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Abstract
Genetic data are now widely available. There is, however, an apparent lack of concerted effort to produce software systems for statistical

analysis of genetic data compared with other fields of statistics. It is often a tremendous task for end-users to tailor them for particular data,

especially when genetic data are analysed in conjunction with a large number of covariates. Here, R (http://www.r-project.org), a free,

flexible and platform-independent environment for statistical modelling and graphics is explored as an integrated system for genetic data

analysis. An overview of some packages currently available for analysis of genetic data is given. This is followed by examples of package

development and practical applications. With clear advantages in data management, graphics, statistical analysis, programming, internet

capability and use of available codes, it is a feasible, although challenging, task to develop it into an integrated platform for genetic analysis;

this will require the joint efforts of many researchers.
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Introduction

With the success of genome projects in human and other

species, vast quantities of genetic data are now available and

increasingly used. These include the HapMap (http://www.

hapmap.org) and the BioBank (eg UK BioBank, http://www.

ukbiobank.ac.uk) projects; others are envisaged.1 They

generate large datasets, which are used for localisation of

disease-predisposing genes, for drug discovery and for better

understanding of human population history and interaction

with the environment.

Meanwhile, these data and their increasing use pose

immense challenges for statisticians and have provoked a

bewildering array of new algorithms and relevant software

(for example, in phasing algorithms2,3). There is an apparent

lack of coordination of such endeavours, however, compared

with other fields of statistics, where appropriate tools are

well established. For human genetics, the focus of research

has been on the genetic dissection of complex traits such as

schizophrenia, diabetes and cardiovascular diseases.

The research paradigms and tools largely fall into several

categories; namely, segregation analysis, linkage analysis

(including allele-sharing methods), association studies and

experimental crosses mapping polygenic traits, mapping of

quantitative trait loci (QTLs).4 This has been further shifted to

genetic association studies exploring genomic structure and

incorporating more information regarding human population

history, microarray analysis using gene expression data and

proteomics, among others. The vast genomic data narrow

the gap between the original definitions of genetic mapping

and sequence analysis in the human genome project, followed

by a similar trend for analytical tools. These analytical tools

now appear awkward and require updating.

There are hundreds of programs and utilities for linkage and

association analysis. Some of them are described here. Since

most of them are listed in the Rockefeller University (http://

linkage.rockefeller.edu) and UK Human Genome Mapping

Project Resource Centre (http://www.hgmp.mrc.ac.uk). The

full names and references for these software programs are not

given here. This paper is placed in the context of previous

reviews on linkage analysis5 and haplotype phase inference.2 It

is notable that Salem et al’s3 survey contained a total of 43

software programs for phasing and association analysis of

unrelated individuals. It would have been much more if topics

such as data on experimental design using animals, phyloge-

netic analysis and microarray data analysis had been included.

Computer programming for linkage analysis began with the

first Fortran program, LIPED, developed by Ott.6,7 In the

1980s, the celebrated book Methods in Genetic Epidemiology8

described a variety of computer programs, including

PATHMIX for path analysis of nuclear family data,

POINTER for complex segregation analysis and LIPED.

The Pascal program LINKAGE was written in the early 1980s

and included a number of subprograms, ILINK, MLINK

and LINKMAP, which in turn had their counterpart adapted

for three-generation Centre d’Etude du Polymorphisme
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Humain families. These programs are still widely used, but

require intense training. Based on these original programs, a

number of other programs have been written — for example,

SLINK, FASTSLINK, FASTLINK, MFLINK, FASTMAP,

ERPA, ESPA and a variety of linkage utility programs. Added

to the analysts’ learning set are packages such as MENDEL,

SIMLINK, SIMWALK, VITESSE, PAP, SAGE, SOLAR,

SUPERLINK, SPLINK and ASPEX. Unfortunately, these are

not exclusive; for example, a number of programs based on

the Lander-Green-Kruglyak algorithm have been developed;

for example, MAPMAKER, GENEHUNTER,

GENEHUNTER-PLUS, GENEHUNTER-IMPRINTING,

GENEHUNTER-TWOLOCUS, GENEHUNTER-SAD,

ALLEGRO, MERLIN. There are also programs based on

Bayesian methods such as MORGAN. Furthermore, efforts

have been devoted to developing tools to facilitate analysis;

for example, GLUE, QUICKLINK and easyLINKAGE.

