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Abstract. Sympathetic neurons undergo programmed 
cell death (PCD) when deprived of NGF. We used an 
inhibitor to examine the function of interleukin-ll3- 
converting enzyme (ICE) family proteases during sym- 
pathetic neuronal death and to assess the metabolic and 
genetic status of neurons saved by such inhibition. Boc- 
aspartyl(OMe)-fluoromethylketone (BAF), a cell-per- 
meable inhibitor of the ICE family of cysteine pro- 
teases, inhibited ICE and CPP32 (IC50 ~ 4 I~M) in vitro 
and blocked Fas-mediated apoptosis in thymocytes 
(ECs0 ~ 10 IxM). At similar concentrations, BAF also 
blocked the NGF deprivation-induced death of rat 
sympathetic neurons in culture. Compared to NGF- 
maintained neurons, BAF-saved neurons had markedly 
smaller somas and maintained only basal levels of 
protein synthesis; readdition of NGF restored growth 
and metabolism. Although BAF blocked apoptosis in 

sympathetic neurons, it did not prevent the fall in 
protein synthesis or the increase in the expression of 
c-jun, c-fos, and other mRNAs that occur during neu- 
ronal PCD, implying that the ICE-family proteases 
function downstream of these events during PCD. NGF 
and BAF rescued sympathetic neurons with an identi- 
cal time course, suggesting that NGF, in addition to in- 
hibiting metabolic and genetic events associated with 
neuronal PCD, can act posttranslationally to abort 
apoptosis at a time point indistinguishable from the ac- 
tivation of cysteine proteases. Both poly-(ADP ribose) 
polymerase and pro-ICE and Ced-3 homolog-1 (ICH-1) 
appear to be cleaved in a BAF-inhibitable manner, al- 
though the majority of pro-CPP32 appears unchanged, 
suggesting that ICH-1 is activated during neuronal 
PCD. Potential implications of these findings for anti- 
apoptotic therapies are discussed. 

M ULTICELLULAR organisms regulate their cell num- 
bers not only by cell proliferation but also through 
the elimination of cells by programmed cell 

death (PCD) 1 (Glticksmann, 1951). Dying cells exhibit char- 
acteristic morphological changes of apoptosis, which in- 
clude shrinking of the cytoplasm, plasma membrane bleb- 
bing, nuclear chromatin condensation, and fragmentation 
of genomic DNA into oligonucleosomal units (Wyllie et 
al., 1980). Extensive PCD occurs in the developing mam- 
malian nervous system. Neurons are produced in excess 
and are dependent upon limiting amounts of trophic factor 
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secreted by target or other cells for survival. Competition 
for this trophic factor is thought to be the mechanism that 
matches the size of the target cell population with the 
number of innervating neurons (reviewed by Oppenheim, 
1991). 

Sympathetic neurons from the embryonic rat superior 
cervical ganglion (SCG) are dependent on NGF for sur- 
vival and undergo PCD upon removal of NGF in vivo 
(Levi-Montalcini and Booker, 1960) as well as in vitro 
(Martin et al., 1988; Edwards et al., 1991). NGF depriva- 
tion-induced death of sympathetic neurons in vitro is mor- 
phologically apoptotic, occurs within 24-48 h, and is pre- 
vented by inhibitors of macromolecular synthesis, such as 
actinomycin D or cycloheximide (Martin et al., 1988; Deck- 
werth and Johnson, 1993; Edwards and Tolkovsky, 1994). 
During PCD, neurons exhibit characteristic changes in 
several metabolic and genetic events. These include a de- 
crease in glucose uptake, a transient increase in reactive 
oxygen species, and decreases in the rates of protein and 
RNA synthesis (Deckwerth and Johnson, 1993; Green- 
lund et al., 1995a). Despite an overall reduction in total 
RNA and protein, mRNA levels of a few genes, such as 
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c-jun, c-myb, c-los, fosB, NGFI-A, and Cyclin D1, are in- 
creased in dying neurons (Estus et al., 1994; Freeman et al., 
1994). Because neuronal PCD depends on protein synthe- 
sis, expression of these genes is thought to be important 
for cell death. The c-jun protein is apparently required for 
the death of sympathetic neurons. Microinjection of either 
c-jun antibody or a dominant negative c-jun construct into 
sympathetic neurons blocks the NGF deprivation-induced 
death of these neurons (Estus et al., 1994; Ham et al., 
1995). Likewise, microinjection of an antibody that neu- 
tralizes proteins of the Fos-family (c-los, FosB, Fral, and 
Fra2) also prevents PCD of sympathetic neurons (Estus 
et al., 1994). 

Recently, the interleukin 1B--converting enzyme (ICE) 
family of cysteine proteases have received considerable 
attention in cell death because they are the mammalian 
homologues of the Caenorhabditis elegans ced-3 gene 
(Henkart, 1996; Vasilakos and Shivers, 1996). The ced-3 
gene is required for cell death; mutations that inactivate 
ced-3 block all naturally occurring cell death in C. elegans 
(Ellis et al., 1991). ICE, which was identified as the first 
mammalian homologue of ced-3 (Yuan et al., 1993), is a 
cysteine protease that cleaves the 31-kD pro interleukin 
113 (IL-113) to its active 17-kD mature form (Thornberry et 
al., 1992). Additional members of this gene family include 
Nedd2/Ich-1 (Kumar et al., 1994; Wang et al., 1994), 
CPP32/apopain/Yama (Fernandes-Alnemri et al., 1994; 
Nicholson et al., 1995; Tewari et al., 1995), ICH-2/ICErjI/ 
TX (Faucheu et al., 1995; Kamens et al., 1995; Munday et 
al., 1995), ICErellII (Munday et al., 1995), Mch2 (Fernandes- 
Alnemri et al., 1995a), and ICE-LAP3/CMH-1/Mch3 
(Fernandes-Alnemri et al., 1995b; Duan et al., 1996; Lippke 
et al., 1996). These ICE family proteins are all cysteine 
proteases that cleave only after aspartic acid residues 
(Martin and Green, 1995). 

ICE itself may not be important in cell death since mice 
in which the ICE gene has been deleted, although defec- 
tive in processing pro IL-l[3 and partially defective in Fas- 
mediated apoptosis, have no other gross defects in PCD 
(Kuida et al., 1995; Li et al., 1995). However, two kinds of 
studies suggest that the ICE family proteases are function- 
ally important in mammalian PCD. First, the ICE family 
proteases, which are inactive when translated because they 
contain a prodomain, are cleaved and activated during 
cell death (Darmon et al., 1995; Chinnaiyan et al., 1996; 
Duan et al., 1996; Schlegel et al., 1996). Since overexpres- 
sion of the active form alone is sufficient to induce apopto- 
sis in various mammalian cell lines (Miura et al., 1993; 
Fernandes-Alnemri et al., 1994; Kumar et al., 1994; Wang 
et al., 1994; Alnemri et al., 1995; Faucheu et al., 1995; 
Fernandes-Alnemri et al., 1995a; Kamens et al., 1995; 
Munday et al., 1995; Duan et al., 1996; Lippke et al., 1996), 
it is generally believed that once the ICE family proteases 
are activated, they initiate a cascade of events that cause 
apoptosis. Second, viral proteins such as crmA (Ray et al., 
1992) and p35 (Clem et al., 1991), which inhibit the ICE 
family of cysteine proteases, inhibit cell death in a variety 
of experimental models. For example, crmA and p35 each 
block neuronal death after trophic factor deprivation 
(Rabizadeh et al., 1993; Gagliardini et al., 1994; Martinou 
et al., 1995) and Fas- or TNF-induced apoptosis (Beidler 
et al., 1995; Enari et al., 1995; Los et al., 1995; Miura et al., 

1995; Tewari and Dixit, 1995); expression of p35 also in- 
hibits apoptosis in C. elegans (Sugimoto et al., 1994; Xue 
and Horvitz, 1995) and Drosophila (Hay et al., 1994; 
White et al., 1996). Peptide inhibitors that inhibit the ICE 
family of cysteine proteases also inhibit PCD in several 
cell death paradigms, including Fas (Enari et al., 1995; 
Schiegel et al., 1996) or staurosporine (Jacobson et al., 
1996) -induced death, apoptosis of mammary epithelial 
cells (Boudreau et al., 1995), and the death of motoneu- 
rons in vitro and in vivo (Milligan et al., 1995). 

