewer operations even for very extended 1D systems.
We obtain speedups of up to 19× over conventional K
construction for systems of up to 3570 basis functions. We also
demonstrate that auxiliary basis sets no larger than those used
in conventional RI-SCF are required when the PARI-K
approximation is used to obtain chemical accuracy for
thermodynamic properties and intermolecular interactions,
despite the drastically local nature of the approximation.

2. THEORY
2.1. Variational Stability of RI-K and PARI-K. We shall

abbreviate RI quantities using a tilde as follows:

∑μλ| = |͠ μλC Q) )
Q

Q
(4)

Dunlap has shown that the following “robust” approximation of
the two-electron integrals yields errors that are quadratic in the
error resulting from the RI approximation on the individual
products:63

μλ νσ μλ σ μλ σ μλ σ| = | + | − |͠ ͠͠ ͠͠ v v v( ) ( ) ( ) ( ) (5)

Merlot et al. have shown that the use of this robust formulation
in conjunction with local RI fitting domains and/or non-
Coulomb fitting metrics results in a two-electron integral tensor
that is not positive semidefinite.54 However, regardless of this
complication, the following equality holds for the Dunlap
formulation of any fitting method:63

μλ νσ μλ νσ μλ μλ νσ νσ| − | = − | − ͠͠͠( ) ( ) ( ) (6)

The difference of the exact and fitted exchange energies may
thus be written as

∑ μλ μλ νσ νσΔ = − − | − ͠͠
μνλσ

μν λσE P P
1
2

( )K
(7)

Transforming to the MO basis, we have

∑Δ = − − | −∼ ͠E ij ij ij ij
1
2

( )K
ij (8)

By an early result of Slater,65 each term in the above sum is
strictly positive. The exchange energy thus can only increase by
the application of robust fitting, and densities corresponding to
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negative eigenvalues of the two-electron integral matrix will be
avoided by the SCF convergence algorithm. Local fit domains
and non-Coulomb fitting metrics can therefore be applied to
the computation of K without risk of variational instability.
We now prove a stronger result concerning the relationship

between standard Coulomb-metric RI using a global fit domain
and that of any local fit approximation. Denoting coefficients
for the MO pair ij computed using global RI by Cij

G and those
with local RI by Cij

L, we may express their difference by

= + ΔC Cij ij
L G

(9)

We now consider the expansion of a single exchange integral
using the Dunlap functional and local RI fit coefficients, using Iij
to denote the three-center integral vector for this MO pair and
V to denote the auxiliary basis metric:

| = · − ·

= · − · + Δ· −
− Δ· Δ

ij ij C I C VC

C I C VC I VC
V

( ) 2 (10)

2 2 ( ) (11)

ij ij ij ij

ij
G

ij ij
G

ij
G

ij ij
G

L
L L L

The combination of the first two terms in the above
expression yields the integral computed using global RI with
the Coulomb metric. The next term vanishes by the inverse
present in the Coulomb metric fit coefficients, and we thus
obtain

| = | − Δ· Δij ij ij ij V( ) ( )L G (12)

The error term is non-negative, as V is positive semidefinite.
We therefore see that the exchange energy computed with local
RI methods is greater than or equal to both the exact and global
Coulomb RI variants:

≥ ≥E E EK K K
L G exact

(13)

It is well-known that exchange integrals are bounded by their
corresponding Coulomb integrals:66

≤ | ≤ |ij ij ii jj0 ( ) ( ) (14)

This inequality holds when both integrals are expanded using
a global auxiliary basis. Our treatment expands the Coulomb
term in the global auxiliary basis, with the exchange term
treated in the pair basis. Our above result proving that EK

L ≥ EK
G

therefore guarantees that the total electronic energy of the
system cannot become negative.
2.2. Efficient MO Basis PARI-K Algorithm. Merlot et al.

have applied Dunlap’s robust formulation in conjunction with
the PARI approximation, in which orbital basis products
between functions lying on the atoms A and B are expanded
only using auxiliary basis functions on those two atoms:54

