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Abstract: Network biology has become a key tool in unravelling the mechanisms of complex diseases.
Detecting dys-regulated subnetworks from molecular networks is a task that needs efficient computa-
tional methods. In this work, we constructed an integrated network using gene interaction data as
well as protein–protein interaction data of differentially expressed genes derived from the microarray
gene expression data. We considered the level of differential expression as well as the topological
weight of proteins in interaction network to quantify dys-regulation. Then, a nature-inspired Smell
Detection Agent (SDA) optimisation algorithm is designed with multiple agents traversing through
various paths in the network. Finally, the algorithm provides a maximum weighted module as
the optimum dys-regulated subnetwork. The analysis is performed for samples of triple-negative
breast cancer as well as colorectal cancer. Biological significance analysis of module genes is also
done to validate the results. The breast cancer subnetwork is found to contain (i) valid biomarkers
including PIK3CA, PTEN, BRCA1, AR and EGFR; (ii) validated drug targets TOP2A, CDK4, HDAC1,
IL6, BRCA1, HSP90AA1 and AR; (iii) synergistic drug targets EGFR and BIRC5. Moreover, based
on the weight values assigned to nodes in the subnetwork, PLK1, CTNNB1, IGF1, AURKA, PCNA,
HSPA4 and GAPDH are proposed as drug targets for further studies. For colorectal cancer mod-
ule, the analysis revealed the occurrence of approved drug targets TYMS, TOP1, BRAF and EGFR.
Considering the higher weight values, HSP90AA1, CCNB1, AKT1 and CXCL8 are proposed as drug
targets for experimentation. The derived subnetworks possess cancer-related pathways as well. The
SDA-derived breast cancer subnetwork is compared with that of tools such as MCODE and Minimum
Spanning Tree, and observed a higher enrichment (75%) of significant elements. Thus, the proposed
nature-inspired algorithm is a novel approach to derive the optimum dys-regulated subnetwork from
huge molecular network.

Keywords: differential expression; subnetwork; topological weight; smell detection agent optimisa-
tion; breast cancer; colorectal cancer; disease genes; drug target

1. Introduction

Communities are significant components that are found in networks, such as social
networks and biological networks. Its constituent elements are highly interconnected to
perform the intended function. The structural, as well as functional, aspects of biological
systems are well represented as biological networks comprising of different biomolecular
elements. These networks can encode knowledge about local molecular interaction as
well as some higher-level cellular communication. Studies show that changes to the
network properties are very much linked to the phenotypes, such as tumors and mendelian
disorders [1]. Network data in the form of interactome, functional regulatory networks and
gene co-expression networks, along with other public repositories, helped biologists to gain
a deep understanding of variations in cellular processes. The healthy condition of human
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beings can be considered the result of the perfect functioning of biological networks. While
investigating the mechanism of diseases, it has been found that diverse causes of complex
diseases act together to dys-regulate the same components of the cellular system [2].

Consequently, the network biology approach has emerged as an effective approach
for understanding the underlying mechanism of complex diseases, including cancer [3].
In various cancer types, the disease condition is reflected through the perturbed state in
pathways or molecular subnetworks [4,5]. Subnetworks are a collection of inter-connected
molecules that perform a particular function. Finding dys-regulated subnetworks will
help extracting useful biological information. Furthermore, mapping molecular expression
data with protein interaction networks is found to be an efficient approach for effectively
elucidating patterns from the network [6]. The integrative approach of combining gene
expression data with other biomolecular networks was found to be efficient in extracting
disease phenotypes [7]. An individual-specific network was constructed using gene ex-
pression correlations and protein–protein interactions (PPI). Here, the interacting genes
in the network were found to be associated with disease states. Also, this approach could
find some proteins linked to diseases that act as potential therapeutic targets [8]. In the
target-centric method of drug discovery, a single target approach fails in complex disease
scenario due to drug resistance and other facts [9,10].

Synergistic drug combination therapy has become a new trend, targeting pathways and
modules consisting of multiple prominent targets. During the paradigm shift happening
in drug discovery through systems-level target focusing, mining such pathway-based
drug targets became challenging. This paper concentrates more on investigating network-
oriented targets that could supplement the synergistic drugs in combating complex diseases.
Thus, mining of dys-regulated subnetworks in multi-omics data has gained significance in
drug design as well [11].

During the past few decades, developing methods for extracting disease-related
modules in molecular data was one of the major goals in computational biology. A variety
of approaches have been applied to this computationally complex problem. The greedy
approach, random walk, evolutionary approach and maximum clique identification are
a few well-known methods, among others. Greedy methods such as Module Analysis
via Topology of Interactions and Similarity Sets (MATISSE) and DIAMOnD employ seed
molecule selection followed by expansion to derive disease modules [12,13]. Starting from
the seed genes, neighbouring nodes are explored based on connectivity significance [13].
Though the resulting disease modules are validated biologically, the greedy approaches
fail to find optimum global networks. Another greedy method based on multivariate
analysis used the scoring technique to derive a differentially expressed subnetwork [14]. As
these approaches are developed based only on exploitation to construct the path, a global
optimum solution is not guaranteed.

GLADIATOR is an algorithm that made use of the evolutionary global search approach
to derive disease modules. A simulated annealing algorithm is applied here to maximise the
gold standard module similarity measure [15]. Unlike other evolutionary algorithms, it uses
a similarity index concerning known disease modules as an objective function. Moreover,
it does not perform any statistical evaluation of the obtained results. However, the pure
evolutionary algorithms require a precise objective function to measure actual perturbation
in the module. HotNet2 is another algorithm developed for finding cancer subnetworks by
mapping the connection strength to heat diffused over the network links [16]. EnrichNet is
a random walk approach associated with restart ability to identify known subnetworks
that are strongly connected to input genes [17].