In this paper, we addressed five questions. Are ICE 
family proteases required for NGF deprivation-induced 
PCD of rat sympathetic neurons? Where do they function 
in the pathway of PCD? What is the metabolic state of 
neurons in which neuronal death was blocked by inhibit- 
ing the activity of ICE family proteases? Do these neurons 
remain responsive to subsequent readdition of trophic fac- 
tor? And, which known proteases might be important in 
neuronal PCD? To address these questions, we chose to 
examine the effect of Boc-aspartyl(OMe)-fluoromethylke- 
tone (BAF), a cell-permeable inhibitor of ICE family pro- 
teases on neuronal death. BAF blocked the NGF depriva- 
tion-induced death of rat sympathetic neurons in culture, 
indicating that the ICE family proteases are important in 
neuronal death. Both poly-(ADP ribose) polymerase 
(PARP) and ICE and Ced-3 homolog-1 (ICH-1) appear to 
be cleaved in a BAF-inhibitable manner, although the ma- 
jority of CPP32 appears unchanged. BAF-saved neurons 
were atrophic. However, readdition of NGF restored 
growth and metabolism. Although BAF blocked cell 
death, it did not prevent the fall in protein synthesis or the 
increase in the levels of specific mRNAs that occur during 
neuronal PCD, indicating that the ICE family proteins 
function after these events during PCD. Additionally, we 
found that the time course of rescue of sympathetic neu- 
rons with NGF addition was identical to that of BAF res- 
cue, suggesting that NGF and BAF act at a similar time to 
inhibit apoptosis. Much of this work has been reported in 
abstract form (Deshmukh, M., J. Vasilakos, T.L. Deck- 
werth, P.A. Lampe, B. Shivers, and E.M. Johnson, Jr. 1996. 
Soc. Neurosci. Abs. 22:566). 

Materials and Methods 

ICE Family Inhibitors and Reagents 
BAF, Z-VAD-fluoromethylketone (Z-VAD-FMK), and Z-DEVD-FMK 
were purchased from Enzyme Systems Products (Dublin, CA). Ac- 
YVAD-CHO, Ac-DEVD-CHO, Ac-YVAD-pNA, and Ac-DEVD-pNA 
were purchased from BACHEM Biosciences Inc. (King of Prussia, PA). 

In Vitro ICE and CPP32 Assays 
Enzyme activity was measured in spectrophotometric assays with purified 
recombinant enzymes and paranitroanilide substrates (pNA) in 96-well 
plates as described previously (Bump et al., 1995). The ICE (50 nM) assay 
was performed with the Ac-YVAD-pNA (50 I~M) substrate while the 
CPP32 (10 nM) assay was performed with the Ac-DEVD-pNA (100 IxM) 
substrate. A range of concentrations of the ICE family inhibitors was 
added to the enzymatic reaction. The reaction buffer for both enzymes 
contained 100 mM Hepes, pH 7.5, 0.5 mM EDTA, 20% glycerol, and 
0.05% BSA; buffer for the ICE enzyme assay also included 10 mM DTT. 
The plates were incubated for 45 min at 37"C for the ICE assay or at 30"C 
for the CPP32 assay, before measuring the colorimetric readout at 405 nm. 

Percent inhibition was calculated as [100 - (experimental treatment - 
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minimal activity)/(maximum activity - minimum activity)] × 100. The 
maximum and minimum activities were assayed by using enzyme plus sub- 
strate alone or substrate alone, respectively. 

Fas-mediated Apoptosis 
Thymocytes from C57B1/6 mice were cultured for a total of 29 h at 37~C, 
5% CO2, in a 96-well plate in RPMI medium containing 10% FCS. Cells 
were preincubated with the ICE family inhibitors for 1 h at 37~C before 
adding the anti-Fas antibody (Jo2, final concentration of 5 Ixg/ml; Phar- 
Mingen, San Diego, CA). After 20 h, the viability indicator alamarBlue 
(Alamar Biosciences, Sacramento, CA) was added to each well and the 
plates were incubated for an additional 8 h at 37~C. Viability was assessed 
by fluorometric analysis as described by the manufacturer. 

DNA Fragmentation 
Thymocytes from C57B1/6 mice were pretreated with the ICE family in- 
hibitor and subjected to Fas-mediated apoptosis as described above. 12 h 
after adding the anti-Fas antibody, genomic DNA was isolated as de- 
scfibed previously (Schulze et ai., 1994). DNA was subjected to electro- 
phoresis on a 1.8% agarose gel and visualized after staining with ethidium 
bromide (0.5 p.g/ml). 

Pr/mary Neurona/Cultures 
Primary cultures of sympathetic SCG neurons were prepared from embry- 
onic day 21 rats by using a modification (DiStefano et al., 1985) of a previ- 
ously published procedure (Johnson and Argiro, 1983). Neuronal cultures 
to be used for reverse transcriptase-polymerase chain reaction (RT-PCR) 
analysis had an additional preplating step of incubating the cells on Prima- 
ria plates (Becton Dickinson Immunocytometry Sys., San Jose, CA) for I h 
to minimize the number of nonneuronal cells. Depending on the experi- 
ment, between 2,000 and 15.000 cells were plated in the center of collagen- 
coated, 35-mm dishes (Coming Glass, Coming, NY) or chamber slides 
(Nunc, Inc., Naperville, IL) and maintained in NGF-containing medium 
(AM50). This medium contained Eagle's minimum essential medium with 
Earle's salts (Life Technologies Inc., Gaithersburg, MD) with the addition 
of 50 ng/ml of 2.5 S NGF (prepared by the method of Bocchini and An- 
geletti, 1969), 10% FCS, 2 mM glutamine, 100 p.g/ml penicillin, and 100 
p.g/ml streptomycin; 20 p,M fluorodeoxyuridine, 20 p.M uridine, and 3.3 
ixg/ml aphidicolin were also included to reduce the number of nonneu- 
tonal cells. After 5 d, the neurons were deprived of NGF by incubating in 
the same medium, but without NGF (AM0) and containing a neutralizing 
goat polyclonal anti-mouse NGF antiserum. 

Viability of neurons was assessed by fixing the neuronal cultures with 
4% paraformaidehyde and staining with crystal violet as described earlier 
(Deckwerth and Johnson, 1993). 

Hoechst 33258 Staining 
Neuronal cultures were fixed with 4% paraformaldehyde and stained with 
bisbenzimide (Hoechst 33258; Molecular Probes, Inc., Eugene, OR) as de- 
scribed previously (Deckwerth and Johnson, 1993). 