∑μ λ| = |͠ μλ
∪

C Q) )
Q

QA B

A B

(15)

Using these two approximations, we shall now derive an
efficient algorithm for the formation of the Hartree−Fock
exchange matrix. We may write the expression for the exchange
matrix in the following convenient form:

∑

∑

∑

∑

μλ νσ

μλ νσ μλ νσ μλ νσ

μλ νσ μλ νσ

νλ μσ νλ μσ

= |

= | + | − |

= | − |

+ | − |͠ ͠

͠ ͠

͠

͠ ͠

͠ ͠

͠

μν
λσ

λσ

λσ
λσ

λσ
λσ

λσ
λσ

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

K P

P

P

P

( )

[( ) ( ) ( )]

( )
1
2

( )

( )
1
2

( )

We then make the following definition:

∑ μλ νσ μλ νσ= | − | ͠͠ ͠
μν

λσ
λσ

⎡
⎣⎢

⎤
⎦⎥L P( )

1
2

( )
(16)

to yield the resulting expression for the exchange matrix:

= +μν μν νμK L L (17)

The problem of efficiently computing the exchange matrix
now reduces to the efficient computation of L. We now
introduce the RI approximation, presuming the use of the PARI
fit coefficients in eq 15:

∑ ∑ ∑νσ= | − |μν
λσ

μλ μλ νσ
λσ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥L C Q C C R Q P( )

1
2

( )
Q

Q
QR

Q R

(18)

Grouping common terms yields

∑ ∑ ∑νσ= | − |μν
λσ

μλ νσ
λσ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥L C Q C R Q P( )

1
2

( )
Q

Q
R

R

Reverting to the MO basis and rearranging yields an
intelligently grouped expression:

∑ ∑ ∑ ∑

∑

νσ= |

− |

μν
λ

μλ λ

σ

σ

νσ

⎪

⎪

⎪

⎪

⎡
⎣
⎢⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎦
⎥⎥

L C M M Q

C R Q

[ ] ( )

1
2

( )

i Q
Q i i

R
R

(19)

Here the MO coefficient matrix is M. This expression is
evaluated using the steps presented in Table 1.
Our algorithm is very similar to the LDF-HF algorithm of

Mejiá-Rodriǵuez et al.56 but without MO localization and with
additional steps to account for the explicitly robust Dunlap
formulation. Additionally, when all tensors cannot be held in
memory, we batch over auxiliary functions rather than over
molecular orbitals, allowing us to compute the three-center AO
integrals only once per SCF cycle. For large systems, the step
Lμν = ∑QiDi

μQ Hi
νQ dominates the overall computation time. As

we demonstrate for a series of linear alkanes, the onset of
sparsity in the MO-contracted fit coefficients Di

μQ is sufficiently
slow even for linear systems that it is generally not economical
to utilize sparsity in this step, and the algorithm is thus
effectively fourth order scaling, but with a significantly smaller
prefactor than RI-K. The two fourth-order steps in RI-K are
given by

∑ μ= | |μ −B i R R Q( )( )Q
i

R

1/2
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∑=μν
μ νK B B

iQ
Q

i
Q

i

The formation of the B matrix is more expensive than its
subsequent contraction by a factor of X/N. The fourth-order
step in our algorithm has the same cost as the latter fourth
order step of RI-K, and the asymptotic speedup for our
algorithm relative to RI-K is thus 1 + X/N. It should be noted
that our algorithm is capable of treating much larger systems on
an economical time scale than the largest presented in this
paper; for the purposes of this study, we were limited by the
feasibility of timing the integral-driven code for comparison.
The Dunlap formulation converts first order error in the

fitted products to second-order error in the approximate
integral. We therefore may further economize our fit
coefficients by using much looser screening criteria in their
evaluation than in the overall calculation. Specifically, we may
obtain the same effect as a given integral screening threshold by
neglecting the fit coefficients of pairs whose integral estimates
are less than the square root of said threshold. Thus, if the
desired integral screening threshold for the calculation is 10−12,
this level of accuracy can be preserved while setting the fit
coefficients of products with integral estimates of approximately
10−6 uniformly to zero. Our results demonstrate that this
approximation causes negligible loss of accuracy.
2.3. Additional Benefits for Range-Separated Hybrids.