Walktrap-GM is another algorithm that follows a random walk, exploiting the neigh-
bours through the transition probability assessment on the weight value. A merge process
of selected communities was also done to maximise the network modularity. Though this
approach finds cancer-relevant modules, due to community-related computations, the
complexity becomes O(n3) for sparse data [18]. A multi-objective approach is implemented,
combining the properties, including module scores from gene expression, the pathway cov-
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erage score and connectivity measure [19]. Although prior information regarding pathway
enrichment is incorporated into the algorithm to extract active modules, the drug-related
functionality analysis is not provided. Breast cancer modules were generated by IODNE
by running a modified minimum spanning tree algorithm upon gene-protein data. This
approach has extracted dys-regulated modules with the presence of a few drug targets.
However, no statistical analysis has been conducted to validate the retrieved modules [20].

In our approach, we propose an ensemble of nature-inspired greedy approaches
where the algorithm complexity is reduced. Most of the existing approaches initiate the
search process from genes that are found to be relevant either topologically or biologically.
Moreover, these methods suffer from extensive computations in the form of the repeated
objective value calculation. In the proposed algorithm, the searching is performed by
multiple agents starting from random nodes in the network and hence avoids the necessity
for any prioritisation of start nodes. Additionally, the algorithm complexity has been
reduced over existing greedy approaches.

To test the proposed framework, gene expression data of the two most aggressive types
of cancers, which affect the female and male category, were considered. Triple-negative
breast cancer (TNBC) and colorectal cancer (CRC) samples were taken to generate the
weighted network and for the subsequent subnetwork finding.

2. Materials and Methods
2.1. Dataset

In this work, microarray data were used for the analysis as they can be easily accessed
and pre-processed quickly. The microarray data used for the analysis were downloaded
from a genomic database, Gene Expression Omnibus (GEO) [21]. Moreover, efficient and
easy-to-use tools are available for the processing of microarray expression data.

The TNBC Dataset includes GSE15852 (Affymetrix U133) comprising 43 tumor samples
and 43 normal samples. The analysis for CRC was done with two Affymetrix microarray
data sets GSE77953 and GSE113513. The first set comprises a total of 58 samples pertaining
to various stages of tumor samples (17 adenoma, 17 carcinoma and 11 metastasis) along
with 13 normal samples. The differential analysis needs a group of tumor samples and
normal samples. However, each of these cancer stages differs in the characteristics. We took
17 carcinoma samples and 13 normal samples for the analysis. The GEO2R tool does not
consider this as an unbalanced data set, as it processes the samples as tumor and normal
groups. The second data set GSE113513 consists of 14 pairs of normal and tumor tissues.

2.2. Proposed Approach

This work aims to extract an optimum subnetwork from an integrated network curated
out of differentially expressed (DE) genes. The optimality of the subnetwork in disease
condition is defined in terms of maximum dys-regulation of the molecules as well as
maximum connectivity. The set of DE genes was initially extracted from the microarray
gene expression data of tumor and normal samples. Then, corresponding to the DE genes,
a functional correlation network and the corresponding PPI network were constructed. By
making use of statistical parameters of differential expression analysis and the topological
properties of the PPI network, weights were assigned for both network components. Later,
the integrated network data were given as input to the heuristic Smell Detection Agent
(SDA) algorithm. One major goal was to develop a less complex optimisation algorithm
that can find the best possible subnetwork. Accordingly, agents of the proposed SDA
algorithm explore various paths (subnetworks) using heuristic information extracted from
nodes and links. The overall steps for the proposed approach are shown in Figure 1.
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Figure 1. Data Flow of the proposed approach for subnetwork detection. The Smell Detection Agent
(SDA) optimisation algorithm is applied on the network created using gene interaction data and
protein–protein interaction data.

2.2.1. Deriving DE Genes

After accessing the raw data of data set GSE15852, background correction and normal-
isation steps were done using the Multi-array Average (RMA) function of biocManager v12
in R language. BiocManager is a CRAN package used for installing and accessing software
for the statistical analysis of genomic data.

The duplication of probes was also eliminated. The obtained data were subjected to
differential analysis using the limma package [22]. Relevant functions were used to fit a
linear model, generate t-statistics and necessary computations for deriving a differentially
expressed gene list table.

2.2.2. Curating Integrated Network

The input to the proposed SDA algorithm is the weighted network made out of the
DE set of genes. This section describes how these weights are derived from different
sources. As part of extracting the subnetwork with differentially expressed and highly
connected genes, a network was curated from both the gene–gene interaction network and
the corresponding protein interaction network. The weight assigning method followed here
is an extended method used in IODNE. The integration of two weight values is expected to
support and expedite the module extraction process. The significance of protein interaction
data is that it provides the connection strength of genes. The functionality of proteins is
regulated by their interaction. If two proteins are strongly connected, then the probability
of sharing the same functionality is more. Moreover, these genes could be highly associated
with disease mechanisms. Thus, using the PPI data would help expediting the extraction of
genes that are strongly related and with the same functionality.
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Gene Interaction Network (Ng)

The first network corresponds to the functionally correlated genes in normal and
tumour samples. The weight values were assigned to each node/gene based on the
statistical measures of differential expression.

g(i)w = g(i)|t-value| + g(i)|log(fc)| (1)

Here, g(i)|t-value| is the absolute value of the t-value for ith gene. The combined t-value
and log(fc) value was taken to assign the node weight.

As network Ng reflects the functional association of genes, the gene pair correlation
values were used as the link weights. The gene correlation value of (gi, gj) indicates
how strongly these genes are associated with their expression values. The most popular
and efficient Pearson correlation value of a gene pair is calculated using the R tool. The
association coefficient values were computed for all N genes in normal samples and the
tumour samples and assigned to matrices Mcorrnor and Mcorrtum. The final correlation
matrix Diffcorr is generated by computing the difference between these two intermediate
tables as

Diffcorr = Mcorrnor −Mcorrtum (2)

A portion of Ng generated for the first DE gene set is shown in Figure 2. While mapping
the network Ng onto the graph Gg, we have computed the edge weight from the correlation
value and the STRING database’s functional association score for the corresponding protein
interactions [23].

Figure 2. Correlation matrix generated from the Differentially Expressed (DE) gene set with rows
and columns corresponding to the differentially expressed genes, and each cell holds the measure of
the difference in correlation values across the samples.