Protein Synthesis 
5-d-old SCG cultures were labeled for 4 h at 35°C with 20 ixCi/ml L-[4,5- 
3H]leucine (151 Ci/mmol; Amersham Corp., Arlington Heights, IL) in 
AMS0 or AM0 containing 10 p,M of unlabeled leucine (instead of the nor- 
mal 400 I~M leucine). Cultures were washed once with PBS and lysed with 
500 I~i of lysis buffer (0.5% SDS, I mM EDTA, 10 mM Tris-HCl, pH 7.5). 
After addition of 10 p~g of BSA to each sample, the protein was precipi- 
tated with 10% TCA for 1 h on ice and retained by filtration through a 
0.45-p.m nitrocellulose filter (BA-85; Schleicher & SchuU, Inc., Keene, 
NH). The filter was washed twice with cold 10% TCA and its radioactivity 
measured in a liquid scintillation counter. 

cDNA Preparation and RT-PCR Analysis 
Our methods for cDNA preparation from primary SCG cultures and RT- 
PCR analysis have been described previously (Estus et al., 1994; Estus, 
1996). MuRiple 35-ram dishes containing equal numbers of SCG neurons 
(,-,15,000 ~ m ' ~  per dish) were maintained in AMS0 for 5 d. After neu- 
ronal cultures were deprived of NGF for various times, poly A+  mRNA 
was isolated by using an oligo-dT-cellulose mRNA purification kit 

(QuickPrep Micro Kit; Pharmacia LKB Biotechnology, Piscataway, NJ) 
as described by the manufacturer. Half the mRNA was converted into 
cDNA by reverse transcription with 200 U Superscript II (Life Technolo- 
gies Inc., Gaithersburg, MD) by using random hexamers (16 p.M) as prim- 
ers. The 30-p~l reaction (RT) contained 50 mM Tris-HC1, pH 8.3, 40 mM 
KCI, 6 mM MgC12, 1 mM DTT, 500 p~M of each of dATP, dTTP, dCTP, 
dGTP, and 20 U RNasin (Promegn Corp., Madison, WI). The random 
hexamers were first mixed with the cDNAs for 2 rain at 95°C. After add- 
ing the rest of the RT mixture, the samples were incubated for 10 min at 
20°C and then for 50 rain at 42°C; the reaction was terminated by heating 
for 2 rain at 95°C. 

Semiquantitative PCR amplification was performed in a 50-1xl reaction 
with specific primer pairs (1 ~ each), cDNA equivalent of about 150 
cells, 1 U of Taq polymerase in 1× Taq buffer, 1.5 mM MgCI2, 100 ~M 
each of dATP, dGTP, and dTTP, 50 ~M dCTP, and 10 ~Ci [ct-a2p]dCTP. 
The cycle parameters were I rain at 94°C, 1 rain at 55°C, and 2 min at 72°C 
for 15-25 cycles followed by a final 10-rain incubation at 72°C. 10 p~l of 
each reaction were electrophoresed on a 12.5% polyacrylamide gel, and 
the dried gel was analyzed on a Phosphorimager (Molecular Dynamics, 
Sunnyvale, CA). Control experiments were performed to determine the 
range of PCR cycles over which the amplified PCR product was directly 
proportional to the amount of input cDNA. The validity of this procedure 
for semiquantitative analysis is described in detail elsewhere (Estus, 
1996). The cyclophilin forward (5'-ATGGTCAACCCCACCGTGTI'-3') 
and reverse (5'-CGTGTGAAGTCACCACCCT-3') primers generate a 
206-bp fragment. The c-fos forward (5 '-AATAAGATGGCTGCAGC- 
CAA-3') and reverse (5'-TTGGCAATCTCGGTCTGCAA-3') primers 
generate a l l5-bp fragment. The c-jun forward (5'-ACTCAG'[TC- 
TFGTGCCCCAA-3') and reverse (5'-CGCACGAAGCCTTCGGC- 
GAA-3')  primers generate a 65-bp fragment. 

Immunohistochemistry 
Neurons were immunostained by using a previously described procedure 
(Greenlund et al., 1995b) with the following modifications. Cells were in- 
cubated in the primary anti-c-fos antibody (catalog No. SC_52; 0.2 p~g/ml, 
final concentration; Santa Cruz Biotechnology, Santa Cruz, CA) for 2 h at 
room temperature and with a Cy3-conjugated donkey anti-rabbit second- 
ary antibody (1.5 p.g/ml, final concentration; Jackson ImmunoResearch 
Laboratories, Inc., West Grove, PA) for I h at room temperature. The flu- 
orescent signal was detected with a microscope (Axioskop; Carl Zeiss, 
Inc., Thornwood, NY). 

Western Blots 
Extracts from an equal number of cells plated at the start of the experi- 
ment were prepared by washing the cells several times with PBS and lys- 
ing them in sample buffer (2% SDS, 100 mM dTT, 60 mM Tris, pH 6.8, 
0.001% bromophenol blue). The samples were boiled for 5 rain before 
subjecting them to electrophoresis on 10% SDS-PAGE gels; extracts from 
an equivalent of 40,000 cells were loaded in each lane. After transferring 
the proteins onto polyvinyl difluoride membrane (Millipore Corp., Bed- 
ford, MA), the membrane was incubated in blocking buffer (1× PBS, 
0.1% Tween-20, 5% nonfat dry milk) for 1 h at room temperature and 
then in the primary antibody solution ( l x  PBS, 0.05% Tween-20, 5% 
BSA) overnight at 4*(2. The membrane was washed three times in block- 
ing buffer, incubated.in the secondary antibody solution (in blocking 
buffer) for I h at room temperature, and washed again in blocking buffer 
as before. The blot was then developed with the CDP-star chemilumines- 
cence system (Tropix, Bedford, MA). The antibodies used were anti- 
PARP (No. 422; Enzymes Systems Products), anti-CPP32 (No. 06-529; 
Upstate Biotechnology Inc., Lake Placid, NY), anti-ICH-1 (No. 129120; 
Transduction Labs, Lexington, KY), and anti-MAPK (New England Bio- 
labs, Beverly, MA). 

Results 

ICE Family Protease Inhibitor, BAF, Inhibits Both ICE 
and CPP32 In Vitro 

Based on its structure, BAF is predicted to inhibit ICE 
family proteases irreversibly (GraybiU et al., 1994; Bou- 
dreau et al., 1995; Mashima et al., 1995; Thornberry and 
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Molineaux, 1995). This sulfhydryl-reactive aspartate deriv- 
ative lacks the molecular determinants that a priori target 
specific ICE family proteases and thus has the potential to 
inhibit a number of them. We tested whether BAF inhib- 
ited the activity of ICE and CPP32 in vitro. Purified re- 
combinant ICE or CPP32 was incubated with its cleavable 
tetrapeptide substrate, Ac-YVAD-pNA or Ac-DEVD- 
pNA, respectively, in the presence of increasing concen- 
trations of BAF. Enzyme activity was assayed spectropho- 
tometrically by measuring the extent of cleavage of the 
peptide substrate. BAF inhibited the activity of ICE and 
CPP32 in vitro with a 50% inhibitory concentration (IC~0) 
of 3--4 I~M for either enzyme under these conditions; the 
activity of either enzyme was reduced by >75% with 10 IxM 
BAF (Fig. 1, A and B). Boc-threonine(OMe)-fluorometh- 
ylketone (BTF), which has a structure similar to BAF but 
contains a threonine instead of an aspartate amino acid, 
did not inhibit either ICE or CPP32 (Fig. 1, A and B). 
BAF (200 p.M) did not inhibit calpain I or II, cysteine pro- 
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Figure 1. BAF inhibits ICE and CPP32 in vitro and Fas-mediated 
apoptosis in thymocytes. (A) Activity of recombinant ICE mea- 
sured spectrophotometrically by its ability to cleave Ac-YVAD- 
pNA in the presence of increasing concentration of BTF (circles), 
BAF (squares), and Ac-YVAD-CHO (triangles). (B) Activity of 
recombinant CPP32 measured spectrophotometrically by its abil- 
ity to cleave Ac-DEVD-pNA in the presence of increasing con- 
centration of BTF (circles), BAF (squares), and Ac-DEVD-CHO 
(triangles). (C) Extent of apoptosis in mice thymocytes incubated 
with an anti-Fas antibody in the presence of increasing concentra- 
tion of BTF (circles), BAF (squares), and Z-VAD-CH2F (trian- 
gles). Cell viability was measured with the alamarBlue indicator. 
(D) Agarose gel showing genomic DNA fragmentation during 
Fas-mediated apoptosis of mice thymocytes in the presence of in- 
creasing concentrations of BAF and BTF inhibitors. 

teases that do not cleave after aspartic acid residues, indi- 
cating that BAF was not a general inhibitor of cysteine 
proteases (data not shown). Furthermore, BAF did not in- 
hibit global protein degradation in sympathetic neurons 
(Franklin, J., personal communication). Although the Ac- 
YVAD-CHO and Ac-DEVD-CHO tetrapeptide inhibi- 
tors inhibited ICE and CPP32, respectively, at lower con- 
centrations than BAF (Fig. 1, A and B), BAF inhibited 
both enzymes with comparable potency and therefore ap- 
peared to be a more suitable inhibitor of PCD if multiple 
ICE family proteases act in redundant pathways to affect 
cell death. 