For range-separated functionals, both a short and long-range K
build are required. For these functionals, we reuse the fit
coefficients formed with the full Coulomb operator, and
transfer the short and long-range operator dependence

exclusively to the two and three-center integrals. Our
expressions for each L matrix are therefore

∑ ∑ ∑ ∑

∑

νσ= |

− |

μν
λ

μλ λ

σ

σ

νσ

⎪

⎪

⎪

⎪

⎡
⎣
⎢⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎦
⎥⎥

L C M M Q

C R Q

[ ] ( )

1
2

( )

i Q
Q i i

R
R

SR SR

SR

∑ ∑ ∑ ∑

∑

νσ= |

− |

μν
λ

μλ λ

σ

σ

νσ

⎪

⎪

⎪

⎪

⎡
⎣
⎢⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎦
⎥⎥

L C M M Q

C R Q

[ ] ( )

1
2

( )

i Q
Q i i

LR

R
R

LR

LR

It should be noted that a robust fit is still obtained due to the
explicit use of Dunlap’s robust ansatz, and our results below
demonstrate that the independent use of two sets of fit
coefficients is unnecessary. To obtain similar accuracy with
global RI-K using a single set of fit coefficients would require
the explicit use of the Dunlap functional, at a significant
performance penalty. We exploit this advantage to compress
the evaluation of both exchange contributions into a single K
build as follows:

νσ νσ νσ| = | + |Q c Q c Q( ) ( ) ( )C
SR

SR
LR

LR

| = | + |R Q c R Q c R Q( ) ( ) ( )C
SR

SR
LR

LR

∑ ∑ ∑ ∑

∑

νσ= |

− |

μν
λ

μλ λ

σ

σ

νσ

⎪

⎪

⎪

⎪

⎡
⎣
⎢⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎦
⎥⎥

L C M M Q

C R Q

[ ] ( )

1
2

( )

i Q
Q i i

R
R

C C

C

As may be seen from the above equations, only steps which
are nonrate determining are duplicated. In the limit of large
systems, our algorithm will therefore outperform RI-K by an
additional factor of 2 for range-separated hybrids, leading to a
net speedup of 2(1 + X/N). We demonstrate that this limit is
reached for relatively small systems.

3. RESULTS
All calculations were performed with a development version of
the Q-Chem program.67,68

3.1. Accuracy. Hollman and Merlot have evaluated the
accuracy of the PARI approximation for HF and B3LYPwe
now wish to assess its accuracy in the context of modern
density functionals. The ωB97X-V functional was chosen due
to its excellent and highly transferable performance for a variety
of types of chemical interactions.19 Our calculations were
performed in the aug-cc-pVTZ orbital basis set using the
corresponding RI auxiliary basis for exchange.34 For an orbital
basis set of this size, it is expected that the user will also wish to
use an RI approach for the formation of the Coulomb matrix,
and we therefore employ the RI-J algorithm in conjunction with
PARI-K. In order to benchmark performance for thermochem-
ical properties, a subset of the G3-05 test set69,70 was selected
consisting of all compounds for which the auxiliary basis was
supported. The errors for a variety of thermochemical