Protein–Protein Interaction Network (Np)

The PPI network created was used to extract the connectivity patterns of co-expressed
genes corresponding to the DE set of genes. While mapping this network Np onto the
weighted graph Gp, the connection strength among the proteins was also considered. The
node weight and link weight were assigned considering this topology feature of proteins.
Accordingly, the eigenvalue for each protein in the network was computed to extract its
influence over the entire network.

As an accurate centrality measure, the eigenvector considers neighbouring nodes of
the current nodes. It is described as a function of the degree of current vertex ni and its
adjacent vertices. For a given matrix A corresponding to the input graph, a scalar λ is an
eigenvalue if it satisfies the condition AV = λV, and V is a non-zero vector, considered the
eigenvector corresponding to λ. To represent the connection strength, different centrality
measures are used. One simple approach is using degree centrality, which considers only
the number of connections of the given protein in PPI network. The eigenvector is a more
efficient method, which considers the connection strength of the current node as well as
the connection of associated neighbours. Thus, this measure gives an accurate quantity for



Biomolecules 2022, 12, 37 6 of 21

connection strength among proteins. The selection of the most suitable node/gene in the
network is more important, as far as the subnetwork extraction is concerned. This node
selection is done based on the weights assigned to the nodes. The eigenvalue is a significant
part in defining weights.

Here, the protein network Np is the input matrix for eigenvalue computation. The R
function was used to derive an eigenvector of size m, which corresponds to the number of
vertices in the protein network. In contrast, while mapping Np → Gp, two vectors Vp for
vertices and Ep for edges were generated. Here, the result of eigenvalue computation Veig
was assigned to Vp as the weight of nodes in graph Gp. Each node of Gp was assigned a
weight wi, where wi ε Veig.

To compute the edge weight in Gp, the maximum score of proteins forming the edge is
taken. For each edge ei ε Ep, if ei is composed of (gk, gl), then

w (ei) = max [w(gk), w(gl)] (3)

Generating the Final Network (Nf)

The final network creation has now been reduced to the weight integration process.
The weights of Nf will reflect both functional properties and topological properties. The size
of the edge set becomes the same as the number of links in Np. The node weight becomes

c1 × gi(w) + c2 × eigen_value (4)

where c1 and c2 are tuning parameters. Here, we assigned 0.5 to assign equal weights to
both the factors. Similarly, the edge weight is calculated as

d1 × total_linkweight (Gg) + d2 × link weight (Gp) (5)

where d1 and d2 denote tuning parameters to adjust weight contributions. Various combi-
nations of values between 0.1 and 0.9 were used as the tuning parameters. However, based
on the results obtained, the final value pair was chosen as (0.5, 0.5). The graphical repre-
sentation of the integrated network is given in Figure 3. In the figure, only the elements
that are to be combined are shown. The parameters for combining the attributes are not
included in the weight representation.

Figure 3. Graphical representation of the portion of the integrated network with final weights.
Node weight comprises the differential weight of the gene gi and the topological weight of the
corresponding protein pi. Edge weight comprises the correlation value of genes and the connectivity
score of proteins in the PPI graph.
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2.2.3. SDA Algorithm

Nature-inspired algorithms have been proven as efficient in solving diverse optimisa-
tion problems, including biodata mining [24]. SDA is a recently developed optimisation
algorithm suitable for path-finding applications. The algorithm mimics the behavior of
dogs, described as agents, in order to detect the optimum path. Dogs are creatures known
for their sniffing as well as memorising ability and therefore are trained for various target-
finding applications. They also mark their region or territory by some specific biological
mechanism, such as urination. Due to the superior capacity of olfactory cells, they can easily
identify marked smell spots while searching paths to reach their destination. Moreover,
this is a suitable mechanism that prevents other dogs from entering one’s territory. The
basic SDA algorithm was developed and applied successfully for solving shortest path
problems [25]. There exist plenty of optimisation problems known to be Non-deterministic
Polynomial time (NP)-hard but easily solved by a nature-inspired metaheuristic approach.
The basic SDA algorithm applied on the shortest path problem finds the optimum solution
in a parallel search mechanism, achieved through multiple agents performing the search.

The agents (dogs), as well as smell spots (search points), constitute the algorithm
environment. Initially, each agent is assigned an identification code known as a signature
and a region size. These agents search for the nodes in their own territory by exploring
the most suitable unmarked spot. The most suitable node is chosen based on the amount
of smell value secreted by it. This exploitation terminates when an agent reaches the
destination. All the agents with varying capacities are expected to find independent
paths. Finally, the algorithm returns the optimised path with respect to a suitably defined
objective function.

One of the most successful applications of the SDA algorithm is seen in the field of
advanced computer networking. In software-defined networks (SDN), the centralised
controller has applied this algorithm to find the optimal path for packets [26]. In this paper,
we extended the basic algorithm to modify a few properties to provide the algorithm the
ability to return the global optimum module out of the huge molecular network. In the
basic algorithm, all agents start from the same start location. Additionally, the search
process terminates at the destination node. In the proposed SDA algorithm, each agent will
begin searching from different nodes, and the termination criterion is set as per the accepted
region size. The detailed steps devised for subnetwork extraction from our integrated
network are given as Algorithm 1.

The objective function for SDA has been defined based on both the measure of dif-
ferential expression and the topological strength. These two aspects were computed and
assigned as weights on nodes and edges in the network. The algorithm finally generates the
optimum path, which has the maximum weight based on the following objective function

F = 1/m ∑wi + 1/q ∑w (gi, gj) (6)

for node count m and edge count q.
The algorithm parameter agent_count was given different values by keeping other

parameters fixed. For the same agent_count value, the algorithm was run ten times with
varying start points. The final value was taken by computing the average of all objective
function values. Though much significant difference was not observed with objective
values, the optimum performance value found was 8. The smell update coefficient was
used as the proportionality coefficient when agents put smell value for protein–protein
links. Unlike the basic SDA algorithm, here, δ was applied as an increment constant.
Accordingly, we put different values for δ, and the value corresponding to the maximum
objective value was chosen (Figure 4). As the number of nodes increases with the k value,
the objective value is also increased. Finally, the robustness of the algorithm is checked by
running the same process repeatedly with different parameter combinations.
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Algorithm 1 SDA