To determine whether BAF inhibits cell death in intact 
cells, we tested whether BAF inhibited Fas-mediated ap- 
optosis in mouse thymocytes. Binding of the Fas ligand or 
an anti-Fas antibody to the Fas receptor on thymocytes 
triggers apoptosis by a pathway that requires the activity 
of ICE-like proteases (Enari et al., 1995; Los et al., 1995; 
Schlegel et al., 1996). Mouse thymocytes were preincu- 
bated for 1 h with various concentrations of BAF before 
the addition of an anti-Fas antibody and the extent of ap- 
optosis was measured 20 h later by examining viability of 
the culture using the alamarBlue indicator (Fig. 1 C). BAF 
protected thymocytes from Fas-mediated apoptosis in a 
dose-dependent manner, with a 50% inhibition observed 
with 10 p~M BAF; BAF was a less potent inhibitor of Fas- 
mediated apoptosis than Z-VAD-FMK, another ICE fam- 
ily protease inhibitor (Fig. 1 C). The control compound, 
BTF, did not block Fas-mediated apoptosis. Since cleav- 
age of genomic DNA into oligonucleosomal fragments is 
an event that typically accompanies apoptosis, we also ex- 
amined whether BAF prevented DNA fragmentation in 
these cells. Addition of 10 IxM BAF prevented DNA frag- 
mentation in thymocytes initiated to undergo Fas-induced 
apoptosis; BTF did not have any effect even at 100 IxM 
(Fig. 1 D). The results of BAF inhibiting Fas-mediated ap- 
optosis in thymocytes, which require ICE- and CPP32-1ike 
protease activity for death (Enari et al., 1996), are consis- 
tent with the observation that BAF was an effective inhib- 
itor of at least two, and probably more, ICE-like proteases 
in vitro. 

BAF Protects Rat Sympathetic Neurons from PCD 
Induced by NGF Deprivation 

Sympathetic neurons from embryonic day 21 old rats are 
dependent on NGF for survival; removal of NGF triggers 
PCD and results in their apoptotic death over 24--48 h 
(Martin et al., 1988; Deckwerth and Johnson, 1993; Ed- 
wards and Tolkovsky, 1994). To determine if cysteine pro- 
teases are involved in sympathetic neuronal death, cul- 
tures of rat SCG neurons were grown for 5 d in the 
presence of NGF and then deprived of NGF to initiate 
PCD in the presence of an increasing concentration of 
BAF. BAF blocked the NGF deprivation-induced PCD of 
rat sympathetic neurons in culture (Fig. 2). Neuroprotec- 
tion was dose-dependent: 3 d after NGF removal, >80% 
of the neurons were protected with 30 p~M BAF and all 
were protected with 100 p,M BAF (Fig. 2). In contrast, all 
neurons were dead in untreated, control cultures within 48 h 
after NGF removal. Even 9 d after NGF removal, 50% of 
neurons remained alive in 100 p~M BAF, indicating that 
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Figure 2. The ICE family protease inhibitor, BAF, promotes 
the survival of rat sympathetic neurons deprived of NGF. SCG 
neurons from embryonic day 21 rats were maintained for 5 d in 
the presence of NGF and then incubated in either NGF-contain- 
ing (filled symbols) or NGF-deprived (open symbols) medium 
containing increasing concentrations of BAF. 3 (circles) or 9 
(squares) d after treatment, the number of viable neurons (crystal 
violet stained) was determined. For the 9-d paradigm, the me- 
dium was changed once with fresh BAF inhibitor added 5 d after 
treatment. The number of surviving neurons for various condi- 
tions are represented as percentage of the number of neurons in 
NGF-maintained cultures. Results (mean -+ SD) for the 3-d para- 
digm represent two experiments (n = 2) and for the 9-d paradigm 
represent one experiment (n = 2). Approximately 1,500 cells 
were counted for each sample point. 

protection with BAF was long term (Fig. 2). 100 p~M of the 
control compound, BTF, did not block neuronal death 
(data not shown). No evidence of toxicity was observed in 
NGF-maintained neurons with similar concentrations of 
BAF. At concentrations of >500 IxM, however, BAF was 
toxic to sympathetic neurons and inhibited protein synthe- 
sis to ~65% of control levels in these neurons (data not 
shown). Like BAF, Z-VAD-FMK also blocked NGF dep- 
rivation-induced death of sympathetic neurons. However, 
the concentration of Z-VAD-FMK required to inhibit 
neuronal death exceeded 100 IxM and thus was higher 
than that required for protection by BAF (data not 
shown). 

Rat sympathetic neurons lose their phase-bright appear- 
ance and show fragmentation of neurites during cell death 
(Deckwerth and Johnson, 1993). Neurons protected by 
BAF maintained intact neurites and phase-bright cell bod- 
ies (Fig. 3 C). The only visible difference between the 
NGF-maintained and the NGF-deprived BAF-saved neu- 
rons was that the cell bodies were smaller in BAF-saved 
neurons (Fig. 3, compare A with C); the Z -VAD-FMK-  
saved neurons likewise had smaller soma (data not shown). 
To examine these changes in soma size, 5-d-old sympa- 
thetic cultures were either deprived of NGF in the pres- 

ence of BAF or maintained in NGF, and the soma diame- 
ter was measured at various times after treatment. Within 
3 d after NGF removal, the average diameter of BAF- 
saved neurons decreased from 19 to 15 Ixm (assuming that 
the cell bodies are spherical, this corresponds to a 48% de- 
crease in somal volume); no further decrease in the diame- 
ter was observed even when measured 18 d after NGF re- 
moval (Fig. 4). Neurons in the presence of NGF continued 
to increase in size such that by comparison, cells that were 
deprived of NGF but maintained in BAF for 13 d had a 
50% reduction in diameter (87% decrease in somal vol- 
ume). To determine whether readdition of NGF restores 
growth, NGF was added back to neurons that had been 
protected with BAF for 5 d. Readdition of NGF caused an 
increase in somal diameter such that 13 d after NGF addi- 
tion, these cells were indistinguishable from the NGF- 
maintained control neurons (Fig. 4). Thus, BAF-saved 
neurons survive long-term and retain their capacity to re- 
sume growth upon readdition of trophic support. 

During cell death, the chromatin in intact spherical nu- 
clei first becomes marginated, then condenses into smaller 
bead-like shapes, and ultimately disappears, leaving be- 
hind "ghost cells." Nuclei of NGF-deprived BAF-saved 
neurons were stained with bisbenzimide to examine whether 
any of these nuclear changes occur in neurons saved with 
BAF. The nuclei of BAF-saved neurons appeared intact, 
spherical, and uniformly stained and were indistinguishable 
from the NGF-maintained control neurons (Fig. 3, com- 
pare E with G). Thus, BAF blocks the apoptosis program 
before the start of any visible nuclear changes in neurons. 