Table 1. MO-Basis Algorithm for Exchange Matrix
Formationa

step operations scaling storage

Before First SCF Iteration
calculate (R|Q) X2 M2 M2

∑ μν= | |μλ
∪

−C R R Qcalculate ( )( )Q
R

A B
1

[NB2]X̅ M1 M1

For Each SCF Iteration
loop over atomic batches of auxiliary

functions Q

∑=μ

λ

λ μλD M Ci
Q

i Q
o [NB2]X̅ M2 M1

∑= |νσ νσ⎡
⎣⎢

⎤
⎦⎥E C R Q1

2
( )Q

R
R

[NB2]X̅X M2 M1

calculate integral batch (νσ|Q) [NB2]X M2 M1

νσ= | −νσ νσG Q E( )Q Q [NB2]X M2 M1

∑=ν

σ

σ νσH M Gi
Q

i Q
o [NB2]X M3 M2

∑=μν
μ νL D H

Qi
i

Q
i

Q oN [NBX] M3 M2

= +μ μ μK L Lv v v N2 M2 M2

aThe second column gives the operation cost for each step in terms of
[NB2] (number of significant orbital-basis function pairs, which is
asymptotically linear in system size), X̅ (mean number of auxiliary
basis functions per atom, independent of system size), X (number of
auxiliary basis functions), o (number of occupied orbitals), and [NBX]
(number of significant orbital-basis to aux-basis function pairs, which is
also asymptotically linear).
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properties are tabulated in Table 2. Larger than expected errors
were found when employing the RI-J approximation for the

calculation of electron affinities, so this approximation was not
used for these table entries. An integral screening threshold of
10−12 was utilized, with the screening threshold for fit
coefficients set to 10−6 as discussed above.
In order to assess the errors introduced by the PARI-K

approximation when applied to intermolecular interactions, we
have also calculated counterpoise corrected binding energies for
the S66 test set,71 which are given in Table 3.

The results in Tables 2 and 3 demonstrate that PARI-K can
be employed with the same size of auxiliary basis set used for
standard RI-JK calculations with negligible loss of accuracy. It
should be noted that the ωB97X-V functional scales the short-
range exchange energy by a factor of 0.167 and the long-range
by 1.0, thus reducing the error resulting from applying the
PARI approximation relative to full exact exchange. Functionals

with larger contributions from exact exchange will experience
somewhat larger errors when used in conjunction with PARI-K.

3.2. Stability. All of our calculations were converged
successfully to a threshold of 10−8. An initial guess for all
systems was computed using the B97-D72 GGA functional in
the same basis set. We were able to successfully converge all
systems in our truncated G3 set, including the systems for
which Merlot et al. and Hollman et al. observe convergence
problems (hexafluorobenzene, chloro-pentafluorobenze, 3-
butyn-2-one, and 2-butyn). As expected from our proof of
variational stability, we do not observe the presence of any
“attractive-electron” solutions, as these arise from the
computation of J in the PARI approximation. The non
positive-semidefinite integral tensor raises the possibility of
the SCF encountering densities that lead to repulsive exchange
interactions, but this is much less likely to pose a problem in
practice as these densities will be actively avoided by the SCF
optimizer. On the basis of our results, we assert that the PARI-
K method may be reliably used with an appropriate guess.

3.3. Performance. We consider first the performance of
our algorithm for a system to which it is “optimally suited”a
molecule of moderate spatial extent treated with a large basis
set. The chosen example is a hydrogen-terminated three ring by
six ring graphene lattice (shown in Figure 1) using the ωB97X-
V functional with the cc-pVQZ basis set. Our method is
compared against the following competing approaches
implemented in Q-Chem: an integral-driven K build using
the LinK algorithm27 (optimal for very large systems), the ARI-
K algorithm35 (optimal for midsize systems in larger basis sets),
and the RI-K algorithm34 (optimal for compact systems in very
large basis sets). The results of this comparison are shown in
Figure 2. Our method outperforms all examined alternatives,
obtaining a 19 times speedup over the conventional integral-
driven K build and a 2.7 times speedup over RI-K. The speedup
relative to RI-K will increase with increasing system size;
however, our RI-K code is at present unable to handle the
memory requirements of jobs larger than those presented here.
It should be noted that while the RI-K and ARI-K timings were
produced by timing a single K build and scaling the result by 2,
the integral-driven timings are for a single K build without
scaling, as the short- and long-range K builds can be combined
by transferring all of the operator dependence to the

Table 2. Errors in Atomization Energies (AE), Ionization
Potentials (IP), Electron Affinities (EA), and Proton
Affinities (PA) Relative to No RI Approximation for a Subset
of the G3-05 Test Seta

AE IP EA PA

mean absolute error 0.03 0.0026 0.052 0.01
mean signed error −0.03 0.0004 −0.052 −0.009
max error 0.22 0.0108 0.17 0.09

aAll data is in kilocalories per mole.