Input: Weighted Network Nf {Vf, Ef}, Module size m
Step 1: Initialize source positions: sr[]
Number of agents na
Number of smell spots ns = Vf, gene count
Step 2: Create smell spots/nodes
(i) Assign smell value by
s = c1 × x + c2 × y, x and y are the differential and topological weight of nodes
c1 and c2 are tuning coefficients
(ii) Mark node as ‘unvisited’
Step 3: Create agents and assign start nodes to each agent
For i = 1 to na
st[ai] = sr[i]
Step 4: Initialize link smell as sl = Ef
Update smell value by
sl = sl + δ × p, δ: smell decrement constant,
p: accumulated weight from the current node
Step 5: For each agent ai
current node = st [ai]
while (path size < m)
Find neighbour list nb[]
Choose the next node Nx from nb[]
if (Nx = Unvisited) and (link smell is maximum)
Include Nx into path and mark Nx ‘visited’
Compute total path weight F
Step 6: Return the maximum weight path as solution

Figure 4. Objective function based on varying values of parameter δ. The smell update coefficient
takes the value 0.5 corresponding to the maximum objective function. Agent_count represents the
number of agents used by the algorithm for finding separate paths. After performing multiple runs,
final value is taken as 8.
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2.2.4. Pathway Enrichment Analysis

The association of the SDA-derived subnetwork with various functional pathways was
investigated through the DAVID (Database for Annotation, Visualization and Integrated
Discovery) tool [27]. It is a database which provides gene annotation as well as functional
details curated by sophisticated experiments. The genes of our module were analysed by
the tool so as to extract the biological processes and pathway enrichment. From the results,
pathways with p-value < 0.05 were considered as the most significant ones in the disease.

3. Results
3.1. TNBC Data Analysis

Triple-negative breast cancer is one of the most aggressive subtypes of cancer in
around 15% of the detected cancers. The absence of three receptors—estrogen, progesterone,
and hormone epidermal growth factor receptor 2 (HER2)—characterises TNBC in tumor
samples. The data set GSE15852 used in this study consists of samples collected from
patients of different age groups [28]. After analysing the dataset with the limma package,
we obtain the table with values generated for parameters p-value, adjacent p-value and
log(fc) value. To filter DE genes, we have set the selection criterion as adjacent p-value < 0.01
and |log(fc)| ≥ 1. As the resulting gene set size was too small, the log(fc) cut-off was
reduced further to 0.5. This step has helped to include more relevant genes in the derived
list. Thus, we obtained a list of 1478 genes, which was used for the network construction.

3.1.1. Extracting Paths

The network corresponding to the DE gene set was created by integrating gene–gene
correlation data and protein interaction data. The curated network has 1478 genes and
21,320 connections. This network is applied to the SDA algorithm to extract the dys-
regulated subnetwork. Here, the algorithm used different agents to find modules starting
from different locations, and the maximum weighted module is designated as the optimum
one. Similar to the behaviour of dogs that are reluctant to enter another one’s territory, the
paths developed by the agents will also be unique. As per the size given, the algorithm
derived different paths with different weights and returns the optimum one with the
highest weight value indicating maximum dys-regulation of the involved elements.

3.1.2. Evaluating and Comparing Algorithm Performance

This section analyses the performance of the proposed SDA algorithm in the module
extraction process. Additionally, the solution quality is compared with another efficient
optimisation approach known as the Artificial Bee Colony (ABC) algorithm [29]. The ABC
algorithm mimics the foraging behaviour of honey bees and provides sufficient exploration
ability. Thus, it provides global optimum solutions to many optimisation problems. Here,
the SDA performance is measured in terms of the objective function value corresponding
to various agent counts. These objective values are compared with the objective values of
the ABC algorithm corresponding to different bee counts, as in Table 1.

It is seen that the number of agents required is less in SDA compared to the ABC
algorithm to obtain higher objective values. Although we can increase the bee count to
obtain a high-quality solution, the time complexity will also increase tremendously. To
maintain the balance between the solution quality and the time requirement, we cannot
increase the bee count beyond a particular limit.

Apart from this, the time complexity of both the algorithms are also compared. The
ABC algorithm involves objective value computation for every iteration by each worker bee.
Computing the objective value itself requires the path tracing process within the network,
which is of complexity O(n3). Accordingly, the total complexity of the algorithm becomes
N*O(n3) for N worker bees and a network with n nodes. Analysing the agent processes
in the SDA algorithm, each agent explores the path with nlog (n) complexity. Thus, for k
agents, the total complexity becomes k*nlog(n). However, as the value of k is too small
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compared to the value of n, it is approximated to nlog(n). Therefore, it is observed that the
time complexity of the proposed SDA algorithm is less than the ABC algorithm.

Table 1. Comparing performance of the proposed algorithm and Artificial Bee Colony (ABC) algorithm.

SDA Algorithm

No. of Agents Objective Value Time (s)

4 111.1 0.03

8 110.98 0.05

12 111.0 0.07

14 111.5 0.08

ABC Algorithm

No. of Bees Objective Value Time (s)

20 104.37 0.238

30 105.18 0.467

40 108.94 0.574

The computing time of both the algorithms is also noticed and given in Table 1. It is
observed that the time taken by the SDA algorithm is less than the execution time of the
ABC algorithm.

One existing challenge in module identification problems is the non-availability of
benchmark functions for evaluating the obtained modules. Existing approaches apply
topological features, such as connectivity and hub nodes, to rank the resulting module.
Some other tools, such as DIAMOND, make use of the similarity index regarding other
disease modules. A few of them search for the existence of drug targets in the subnetwork.
However, no other statistical measures were used to evaluate the obtained module. None of
these methods, including disease module detecting tools, have done statistical, functional
and target-related measures for analysing the module. The list of DE genes, network links
and the generated subnetwork for TNBC data are given in Supplementary File S1. Figure 5
depicts the visual representation of the dys-regulated module obtained for TNBC data.