B A F  Does Not  Block the Decrease in Protein Synthesis 
Occurring during N G F  Deprivation-induced PCD 

Although NGF-deprived neurons saved with BAF did not 
exhibit any of the morphological changes that are associ- 
ated with apoptosis, these neurons were smaller than the 
NGF-maintained control neurons, suggesting that although 
BAF blocks neuronal death, it did not prevent the initia- 
tion of PCD. We have previously described several bio- 
chemical and genetic events that are associated with NGF 
deprivation-induced death of rat sympathetic neurons 
(Deckwerth and Johnson, 1993; Estus et al., 1994; Free- 
man et al., 1994; Greenlund et al., 1995a). Knowledge of 
which events occur and which do not in NGF-deprived 
BAF-saved neurons is useful in determining the site of 
action of ICE family proteases in the cascade of events 
during PCD after trophic factor withdrawal. The rate of 
protein synthesis falls rapidly after NGF removal in sym- 
pathetic neurons (Deckwerth and Johnson, 1993). To de- 
termine whether BAF acts upstream or downstream of 
this event, we measured the rate of protein synthesis in 
NGF-deprived sympathetic neurons in the presence of 
BAF. After NGF deprivation, protein synthesis rates de- 
creased to 20% of NGF-maintained control levels within 
12 h, both in the presence and absence of BAF (Fig. 5). 
Thereafter, protein synthesis was maintained at 13% of 
control levels in BAF-saved cultures. In NGF-deprived 
cultures without BAF, protein synthetic rates fell down to 
<5% of control levels as the cells died. Thus, BAF did not 
block the decrease in protein synthesis that occurs after 
NGF removal. 
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Figure 3. BAF-saved SCG neurons are phase bright and have intact neurites and normal nuclei. Shown are phase-contrast images (A- 
D) or photographs of bisbenzimide-stained nuclei (E-G) of dissociated rat SCG neurons maintained in NGF for 5 d and treated as fol- 
lows: (A) Neurons maintained in NGF for an additional 5 d, (/3) neurons deprived of NGF for 5 d, (C) neurons deprived of NGF for 5 d 
but in the presence of 30 ~M BAF, and (D) neurons treated as in C and then rescued with readdition of NGF for 8 additional days. (E) 
Nuclei of neurons maintained in NGF for an additional 3 d, (F) nuclei of neurons deprived of NGF for 3 d, and (G) nuclei of neurons 
deprived of NGF for 3 d but in the presence of 30 IxM BAF. Bars: (A--D) 50 ~m; (E-G) 10 Ixm. 

We also determined whether BAF affected protein syn- 
thesis in the presence of NGF. Since PCD in sympathetic 
neurons is blocked by inhibitors of protein synthesis (Mar- 
tin et al., 1988), it was necessary to establish that BAF was 
not blocking neuronal death by inhibiting protein synthe- 
sis. Consistent with a lack of discernible toxicity at the sav- 
ing concentrations of BAF, 30 pLM BAF did not inhibit 
protein synthesis in sympathetic neurons (Fig. 5). This re- 
sult excludes the possibility that BAF protects sympathetic 
neurons by inhibiting protein synthesis. 

BAF Does Not Block the increase in c-jun and c-fos 
Associated with Neuronal PCD 

Although the mRNA levels of most genes decrease as 
sympathetic neurons die, the expression of a few genes 
is increased. These include c-jun, c-myb, mkp-1, and 
cyclinD1, which are induced by 5 h and show maximum 
expression 12-18 h after NGF removal, and c-los, los B, 
and NGF1-A, which are induced not earlier than 10 h and 
show maximum expression 15--20 h after NGF removal 
(Estus et al., 1994; Freeman et al., 1994; Ham et al., 1995). 

To determine whether the ICE family proteases function 
before or after the increase in these genes, we examined 
whether c-jun and c-los, examples of genes that are in- 
duced early and late after NGF removal, respectively, are 
induced in BAF-saved neurons, mRNAs were isolated 
from two sets of sympathetic cultures, containing an equal 
number of neurons, at various times after NGF depriva- 
tion. BAF was added to only one set of cultures at the time 
of NGF deprivation to block death, and the changes in ex- 
pression of these genes were determined by RT-PCR anal- 
ysis. Results for the expression pattern of c-jun, c-los, and 
cyclophilin axle shown in Fig. 6. Cyclophilin mRNA de- 
creases as sympathetic neurons undergo PCD; this pattern 
of expression is representative of most genes in dying neu- 
rons (Estus et al., 1994). In BAF-saved neurons, the 
amount of cyclophilin mRNA decreased but the level was 
sustained at 20% of NGF-maintained control neurons 
(Fig. 6 A), consistent with the observation that BAF-saved 
neurons appeared smaller in diameter and maintained a 
very reduced level of metabolism (Figs. 4 and 5). Both c-jun 
and c-los were increased in BAF-saved neurons upon 
NGF deprivation (Fig. 6, B and C). In fact, mRNAs of 
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Figure 4. BAF-saved neurons appear smaller but resume growth 
upon readdition of NGF. Soma diameter of rat sympathetic 
neurons was measured on the indicated days after various treat- 
ments. Neurons were maintained in NGF for 5 d and then either 
continued in NGF (circles), deprived of NGF in the presence of 
30 ~M BAF (squares), or deprived of NGF in the presence of 30 IxM 
BAF for 5 d and then rescued with readdition of NGF (triangles). 
Fresh medium was added to the cultures every 5 d. Soma diame- 
ter was calculated by taking phase contrast photographs of neu- 
rons, enlarging the image, and measuring the diameter of spheri- 
cal-looking neurons. Results are the mean --- SD of at least 100 
neurons for each time point. 

both these genes were increased several-fold higher in 
NGF-deprived neurons in the presence of  BAF;  induction 
of  c-jun was 4.5-fold higher and that of  c-fos was 6-fold 
higher in BAF-saved neurons as compared to neurons un- 
dergoing apoptosis without BAF. Expression of both c-]un 
and c-los is then reduced to baseline levels after this pe- 
riod of  increased expression. Control  experiments showed 
that B A F  alone did not induce the expression of these 
genes in NGF-maintained neurons (data not shown). 
Thus, although B A F  blocked apoptosis, it did not prevent 
the increase of  c-jun and c-los that occurs during PCD. Ex- 
pression of  other  N G F  deprivation-induced genes, such as 
cyclin D1 and fosB, was similarly increased in BAF-saved 
neurons (data not shown). 

Transient Accumulation of  c-los in the Nucleus 
Occurs Before Chromatin Condensation during 
Neuronal Apoptosis 

Previous studies have demonstrated that c-fos accumu- 
lates in the nucleus of  sympathetic neurons during N G F  
deprivation-induced apoptosis. However,  < 1 %  of sympa- 
thetic neurons in the dying population are positive for c-fos 
at any given time and virtually all the c-fos-positive neu- 
rons also have condensed nuclei (Estus et al., 1994; H a m  
et al., 1995). Thus, it was unclear whether the induction of  
c-fos immediately precedes chromatin condensation or 
whether chromatin condensation induces c-fos. 

Time (h) 

Figure 5. Time course of the rate of protein synthesis in NGF- 
deprived neurons exposed to BAF. Sympathetic neuronal cul- 
tures were deprived of NGF and treated with 30 IxM BAF (solid 
squares). Control cultures lacking BAF (open symbols) or main- 
tained in the presence of NGF (circles) were set up in parallel. 
The rate of protein synthesis was measured in the absence of 
BAF during a 4-h labeling period centered around the time indi- 
cated on the abscissa. Treatment with BAF had no effect on the 
rate of protein synthesis in NGF-maintained cultures, nor did 
BAF attenuate the fall of protein synthesis in NGF-deprived cul- 
tures during the first 12 h. During the next 60 h, NGF-deprived 
neurons prevented from dying by BAF maintained a basal rate of 
protein synthesis at around 13% of NGF-maintained cultures. 
Mean - SD of triplicate determinations. 