Table 3. Errors in Counterpoise-Corrected Binding Energies
for the S66 Set Relative to No RI Approximation,
Decomposed by Interaction Typea

H D O all

mean absolute error 0.01 0.02 0.01 0.01
mean signed error 0.01 0.02 0.01 0.01
max error 0.04 0.04 0.02 0.04

aWe use Řezac̀’̌s original classification of H hydrogen-bonded, D
dispersion, and O others.71 All data is in kilocalories per mole.

Figure 1. Hydrogen-terminated 3 × 6 graphene lattice upon which QZ timings were performed.
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fundamental integrals prior to contraction and application of
recurrence relations.
We now assess the performance of our algorithm as a

function of system size in a smaller (TZ) basis set, where one
would expect better performance from the lower-scaling
integral-driven K build. We begin with acene-5 and extend
the graphene sheet in two dimensions with additional chains of
six rings along the y-axis. The results of this timing experiment
are summarized in Figure 3. We are limited to a four by six

aromatic lattice for RI-K due to the memory usage of our
benchmark RI-K implementation. Our PARI-K implementation
obtains a 6.4 times speedup relative to exact integrals for the
largest lattice, a system with 2348 basis functions. This
compares favorably with the speedups obtained by Merlot et
al. for various smaller acenes. The superior efficiency of our
MO algorithm thus appears to effectively compensate for its
asymptotically higher scaling. Our algorithm outperforms RI-K
by an increasing margin as the system size is increased, reaching
a 3.4 times speedup for the largest lattice.

Our combined K build provides a dramatic advantage even
for the smallest system in Figure 3: a single K build performed
for the 1 × 6 graphene sheet requires 312 s, whereas the
combined short and long-range K build takes only 371 s. It
should be recalled that the performance of RI-K and ARI-K will
be twice as good for functions that are not range-separated
hybrids.

3.4. Sparsity and Performance Considerations for
PARI Algorithms. We shall now demonstrate empirically that
the loss of sparsity in the RI fit coefficients caused by
contracting them with dense matrices leads to severe difficulties
in practically attaining the low scaling that is expected for such
local fit domains. We focus on the sparsity of the most
important sparse tensor appearing in our algorithm, the MO-
transformed RI fit coefficients Di

μQ, as a function of system size.
As can be seen from the sparsity of this tensor for a series of
linear alkanes, shown in Figure 4, the onset of sparsity in Di

μQ is

much slower than might be expected given the immense
locality of the PARI fit coefficients. The tensor is approximately
83% sparse for the longest alkane chain. As a consequence of
this slow onset, exploitation of sparsity does not become
appreciably favorable even for very extended systems. This
leads to the timings shown in Figure 5. Note that even as the
sparsity of Di

μQ increases, this gain for the sparse implementa-
tion is offset by increasing performance of the matrix-multiply
routine called by the dense implementation as the matrix size

Figure 2. Wall time for the two K builds in the second SCF iteration
for a hydrogen-terminated 3 × 6 graphene lattice with the range-
separated ωB97X-V functional. (inset) Speedups relative to the
integral-driven K build for the various RI methods. The first iteration is
approximately 15% more expensive as of this writing due to
initialization costs, but only for smaller systems. RI-K and ARI-K
timings were calculated by timing one K build and scaling the result by
2, as the cost of the short and long-range K builds is essentially
identical for these methods.

Figure 3. Wall time for the two K builds in the second SCF iteration
for various N × 6 graphene lattices, performed in the cc-pVTZ basis.
RI-K and ARI-K timings were calculated by timing one K build and
scaling the result by 2, as the cost of the short and long-range K builds
is essentially identical for these methods.

Figure 4. Sparsity in of Di
μQ tensor for a series of linear alkanes using

the cc-pVTZ basis set. Screening of the AO-basis RI fit coefficients was
performed using a threshold of 10−6.