The nodes in the subnetwork have higher weight values with respect to the differential
expression and connectivity within the network. Further analysis of molecules in the
subnetwork was done based on the weight values. The Cytoscape tool was used to generate
the colour gradients for nodes based on the weight values [30]. Low-weight nodes are
assigned yellow colour. As the weight values increase, the intensity reduces, and thus, the
medium-weight nodes appear white in colour. The top nodes are assigned a purple colour.
To verify the connectivity between the nodes, a degree-based view of the subnetwork is also
generated as in Figure 6. By analysing this figure, it is observed that the nodes within the
module are strongly interconnected. One peculiarity of the subnetwork is that the nodes are
interconnected, and the degree will be high. The Cytoscape generated view shows that the
nodes within the module are of a higher degree, and the nodes are strongly interconnected.
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Figure 5. Visual representation of SDA derived dys-regulated subnetwork for Triple Negative Breast
Cancer (TNBC) with 60 nodes and 940 edges. The nodes correspond to the genes in the optimum
path with optimum weight values. The varying weights in increasing order is represented as colour
gradient between yellow and purple.

Figure 6. Degree-based view of the TNBC module generated by Cytoscape showing higher connec-
tivity among the nodes.

3.1.3. Evaluating Biological Significance
Association with Disease

The proposed SDA algorithm outputs the maximally weighted module comprising
many genes highly associated with TNBC. After analysing genes in the subnetwork, 80%
of the genes were found to be functionally significant. EGFR, TP53, BIRC5, TOP2A, JUN,
BRCA1, IL6, AR, STAT3, CTNNB1, MYC, VEGFA and FEN1 were a few among the genes
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found in the module. DisGeNET is a novel platform that consists of associations between
over 15,000 genes and diseases [31]. It is a rich repository of data curated from the Genome
Wide Association Studies (GWAS) database and text-mined data to provide information
about many complex diseases. When searched for disease-gene associations, it was found
that ESR1, AR, PIK3CA, CTNNB1, BRCA1, IL6, EGFR, STAT3, MYC, etc., are linked to triple-
negative breast cancer. Around 40% of the identified genes have a disease association score,
DSA≥ 1 in DisGeNET. Moreover, most of these genes act as biomarkers of the same disease.
TNBCdb is another database that serves as a resource for TNBC by providing information
on differentially regulated genes, molecular functions, and signalling pathways [32].

As shown in Table 2, 50% of the subnetwork genes were verified by DisGeNET as
prognostic factors in TNBC, and 75% of the identified genes were verified by TNBCdb. We
found many works in literature detecting different genes such as BRCA1, PIK3CA, AR, and
PTEN as potential biomarkers of TNBC [33]. Studies show that alterations in BRCA1 lead
to dysfunction of DNA repair, checkpoint control of the cell cycle, and transcription. It also
raises the risk for breast cancer and is considered one of the prominent genetic markers in
TNBC [34]. Androgen Receptor (AR) plays a significant role in 90% of all breast cancers [35].
Another study performed on tissue microarray samples collected from 287 TNBC patients
revealed AR involvement in 26% as overexpressed [36]. Similarly, tyrosine kinase receptor
EGFR is involved in various cellular processes such as proliferation and angiogenesis. It
also takes part in apoptosis inhibition by initiating a signalling cascade. A majority of
TNBC samples have shown differential expression of EGFR and therefore treated as a
potential biomarker. One noticeable point is that we obtained two candidate genes, PIK3CA
and PTEN, in our derived subnetwork of TNBC. It has been shown that these two serve
as cytoplasm biomarkers of TNBC with leading activities [37]. PIK3CA is involved in cell
growth, proliferation, and cell death inhibition, leading to cancer. PTEN is also known as a
tumour suppressor gene, inhibiting the signalling pathway lead by PIK3CA [38].

Table 2. Module gene associations with diseases for TNBC gene set, verified with other methods.

Molecules Approved/Undergoing
Studies Significance Observed

Genes in SDA Module
Overlapped with Other

Methods

Number of Overlapped
Molecules

BRCA1, BRCA2, EGFR, PIK3CA, AR, PARP,
PD1, PDL1, TP53, FGFR, VEGF, TROP2,

NOTCH [34,36,37]
Biomarker BRCA1, EGFR, PIK3CA, AR,

PTEN, VEGFA, TP53 7

VEGF, EGFR, FGFR, PD1, AR, CTLA4,
AMPK, MDM2, MTDH, ATR, CHK1,

WEE1, HSP90, CDC25, BRCA1, IGF1, AKT,
PIK3CA, PTEN, PARP, CDK4, CDK1,

STAT3, IL6, TOP2A [39–42]

Drug targets under clinical
validation/pre-clinical

evaluation

CDK4, CDK1, PTEN, AR, PIK3CA,
TOP2A, STAT3, IL6, BRCA1,

HSP90, VEGFA, IGF1
12

PLK1, CTNNB1, IGF1, AURKA, PCNA,
HSPA4, EP300 Proposed targets Chosen based on weights

Genes found in DisGeNET database Disease associated genes AR, PIK3CA, CTNNB1, BRCA1,
IL6, EGFR, STAT3, MYC, etc. 32

Genes found in TNBCdb database Disease associated genes 45

The significance of genes included in the SDA-derived module for TNBC data was
validated with studies in literature. Disease-associated genes, biomarkers and druggable
targets were identified in the subnetwork and validated with results of other methods.

Drug Targets

Due to the highly complex biology of TNBC samples, a thorough study became neces-
sary in finding effective drug targets. Aiming at targeted therapy for this heterogeneous
disease, more specific molecular targets are to be identified. Most of the identified biomark-
ers were clinically validated as promising targets. On analysing the obtained resultant
subnetwork, a few already proven molecular targets were detected. We observed that the
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identified molecules in the derived module could act as clinically verified targets as well.
BRCA1 is one such biomarker that exists within the nucleus and is targeted by platinum
drugs. HDACs are expression regulators playing an important role in TNBC. Effective
clinical experiments are going on involving this genetic marker as a target [39]. Several
clinical trials are underway targeting AR and sufficiently tolerated in different phases.
Studies show that STAT3 and IL6 act as mediators for target genes AKT and ERK. Also,
application of the drug Bazedoxifine seems to block IL6 stimulated processes such as cell
viability, proliferation, etc. [40]. Alterations in TopoisomeraseII alpha (TOP2A), commonly
amplifications, were seen in different breast cancer subtypes. Moreover, it is experimentally
proved that TOP2A acts as a predictive response to anthracycline application [41]. We
found that 24% of proteins are either druggable targets or closely linked to druggable
targets. The inhibiting function of HSP90 by Simvastatin was proved to be effective against
TNBC [42]. This emphasizes the role of heat shock protein 90A extracted by our module as
a valid drug target. In short, 50% of the genes in the identified module are tightly associated
with a disease state, and 20% of the genes are utilised in drug-related clinical experiments.