To determine whether c-los was induced before or after 
chromatin condensation, we determined whether the c-fos 
protein accumulated in the nuclei of  NGF-deprived BAF-  
saved neurons in which PCD was initiated but was blocked 
before the condensation of  chromatin. We deprived sym- 
pathetic cultures of  N G F  for 20 h in the presence of  B A F  
and examined the pattern of  c-los expression by immuno- 
staining with an anti--c-fos antibody. The neuronal nuclei 
were visualized by counterstaining with bisbenzimide, c-los 
was induced in NGF-deprived sympathetic neurons under- 
going apoptosis but was observable in very few neurons at 
any given time (Fig. 7, A and B). The chromatin of  these 
c-los-positive nuclei was either marginated or condensed 
(Fig. 7, C and D), as previously described (Estus et al., 
1994; Ham et al., 1995). In contrast, ,--,15% of the neurons 
saved by B A F  showed nuclear staining for c-fos (Fig. 7, E 
and F) and none of  these had condensed chromatin (Fig. 7, 
G and H). These data separate the induction of  c-fos from 
chromatin condensation and strongly suggest that the 
transient accumulation of c-fos in the nucleus occurs be- 
fore chromatin condensation. 

BAF and NGF Block Apoptosis at a Similar Time 
during Neuronal PCD 

Depending on the site of  action during the progression of  
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Figure 6. BAF does not block the increase in c-jun and c-fos mRNAs during NGF deprivation-induced neuronal death. Preplated SCG 
cultures were maintained in the presence of NGF (lanes marked 0) or deprived of NGF for 6, 12, 18, 24, 30, 36, 45, 58, or 70 h either 
without (-NGF, gray bars) or with 30 ~M BAF (-NGF+BAF, black bars). Poly (A)+ RNA was purified from each culture and re- 
verse transcribed to eDNA. PCR analyses were performed with specific oligonucleotide pairs corresponding to the sequences for Cyclo- 
philin (A; 16 cycles), c-jun (B; 21 cycles), and c-los (C; 22 cycles). The amplified DNA products were separated on 8% polyacrylamide 
gels and visualized by autoradiography. The changes in amounts of these mRNAs were calculated as relative to the amount of that 
mRNA expressed at the 0 time point (presence of NGF). These data represent results from one experiment; similar results were ob- 
tained in a separate experiment (data not shown). 

PCD, different inhibitors of the cell death process may 
prevent progression of PCD at different times after the 
onset of NGF deprivation. We refer to the time at which a 
neuroprotective reagent acts as the "commitment point" 
of the agent and measure it by determining the time after 
NGF removal at which 50% of neurons can no longer be 
rescued from death by the addition of that agent. The 
commitment points may be different for various agents. 
For example, the commitment point of cycloheximide res- 
cue is 16 h, whereas that of NGF rescue is 22 h, indicating 
that the rate-limiting step inhibited by cycloheximide oc- 
curs ~ 6  h before the NGF-inhibitable rate-limiting step 
during neuronal PCD (Deckwerth and Johnson, 1993). 

To determine the time point at which BAF acts to arrest 
PCD, neuronal cultures were deprived of NGF for various 
times and BAF was added thereafter for 2 d. After this 
rescue period, the number of living neurons was counted. 
As an internal standard, the time course of rescue with cy- 
cloheximide and with NGF was determined in parallel cul- 
tures. BAF and NGF had virtually indistinguishable time 
courses of rescue; each lost the ability to protect 50% of 
the neurons after 22 h of NGF deprivation (Fig. 8). As ob- 
served previously, the commitment point of cycloheximide 
was 6 h before that time (Edwards et al., 1991; Deckwerth 
and Johnson, 1993). These data indicate that the ICE fam- 
ily proteases acted late during PCD and that NGF was 
able to block death up to a very similar time during neu- 
ronal PCD. 

Status o f  CPP32 and ICH-1 during Neuronal Apoptosis 

One of the substrates of the ICE family proteases is 
PARP; PARP cleavage is an indicator of the activation of 
the ICE family proteases during apoptosis (Kaufmann et al., 
1993; Nicholson et al., 1995; Tewari et al., 1995; Jacobson 

et al., 1996). We determined whether PARP got cleaved 
during NGF deprivation-induced apoptosis and whether 
BAF prevented this cleavage. PARP levels decreased dra- 
matically by 24 h after NGF deprivation (Fig. 9), consis- 
tent with our observation that the ICE family proteases 
were activated in neurons by this time. Cleavage of PARP 
did not occur in BAF-saved neurons (Fig. 9), indicating 
that BAF inhibited the PARP-cleaving ICE family pro- 
tease in neurons. 

We also examined whether CPP32 and ICH-1 became 
activated during neuronal apoptosis. Levels of pro-ICH-1 
decreased by 24 h after NGF deprivation, suggesting its 
apparent activation by cleavage into its active subunits 
(Fig. 9). BAF prevented the apparent activation of ICH-1 
since ICH-1 levels did not change in BAF-saved neurons. 
Since the antibodies to detect the active subunits of rat 
ICH-1 or peptide substrates of ICH-1 are not currently 
available, we could not directly examine whether ICH-1 
becomes activated during neuronal apoptosis. In contrast, 
the levels of pro-CPP32 remained constant, even 48 h after 
NGF deprivation when all the neurons are dead (Fig. 9, 
data not shown), indicating that the majority of CPP32 did 
not get activated during neuronal apoptosis. 

Discuss ion  

BAF Inhibits Programmed Cell Death 

We have used a cell-permeable inhibitor of the ICE fam- 
ily, BAF, to examine the function of ICE family proteases 
in neuronal PCD. Since the ICE family consists of multiple 
proteins, some of which may perform redundant functions, 
we used a compound capable of inhibiting multiple pro- 
teins in the ICE family. BAF is a reactive derivative of as- 
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Figure 7. c-los accumulates in the nucleus before chromatin condensation during neuronal apoptosis. Dissociated SCG neurons were 
maintained in the presence of NGF for 5 d, then deprived of NGF either without (A-D) or with 30 I~M BAF (E-H) for 20 h, and immu- 
nostained with an anti-c-fos primary antibody and a Cy3-conjugated, secondary antibody. Shown are a representative field of neurons in 
phase-contrast microscopy (A and E) and the corresponding expression of c-los in these neurons (B and F). Higher magnification shows 
the nuclear accumulation of c-los (C and G) and the morphology of the corresponding nuclei visualized by staining with bisbenzimide 
(D and H). Bars: (A, B, E, and F) 100 I~m; (C, D, G, H) 20 ~m. 

partic acid, the amino acid after which ICE family pro- 
teases cleave. The lack of other amino acids NH2-terminal 
of the aspartate diminishes the potential for a high degree 
of specificity (Graybill et al., 1994; Thornberry and Moli- 
neaux, 1995). This was reflected by our observation that 
BAF inhibited both ICE and CPP32 in vitro with an IC50 
of 3-4 I~M for both enzymes (Fig. 1, A and B), while the 
tetrapeptide inhibitors Ac-YVAD-CHO or Ac-DEVD- 
CHO have vastly different Ki's for ICE and CPP32 (Thorn- 
berry et al., 1992; Nicholson et al., 1995). Because of its 
small size, neutral charge, and its relative hydrophobicity, 
BAF is membrane permeable and, thus, able to inhibit 
ICE and CPP32, among other proteases, in living cells. 
Consistent with this, BAF inhibited Fas-mediated death 
in intact thymocytes where both ICE and CPP32 are re- 
ported to be functionally important (Kuida et al., 1995; 
Enari et al., 1996; Schlegel et al., 1996) (Fig. 1, C and D). 
The spread between the ICs0 of BAF for the inhibition of 
the isolated enzymes in vitro and its ECs0 for the inhibition 
of PCD is much less than that for any of the tetrapeptide 
inhibitors, which require a considerably higher concentra- 
tion for the inhibiting PCD than for the inhibition of ICE 
family proteases in vitro (Thornberry et al., 1992; Enari 
et al., 1995; Milligan et al., 1995; Nicholson et al., 1995). 
This observation is consistent with the suggestion that 
BAF is more membrane permeable than the tetrapeptide 
inhibitors. 