Figure 5. Wall time for a single second SCF iteration K build for
several linear alkanes, performed in the cc-pVTZ basis. An integral
threshold of 10−12 was used in conjunction with a fit coefficient
threshold of 10−6.
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grows. Thus, even for these ideal systems, the advantage gained
by the formally lower-scaling algorithm which exploits sparsity
is minimal. We acknowledge that a higher-performance sparse
linear algebra implementation would yield a more favorable
comparison. However, the tensor contraction expression in this
step fundamentally takes the form of either a single matrix
multiply in the dense case, or a series of what are essentially
vector-matrix multiplies in the sparse case. The floating point
performance difference is therefore bound to reflect the
(usually large) difference in the performance of these two
classes of operations for a given BLAS implementation.
It is important to recall that this unfortunate sparsity

behavior is not a consequence of the MO-basis transformation
per se; the density-matrix contracted fit coefficients appearing
in the analogous step of Merlot’s algorithm will suffer the exact
same slow onset of sparsity, assuming that density-matrix
sparsity cannot be efficiently utilized. Rather, the lack of sparsity
in the contracted fit coefficients may be viewed as a
fundamental nonlocal behavior of the PARI approximation.
Assuming a fully dense MO coefficient matrix (or density
matrix for the analogous AO problem), an entry Di

μQ will be
nonzero if even a single orbital-basis AO function on the atom
of Q has non-negligible overap with μ. This will hold for every
single function Q on the given atom. The decay of Di

μQ is thus
controlled exclusively by the most diffuse AO functions in the
orbital basis and is slowed significantly by the fact that auxiliary
functions are grouped in large atom blocks. Finally, we also
note that our algorithm outperforms linear-scaling integral
evaluation even for very long alkane chains, thus suggesting that
widely held reservations about the use of RI-SCF methods due
to their higher formal scaling may be somewhat misplaced.
Similar sparsity arguments are relevant to a discussion of the

merits of an AO versus MO implementation. A reduction in the
formal scaling of the algorithm can be obtained by utilizing the
Gaussian product sparsity present in the AO basis representa-
tion of the relevant tensors, as is done in Merlot’s PARI-K
algorithm. However, based on our data for linear alkanes, we
believe that utilizing AO sparsity would actually increase the
raw operation cost of this algorithm, even for very extended
systems. We illustrate this point by considering the relative sizes
of the MO-transformed three-center integrals and the original
AO three-center integrals, accounting for sparsity. The ratio
between these two quantities represents the ratio between the
rate-determining step of our algorithm and an AO algorithm
such as Merlot’s. This ratio reduces to a comparison the
quantities oN and [NB2]. A plot of each of these quantities
with respect to alkane length for the cc-pVTZ basis is shown in
Figure 6. The permutational symmetry of the Gaussian product
indices is accounted for in this figure. On the basis of the
relative size of these quantities, we propose that the AO-basis
algorithm, despite formally scaling lower than our method, will
in fact require more operations even for very extended systems,
in addition to suffering from a significant efficiency penalty due
to the high performance of dense linear algebra operations.
This serves as a reminder that the tremendous compactness of
the occupied MO basis and the associated high efficiency of
dense linear algebra libraries must be properly accounted for
when assessing the efficacy of competing lower-scaling
implementations. Many similar points about the relative merits
of lower-scaling methods in contrast to lower-prefactor, higher-
scaling competitors are stated eloquently in a review by
Neese.73 On the basis of these concerns, it seems to us that the

best path toward a lower-scaling PARI-K implementation is the
use of localized occupied molecular orbitals.

4. CONCLUSIONS
Our MO-based implementation of the PARI-K approximation
has been shown to significantly accelerate large scale range-
separated hybrid DFT calculations. Benchmark results for
thermochemistry and intermolecular interactions indicate that
impressive accuracy can be obtained with the modern ωB97X-
V functional, while requiring an auxiliary basis set no larger than
that used in conventional RI-HF. Our algorithm has been
shown to out-perform commonly available alternatives for
extended and compact systems in TZ and QZ basis sets.
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