The aforementioned already proved drug targets and relevant biomarkers are in
purple in the subnetwork of Figure 5. Apart from these, a few more genes were also found
in the top position of our extracted module and appear in dark purple.

Proposed Targets

The constituent molecules of the derived subnetwork are filtered based on the gene
function and weight values to be proposed as novel drug targets. Accordingly, based on
the behaviour in TNBC, ESR1 is not considered for the analysis. On analysing the weights,
it is observed that the top-weighted molecules such as TP53, MYC, JUN, etc., are already
validated biomarkers or drug targets. Therefore, a weight threshold is applied as a filter to
extract molecules that are significant but not over-researched. As the weight is defined using
(eigenvalue, log(fc)) pair, the threshold is fixed as 0.7 < log(fc) < 0.95 and 0.4 < eigen < 0.6.
Accordingly, the genes with weight values in this range are identifies as PLK1 (0.52, 0.79),
CTNNB1 (0.6, 0.82), IGF1 (0.44, 0.85), AURKA (0.50, 0.91), PCNA (0.44, 0.79), HSPA4 (0.49,
0.86) and EP300 (0.6, 0.79). Apart from these, GAPDH is also proposed as it has higher
weights (0.85, 0.86) but not explored much. All these molecules can be subjected to further
analysis for consideration as targets.

Searching for the applicability of these molecules as drug targets, it is seen that a few
studies are conducted involving some of these genes as drug targets. PLK1 is a gene that
is suggested through siRNA-mediated knockdown screening [43]. IGF1 is found to be a
part of a signalling pathway which promotes growth of TNBC cells [44]. Thus, it is a novel
candidate for the TNBC drug target.

Targets of Synergistic Drugs

As complex diseases such as cancer are caused by multiple proteins, a combination of
drugs would help combat diseases effectively. Searching for such proteins that act as targets
for synergistic drugs was one of our motives. Accordingly, we searched for the potential of
proteins present in our derived module for TNBC during analysis. It has been observed
that an in silico study involving synergistic drugs action against certain target proteins
revealed the efficacy of those drugs on multiple target proteins in TNBC tissues. The
combination of afatinib and YM155 exhibited a synergistic cytotoxic effect across multiple
TNBC models by inhibiting BIRC5 and EGFR proteins [45]. Our module also has these
two proteins BIRC5 and EGFR that can be denoted as synergistic targets. Additionally, the
proteins which are identified as targets can be analysed further to showcase synergistic
effects of associated drugs.

Pathways Identified

The derived subnetwork is expected to contain genes that belong to some significant
functional pathways. Accordingly, the obtained TNBC module genes were submitted to the
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KEGG tool. It has returned 70 pathways contributing to various cellular and other function-
alities. We have evaluated the genes involved in those pathways with a p-value < 0.05 and
observed that 82% of the module genes span over these KEGG pathways. Table 3 shows
a few pathways comprising module genes and found relevant in cancer progression and
other cellular processes.

Table 3. Top five pathways identified by KEGG tool from the TNBC subnetwork.

Pathway Description p-Value Genes Present

hsa04110: Cell cycle 3.84 × 10−17 HDAC1, BUB1B, CCNA2, CDC20, CCNB1, MYC, MCM3, CDK1,
MCM4, EP300, MCM5, ATM, TP53, MCM2, MAD2L1

hsa05200: Pathways in cancer 5.49 × 10−16
HDAC1, PTEN, FGF1, EGFR, MYC, CASP3, TP53, MAPK1,

EP300, JUN, HSP90AA1, STAT3, FN1, IGF1, FOS, VEGFA, AR,
IL6, PIK3CA, BIRC5, CTNNB1, KRAS

hsa04115: p53signalling pathway 5.18 × 10−8 CCNB1, RRM2, CDK4, CASP3, PTEN, CDK1, ATM, TP53, IGF1
hsa04915: Estrogen signalling pathway 1.35 × 10−5 HSP90AA1, JUN, PIK3CA, MAPK1, KRAS, FOS, ESR1, EGFR

hsa05202: Transcriptional mis regulation
in cancer 0.0022 IL6, HDAC1, MYC, ATM, IGF1, TP53

Pathway enrichment analysis of genes found in the TNBC subnetwork was conducted. For a cut-off p-value < 0.05,
55 functionally relevant pathways were obtained, and five are shown here. The list of all pathways is given as
Supplementary File S3.

After obtaining the enrichment of disease-relevant elements within the SDA-derived
subnetwork, a comparison is done with enrichment in other methods. The presence of
relevant drug targets, biomarkers and pathways in the TNBC module is compared with that
of IODNE, as well as MCODE [20,46]. MCODE is a tool developed based on a clustering
technique and returns multiple modules with varying scores. IODNE was developed using
the Minimum Spanning Tree technique for extracting modules from networks of breast
cancer data. We have analysed the results of these techniques, and the estimate taken is
shown in Table 4.

Table 4. Comparing enrichment of significant elements in the subnetwork.

Method Path Size Disease
Genes (%) Drug Targets Significant

Pathways Biomarkers

MCODE 88 32 (36%) 7 4 9

MST 58 37 (64%) 10 2 7

SDA 60 45 (75%) 10 7 12

It is observed that SDA-derived module has the highest enrichment compared to the
modules of other techniques. This observation proves the superiority of the proposed
approach in deriving subnetworks from biological networks.