The inhibition of neuronal apoptosis by BAF indicates 
that the ICE family proteins are required in the NGF dep- 

rivation-induced PCD of rat sympathetic neurons (Figs. 2 
and 3). While BAF may inhibit ICE family proteases other 
than ICE and CPP32, it is not a general inhibitor of cys- 
teine proteases as it did not inhibit calpain I or II. Also, a 
similar inhibitor, Z-Asp-CH2DCB, inhibits ICE but does 
not inhibit cathepsin B in vitro (Dolle et al., 1994). Inhibi- 
tors of other serine, aspartyl, and lysosomal proteases 
have no effect on trophic factor deprivation-induced neu- 
ronal death, indicating that these proteases are not re- 
quired for neuronal death (Martin et al., 1992). ICE family 
proteases have been implicated in other neuronal deaths 
as well. PCD in chicken dorsal root ganglion and rat sym- 
pathetic neurons is blocked by microinjection of the viral 
crmA and p35 genes, respectively, which inhibit ICE fam- 
ily proteases (Gagliardini et al., 1994; Martinou et al., 1995). 
Transfection of p35 also prevents PCD induced by glucose 
withdrawal, exposure to calcium ionophore, or serum 
withdrawal in a mammalian neural cell line (Rabizadeh et 
al., 1993). Naturally occurring cell death of motoneurons is 
also inhibited by the Ac-YVAD-CHO tetrapeptide ICE 
inhibitor both in vitro and in vivo (Milligan et al., 1995). 

The apparent cleavage of PARP in dying neurons and 
its inhibition by BAF (Fig. 9) is also consistent with the 
finding that ICE family proteases are activated during 
neuronal apoptosis. That we did not detect the accumula- 
tion of the cleaved PARP product in dying neurons may 
be because the cleaved product was degraded during neu- 
ronal apoptosis since death occurs over a protracted pe- 
riod of 24--48 h. Since most ICE family proteases are capa- 
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Figure 8. Comparison of the time courses of rescue with BAF, 
NGF, and cycloheximide (CHX). Sympathetic neuronal cultures 
were deprived of NGF for the duration indicated on the abscissa 
and then rescued with either 50 ng/ml NGF, 1 p~g/ml CHX, or 30 p.M 
BAF for 48 h. The time courses of rescue with BAF and NGF are 
identical with half of the neurons remaining rescuable after 22 h 
of NGF deprivation. In contrast, half of the neurons rescued with 
CHX are committed to die after 15 h. The number of viable neu- 
rons for each time point and rescue paradigm is expressed rela- 
tive to the mean number of neurons in the NGF-maintained cul- 
tures. Data from three independent experiments with duplicate 
or triplicate samples each were averaged and are expressed as 
mean +-- SD. The smooth curves were generated by fitting the sur- 
vival data to asymmetric logistic equations (for details, see Deck- 
werth and Johnson, 1993). 

ble of cleaving PARP (Nicholson et al., 1995; Tewari et al., 
1995; Gu et al., 1995; Fernandes-Alnemri et al., 1995a,b; 
Lippke et al., 1996), we have not identified any single ICE 
family protease as being the key mediator of neuronal ap- 
optosis after trophic factor deprivation. Indeed, no such 
absolute requirement for any specific ICE family protease 
in PCD has yet been reported. Z-VAD-FMK inhibited 
Fas-mediated death of thymocytes at a lower concentra- 
tion than did BAF (Fig. 1 C), whereas BAF inhibited sym- 
pathetic neuronal death at a lower concentration than did 
Z-VAD-FMK. This suggests that the repertoire of ICE 
family proteases involved in neuronal death is different 
than in Fas-induced death. ICE is expressed in thymocytes 
but not in sympathetic neurons (data not shown); sympa- 
thetic neurons from ICE-deficient mice undergo normal 
PCD upon NGF deprivation (Spiegel, K., personal com- 
munication). Therefore, ICE itself is unlikely to be re- 
quired for sympathetic neuronal death. Consistent with 
this expectation, the ICE-specific inhibitor Ac-YVAD- 
CHO did not block the NGF deprivation-induced death 
of sympathetic neurons in culture (Greenlund, L., unpub- 
lished observation). Both CPP32 and ICH-1 are expressed 
in rat SCG neurons (Fig. 9). However, our results indicate 
that little, if any, CPP32 was activated during neuronal 
PCD, implying that CPP32 may not be important in neu- 
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Figure 9. Apparent cleavage of PARP and ICH-1 but not CPP32 
during neuronal PCD. Extracts from SCG neurons deprived of 
NGF for 24 h with or without BAF (30 p~M) and control, un- 
treated neurons were subjected to SDS-PAGE and Western analy- 
sis. Shown are the protein bands corresponding to PARP (116 kD), 
pro-ICH-I (48 kD), pro-CPP32 (32 kD), and MAPK (44, 42 kD); 
MAPK serves as a loading control. Multiple proteins were de- 
tected on the same blot by stripping one antibody and subsequent 
reprobing with another; results from two experiments are shown 
(i and ii) because the signal to background ratio decreased con- 
siderably after three probes. Identical results were obtained in 
multiple experiments. 

ronal death. Consistent with this, we found that the cell- 
permeable DEVD-FMK inhibitor, which inhibits CPP32- 
like proteases, did not inhibit sympathetic neuronal death 
(data not shown). However, we cannot exclude the possi- 
bility that a small amount of CPP32 is activated and that 
this small amount is enough to execute the death program. 
In contrast, the apparent activation of ICH-1 suggests its 
importance in neuronal death (Fig. 9). This hypothesis can 
be tested once peptide inhibitors of ICH-1 become avail- 
able. 

Order o f  Events During Neuronal Death: Where Do the 
ICE Family Protease Function? 

One of our goals is to determine the biochemical and ge- 
netic events that are necessary for neuronal PCD. A flow- 
chart of the temporal sequence of events during PCD in 
NGF-deprived sympathetic neurons is shown in Fig. 10. 
Protein synthesis decreased at an identical rate in the first 
12 h after NGF removal in sympathetic cultures either 
with or without BAF (Fig. 5), consistent with the expecta- 
tion that BAF prevents the execution (apoptosis) but not 
the initiation of PCD. Other molecules that block neu- 
ronal death by inhibiting the cell death pathway, such as 
superoxide dismutase and Bcl-2, likewise do not prevent 
the fall in protein synthesis (Greenlund et al., 1995a,b). 

c-]un and c-los mRNAs are induced in sympathetic neu- 
rons undergoing NGF deprivation-induced PCD (Estus 
et al., 1994). Both these genes are induced even in BAF- 
saved neurons (Fig. 6). Assuming that the neuronal PCD 
pathway upon trophic factor withdrawal is linear (Fig. 10), 
our results indicate that the ICE family proteases function 
downstream of the events that cause the increase in the 
steady state levels of c-jun and c-los during PCD. Several 
experiments suggest that the events that cause an increase 
in c-jun mRNA are essential for neuronal PCD. Increase 
in c-]un mRNA transcription is mediated by the c-jun pro- 
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Figure 10. Temporal se- 
quence of events during PCD 
in NGF-deprived rat sympa- 
thetic neurons. The pathway 
of PCD has been divided into 
four stages and the known 
events are shown in the ap- 
proximate temporal se- 
quence in which they occur 
after NGF removal. The step 
inhibited by microinjection 
of neutralizing antibodies 
against c-jun (anti c-jun) or a 
dominant negative c-jun con- 
struct (dn c-jun) is shown co- 
incident with the observed 
c-]un increase. However, 
whether this step occurs be- 
fore or after the CHX inhib- 
itable event is unknown. 
Likewise, the relative posi- 
tion of Bcl-2 function is un- 
known but is shown to occur 

after the CHX inhibitable event because Bcl-2 inhibits apoptosis in models of apoptosis that are either protein synthesis dependent or 
independent and suppression of PCD by Bcl-2 overexpression does not prevent the fall in protein synthesis or the c-jun expression asso- 
ciated with PCD in sympathetic neurons. These data are compiled from this and previous work (Edwards et al., 1991; Garcia et al., 1992; 
Deckwerth and Johnson, 1993; Estus et al., 1994; Freeman et al., 1994; Franklin et al., 1995; Greenlund et al., 1995a,b; Ham et al., 1995; 
Virdee and Tolkovsky, 1995; Creedon et al., 1996). ROS, reactive oxygen species; MAPK, map kinase. 

tein after it becomes phosphorylated by the activated jun 
kinases (JNK) (Karin, 1994; Smeal et al., 1994). Microin- 
jection of either an anti-c-jun neutralizing antibody or a 
dominant negative c-jun construct, which inhibits the ac- 
tivity of c-jun protein, inhibits NGF deprivation-induced 
PCD in rat sympathetic neurons (Estus et al., 1994; Ham 
et al., 1995). Neuronally differentiated PC12 cells show an 
increase in JNK activity when deprived of NGF (Xia et al., 
1995; Park et al., 1996); expression of a dominant-interfer- 
ing mutant of JNK inhibited apoptosis in these cells (Xia 
et al,, 1995). 

The importance of increased c-los expression in sympa- 
thetic neurons undergoing PCD is less clear. While the in- 
volvement of Fos family proteins is strongly suggested by 
the observation that microinjection of an antibody, which 
neutralizes several Fos family proteins (c-fos, Fos B, Fra 1, 
Fra 2), blocks NGF deprivation-induced death of rat sym- 
pathetic neurons (Estus et al., 1994), the requirement of 
individual Fos family proteins has not been resolved. Our 
results indicate that c-fos increases before chromatin con- 
densation during trophic factor deprivation-induced PCD 
and is consistent with the model in which ICE family pro- 
teases function downstream of the event that causes c-los 
induction but upstream of chromatin condensation. 

The increase in both c-jun and c-los mRNAs after NGF 
removal was severalfold higher in BAF-saved neuronal 
cultures as compared to cultures without BAF (Fig. 6). 
The most likely explanation for this result is that in cul- 
tures without BAF, the actual level of increase of these 
mRNAs may not have been apparent since at a population 
level, the mRNA increase in some neurons occurred when 
other neurons had already undergone apoptosis. In cul- 
tures maintained with BAF, a much greater increase was 
detected in the population since the increase in m R N A  
signal was not attenuated by any neuronal loss. 

A particularly informative method of assessing where 
the ICE family proteases function during PCD is by exam- 
ining the commitment point of rescue with BAF. Our re- 
sults show that 50% of neurons could no longer be rescued 
with BAF 22 h after NGF removal (Fig. 8), indicating that 
the ICE family proteases functioned at this time during 
neuronal death. This timing is again consistent with the 
ICE family proteases acting downstream of the increases 
in c-jun and c-los mRNAs (Fig. 10). An important obser- 
vation is that the time courses of rescue of NGF-deprived 
sympathetic neurons with BAF or readdition of NGF are 
identical (Fig. 8). NGF prevents the initiation of the path- 
way at the very beginning, and it also blocks apoptosis 
posttranslationally by modifying some later, as yet uniden- 
tified, step in the pathway (Edwards et al., 1991; Deck- 
werth and Johnson, 1993). Our results show that NGF pre- 
vented apoptosis by blocking an event that functions at, or 
very near, the time at which the ICE family proteases were 
required for progression of PCD. NGF could posttransla- 
tionally inactivate either the ICE family proteases or act 
on a molecule functioning just before or after the ICE 
family protease activation. The time course of rescue with 
either KCI or CPTcAMP is also identical to that of NGF, 
indicating that these two saving agents may also block ap- 
optosis by acting at a similar step (Edwards et al., 1991; 
Deckwerth and Johnson, 1993). 

Comparison of  BAF-saved Sympathetic Neurons with 
Those from the BAX-deficient Animals 

The inability of BAF-saved sympathetic neurons to un- 
dergo~apoptosis is strikingly similar to recent observations 
in neurons from Bax-deficient mice. BAX, a death-pro- 
moting member  of the BCL-2-related family, is a protein 
in whose absence sympathetic and facial motor neurons 
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survive deprivation of NGF and disconnection from their 
targets by axotomy, respectively (Deckwerth et al., 1996). 
In both cases, where neuronal apoptosis is prevented by 
blocking the function of proteins in the PCD pathway, sur- 
viving neurons appear atrophic but remain viable for an 
extended period of time upon trophic factor deprivation, 
and respond to readdition of trophic factor with neurite 
outgrowth and soma hypertrophy. The similarity in the 
phenotype suggests that both BAX and the ICE family 
proteases function very distally and potentially in close 
proximity in the pathway of PCD and indicates that inhib- 
iting the function of these cell death genes is an effective 
way of preventing neuronal death. 

Implications for the Use of Antiapoptotic Strategies 
in Therapy 
The observations of the morphological, genetic, and meta- 
bolic status of neurons prevented from undergoing termi- 
nal execution (apoptosis) by inhibitors of ICE-like pro- 
teases or in the absence of BAX may have therapeutic 
implications. Our results, summarized in Fig. 10, suggest 
that although inhibition of ICE-like proteases or BAX 
function prevents apoptosis, neither has an impact on the 
many events that occur subsequent to NGF removal that 
lead the cell to the point where it commits to undergo apop- 
tosis. Such NGF-deprived cells are atrophic, fail to main- 
tain growth, have a dramatically altered pattern of gene 
expression, and are metabolically hypoactive. It is hard to 
envision that such neurons maintain anything approaching 
normal function. However, such cells are capable of re- 
sponding to reexposure to NGF, reinitiating somal and 
process growth, and presumably resuming a more normal 
level of function. 

Although extrapolating from this model system to path- 
ological conditions is tenuous, we feel that our observa- 
tions have implications. Recent data have implicated apop- 
tosis as being involved in several situations of neuronal 
death, such as in mechanical trauma, stroke, and in chronic 
neurodegenerative disease (Linnik et al., 1993; Ferrer et al., 
1994; MacManus et al., 1994; Su et al., 1994; Yoshiyama 
et al., 1994; LaFerla et al., 1995). To the extent that apop- 
tosis occurs in these conditions, the terminal apoptotic 
events occur after a period in which the cell undergoes a 
series of changes leadiflg to apoptosis. These changes 
could be considered analogous to the changes seen in our 
paradigm (Fig. 10) that lead the cell to a state of metabolic 
and genetic derangement that triggers apoptosis. In a situ- 
ation, such as trauma or stroke, during which cell death 
may occur over a period of days to weeks and where some 
reversal of the processes associated with the insult will es- 
tablish a more normal environment, antiapoptotic thera- 
pies may prove very useful. In effect, the antiapoptotic 
therapy keeps neurons alive for a time sufficient enough to 
establish a tissue milieu compatible with long-term sur- 
vival and function of the neuron. In contrast, chronic neu- 
rodegenerative disease (e.g., ALS, Alzheimer's Disease, 
Parkinson's Disease) presents a different problem. In this 
case, the terminal apoptotic event is the result of the de- 
rangement of the neuron (again analogous to that of the 
activation, propagation, and commitment phase of Fig. 10) 
to a metabolically and morphologically altered, hypo- or 

nonfunctional state. In this case, antiapoptotic therapy 
alone may be of less use, as such therapies do not reverse 
the events leading to this hypo- or nonfunctional state 
(Sagot et al., 1995); and, in contrast to stroke or trauma, no 
healing processes are ongoing to reverse the underlying 
processes that are driving the neuron toward apoptosis. 
Future experiments studying antiapoptotic drugs or ani- 
mals with genetic lesions in the apoptotic pathway (e.g., 
BAX knockouts), coupled with experimental or genetic 
models of stroke, trauma, or genetic disease, will assess the 
use of antiapoptotic therapies. 
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