3.1.4. Statistical Assessment

Considering the quality of the obtained modules, a statistical evaluation is as important
as biological validation. Here, we have used the modularity index, known as “local
modularity,” as one evaluation criterion [47].

In the graph corresponding to our generated network Nf, we know all the connection
details of a small portion S (subgraph), and for the remaining portion S’ in G, we know
only nodes that are adjacent to S. Consider those nodes in S that are connected to at least
one node in S’, then these nodes said to constitute a boundary for S. This boundary B is
said to be sharp if it has a smaller number of connections to S’ but more connections with
nodes in the community S. In such a context, local modularity R is defined as

R = ∑(Bij δ(i,j))/∑Bij (7)
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Here, δ(i,j) becomes 1 if there exists a link between B and S; otherwise, it will be 0.
As per the definition, to keep the best modularity, the R-value is expected to be low. We
computed R for the obtained module, and it is 0.17, which is low. This indicates the quality
of the derived module.

3.2. CRC Data Analysis

CRC is another type of cancer that leads to a higher death rate among men of a
particular age group [48]. Initiated as adenoma, this disease may develop into a metastasis
condition with adverse effects on other organs [49]. As with other cancer types, CRC
is also treated with targeted therapy, prepared for affecting predominant markers, such
as VEGFA and EGFR [50]. Here, we have used two data sets, GSE77953 and GSE113513,
for analysis [51]. After the normalisation process by the limma package, differentially
expressed genes were extracted using GEO2R. After we applied the criteria p-value < 0.01
and |log(fc)| > 1, we obtained two DE gene lists S1 and S2 comprising 1945 genes and
1748 genes, respectively. Then we have extracted common genes of these two lists and
obtained a list of 245 relevant ones. However, our aim is to construct a network of genes
with functional and topological significance. Therefore, we have extracted a subset of
genes with |log(fc)| > 1.5 from both S1 and S2. These genes were combined with common
245 genes, and finally, a DE list of 825 genes was curated.

The network was constructed, and weight was assigned based on the gene interaction
values and topological scores. The curated network has 825 nodes and 7127 links. Then SDA
algorithm with random start nodes was applied to this network. The extracted subnetwork
was visualised using Cytoscape. The resultant optimum module consists of 60 nodes and
666 edges, and the relevance of each molecule was investigated. The DE gene list, edge list
of network and the output genes in the generated module are provided in Supplementary
File S2.

Validating result: The data of differentially expressed genes itself is found to be
significant for understanding the mechanism of CRC. This is due to the lack of enough
molecular data in the form of targets and dys-regulated genes. Therefore, the obtained
set of DE genes was compared with the gene list compiled by other methods. Among the
common 245 genes, 90% of genes were matched with the results of the mRmR (maximum
relevance minimum redundancy) method and the Human Protein Atlas database [52,53].
The dys-regulated subnetwork for CRC was extracted using the SDA algorithm run with
seven agents. The obtained module is shown in Figure 7.

To evaluate the significance of genes/proteins in the obtained module, we have
considered a few techniques in literature, and the findings in comparison are given in
Table 5. A bioinformatics analysis was done on CRC gene expression data using existing
tools, and a dense module of candidate genes was obtained by Chen et al. [54]. Among the
16 genes found within this module, extracted by Cytoscape, 11 genes were overlapped with
genes found by our approach. As one of our criteria for deriving dys-regulated module
was maximally connected module, this high number of overlapped genes (78%) indicates
the relevance of our obtained module in terms of connectivity. Additionally, the hub genes
identified by this method overlap with the module genes in the SDA algorithm. The
underlying molecular mechanism of most cases of colorectal cancer has been proved to be
associated with genes such as KRAS, APC, TP53, EGFR, etc. [55]. Our extracted subnetwork
contains most of these genes, including TP53, BRAF, PTEN, EGFR and APC variants.
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Figure 7. The optimum dys-regulated subnetwork generated by the SDA algorithm for CRC. The
yellow nodes represent genes with low weights in the module and top-weighted nodes are purple.

Table 5. Module gene associations with diseases for the CRC gene set.

Gene Symbol Identified by Other
Methods

Significance
Observed/Method Used Genes in SDA Module No. of Overlapped

Genes

TOP2A, CDK1, ECT2, FEN1, NEK2,
BUB1B, RRM2, NCAPG, MELK,

AURKA, CCNB1, DLGAP5, FANCI,
CKS2, CEP55, CKAP2

Dense module/Cytoscape [54]

TOP2A, CDK1, FEN1, NCAPG,
MELK, RRM2, AURKA,
CCNB1, CEP55, FANCI,

DLGAP5

11

TOP2A, PAICS, CDK1, CKS2, CKAP2,
CEP55, VEGFA, NEK2, PHLPP2,

RRM2
Hub genes [54] TOP2A, CDK1, CEP55,

VEGFA, NEK2, RRM2 6

BRAF, RAS, APC, TP53, EGFR, PTEN,
SMAD4, MSH2, MSH6, MLH1

Common onco genes and
tumor suppressor genes [55]

BRAF, TP53, EGFR, PTEN,
APC

BRAF, C1QA, C1QB, VEGFA, FCG1A,
FCGR2A, FCGR2B, TYMS, EGFR,

TOP1, DDR2, EPHA2, FGFR1, RET,
TEK

Drug targets [56] BRAF, TYMS, VEGFA, EGFR,
TOP1 5

- Proposed targets AKT1, CCNB1, HSP90AA1,
JUN, CXCL8

Relevance of genes found in the SDA-derived module for CRC data was assessed. By comparing with results by
other tools, hub genes, dense module genes and drug targets were identified. Overall, 80% of genes in subnetwork
was found to be validated with the compared techniques.

3.2.1. Biomarkers and Drug Targets

The most promising fact noticed in the results is approved drug targets in the obtained
module. A total of 15 most prominent Food and Drug Administration (FDA)-approved
drug targets along with the associated drugs were presented in an ontology-based network
analysis approach [56]. Among these target genes, five are present in the higher weighted



Biomolecules 2022, 12, 37 17 of 21

genes of the SDA-derived subnetwork. Overexpression of CDC20 was proved to be as-
sociated with a prognostic marker for colorectal cancer [57]. A recent study reveals the
scope for further clinical studies to consider a well-known tumour-related gene MYC as
an effective drug target. Based on the experimental data, it was suggested that inhibiting
c-MYC expression may stop tumour growth. Its downstream target genes also act as
effective targets for tumours therapy [58]. CDK1, MAD2L1, MYC and CCNB1 were also
proposed as biomarkers as they associate with cell cycling-related pathways [59].

3.2.2. Proposed Targets

The gradient colouring given to the module nodes based on the weights makes higher
weighted nodes appear in purple. Additionally, the analysis of module genes shows
that the relevant molecules that are identified as drug targets and biomarkers are purple.
Accordingly, molecules denoting the top-weighted nodes that appear in purple in Figure 7,
and AKT1, CCNB1, HSP90AA1 and CXCL8 are proposed as drug targets for further analysis.

3.2.3. Pathways Identified

The KEGG database returned a set of pathways enriched with the module genes of
CRC. It is found that these pathways are related to cell cycle progression, cancer-related
function or signalling processes. Table 6 shows the significant pathways observed for CRC
along with their functionality and involved genes. One of the obtained pathways represents
the colorectal cancer pathway consisting of genes JUN, MYC, AKT1, BRAF and TP53. This
result proves the fact that the derived dys-regulated subnetwork has a tight association
with disease, and the genes are relevant in other biological processes as well.

Table 6. Pathways observed during analysis of CRC subnetwork genes. This table shows a few top
pathways associated to cellular functions, signalling and cancer-related processing.

Pathway Description p-Value Genes Present

hsa04110: Cell cycle 1.89 × 10−14
PCNA, CDKN2A, TTK, CDC6,

CDC25A, CDC20, CCNB1, CDK4,
MYC, CDK1, MCM4, ATM, TP53, ATR

hsa04115: p53 signaling
pathway 8.55 × 10−9 CCNB1, RRM2, CDKN2A, CDK4,

PTEN, CDK1, ATM, TP53, ATR

hsa03010: ribosome 2.45 × 10−5 RPS15, RPS14, RPS9, RPS5, RPL23,
RPL13, RPS2, RPL7

hsa05200: Pathways in cancer 3.20 × 10−5
HSP90AA1, JUN, CXCL8, CDKN2A,
CDK4, MYC, PTEN, AKT1, BRAF,

TP53, EGFR, VEGFA

hsa05210: Colorectal cancer 6.76 × 10−4 JUN, MYC, AKT1, BRAF, TP53

hsa04151: PI3K-Akt signaling
pathway 0.0065 HSP90AA1, CDK4, MYC, PTEN,

AKT1, TP53, EGFR, VEGFA

hsa0401: MAPK signaling
pathway 0.0238 JUN, MYC, AKT1, BRAF, TP53, EGFR

The pathway enrichment analysis by KEGG has returned 35 pathways for a cut-off p-value < 0.05. This table
shows seven functionally relevant pathways comprising the top genes of the derived subnetwork. The list of all
pathways is given as Supplementary File S3.

By analysing the genes present, it is observed that 80% of the module genes are present
in the functionally relevant pathways. Thus, it is evident that our proposed algorithm is
capable of extracting the significant module in CRC data.

4. Limitations and Future Work

Our proposed approach has succeeded in extracting the de-regulated subnetwork
in both TNBC and CRC data. In TNBC data, we could detect relevant target proteins,
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including proteins for synergistic drugs. While analysing the CRC module, we could find a
couple of disease biomarkers and drug targets. However, in the data modules identified,
our approach failed to identify some particular marker genes. KRAS and PAICS are two
significant genes in CRC, but these were not included in the derived module. This may be
due to the limited number of data samples taken for analysis.

Furthermore, we have considered microarray expression data for the analysis. With
the advancements in sequencing technologies, RNA-Seq data sets are currently available
for analysis. We could not use these transcriptome data for this study due to some technical
constraints. However, our future work would concentrate on extracting RNA-seq data of
cancer samples so as to derive more accurate results.

Similarly, the limitation with the smaller number of samples would be overcome by
extracting more data samples. Additionally, the differential expression analysis would be
performed by highly sophisticated methods. The final DE gene list would be prepared by
taking the common genes obtained by each data sample. This is expected to improve the
confidence of the initial seed genes for further analysis.

Another aspect of the de-regulated module that can be considered is the copy number
variation count. Combining these three attributes would make the tool much more effective
in module extraction.

5. Conclusions

We have proposed an optimisation framework to elucidate the dys-regulated sub-
network from a weighted network curated out of differentially expressed genes and the
corresponding proteins. An efficient nature-inspired SDA algorithm was designed for this
path extraction. The most promising feature of this algorithm was the reduced time com-
plexity of n (log n) for n number of nodes in the network. This algorithm has successfully
derived the most optimum set of nodes and links based on the topological and differential
expression scores. As we provided multiple agents, the algorithm has chosen the best path
as the final result. These nodes were mapped to genes/proteins to form the molecular
subnetwork to extract maximum biological information. Once we can extract such modules,
we can process it further to mine useful information.

The biological evaluation of the obtained genes in the module has revealed the efficacy
of our proposed approach. Due to the deadly nature and higher death rates, we have
chosen TNBC and CRC data sets for analysis. Overall, in both these cancer types, 70%
of the genes were biologically validated, including drug target prediction. In CRC, we
proposed new drug targets considering the significance of the genes in the derived module.

Compared to the other approaches, the major advantage is that a single algorithm
is sufficient to elucidate the module comprising of biomarkers, hub genes, drug targets,
and other aspects. In most of the existing approaches, multiple tools and techniques are
required to obtain all this information.

Above all, these modules’ future applications can be further analysed to access syner-
gistic drug targets for the concerned disease. Through effective mechanisms, the synergistic
targets which are likely to be bound by multiple drugs or small molecules can be recognised.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12010037/s1, Supplementary File S1: Input network and subnetwork for TNBC, Sup-
plementary File S2: Input network and subnetwork for CRC, Supplementary File S3: Pathways
in subnetworks.
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