Popular programs for phasing and association analysis included

ARLEQUIN, PHASE, EHPLUS, SNPHAP, PLEM and

CHAPLAN for unrelated individuals and QTDT, FBAT,

TRANSMIT and UNPHASED for family-based association

tests. There are also Bayesian counterparts such as

HAPLOTYPER and BLADE.

Some features of these programs are worthy of note. First,

they were written in many computer languages, ranging from

C, Cþþ , Fortran, Pascal, Java and Perl to Stata, SAS and
S-PLUS, some of which are available in compiled form and

are tested under specific computer systems. Secondly, they

require data in specific formats, often from the programmers’

own perspective and not conforming to any standard, and

it is often rather cumbersome to reuse output from these

programs. Some include primitive parsing and a few have

graphical capability. Thirdly, in the analysis of data from a large

project, it is often necessary to write some customised utilities

for these programs. The batch of skills required for the

different languages and tools largely needs a profession of

computing or an applied field. These often lead to redundant

work, poor maintenance and lack of validity checks.

Consequently, it is difficult for practical data analysts to keep

track of so many software programs and thus many smaller

programs are sometimes ‘lost’, even though they would be

very useful if only people knew about them.

The features of good software systems for genetic data

analysis have been described9 and were reiterated in the recent

Genetic Analysis Workshop (http://www.gaworkshop.org),

where some software proved to be inadequate for datasets from

both real study and simulation. To a large extent, the authors

believe that this is due to the lack of a general but satisfactory

platform for statistical geneticists. Excellent theoretical work

often does not have a good companion program. While there

is always a motivation to provide one, the effort of development

is often too great. The ideal development platform should

run across computer systems and have facilities for data

management, graphics, established algorithms and clear

documentation, provide a graphical user-interface (GUI) and

accept batch jobs. The language should be powerful and

flexible, but easy enough to track errors and modify or extend

the source codes. Furthermore, it is essential to be able to

retrieve and send information from the internet, given that

large genetic data and programs are publicly available. Finally, as

much of the code for numerical analysis and other routines has

been available for decades, typically in Pascal, Fortran,

C/Cþþ , it should ideally be possible to re-use this.
The above features would be impossible to achieve by single

programmer(s) or group(s); however, with the recent develop-

ment of general computing, such a platform now exists. Note

how these features are reminiscent of the open source initiatives

led by the Linux operating system. In the following sections,

the authors first describe features of R through a brief intro-

duction, and then give a survey of packages to illustrate the

range of tools available. This is followed by an exposition

through example packages. They also provide examples and

comparisons with other platforms. They suggest that R could

potentially serve as an integrated platform for genetic data

analysis.

A brief overview of R

According to the comprehensive R archive network (CRAN),

R is“GNU S”, a freely available language and environment for statistical

computing and graphics which provides a wide variety of statistical and

graphical techniques: linear and nonlinear modelling, statistical tests, time

series analysis, classification, clustering, etc’ (http://cran.r-project.org).

A brief history is contained in the frequently asked

questions (R-FAQ) at CRAN:

The name is partly based on the (first) names of the first two R authors

(Robert Gentleman and Ross Ihaka), and partly a play on the name of the

Bell Labs language “S”. S is a very high level language and an environment

for data analysis and graphics. In 1998, the Association for Computing

Machinery (ACM) presented its Software System Award to John

M. Chambers, the principal designer of S, for the S system, which has forever

altered the way people analyze, visualize, and manipulate data. . . S is an

elegant, widely accepted, and enduring software system, with conceptual

integrity, thanks to the insight, taste, and effort of John Chambers.

The master site for CRAN is maintained in Austria and is

mirrored by other sites worldwide. The R system is greatly

enhanced by a variety of tools with excellent documentation.

These tools are organised as base and contributed packages,

which now number well over 500. Similarly to S-PLUS, an

R package is a collection of object(s), dataset(s) or function(s)

for specific tasks. As of the latest version (2.1.1), the

R distribution comes with the following packages: base

R functions (base); base R datasets (datasets); formally defined

methods and classes for R objects and programming tools

(methods); devices and functions for graphics (grid, grDevices,
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graphics); interface and language bindings to Tcl/Tk GUI

elements (tcltk); tools for package development administration

(tools); utilities (utils); and R statistical functions (stats, stats4,

splines). The recommended packages include bootstrap (boot);

cluster analysis (cluster); interface to other statistical packages

( foreign); lattice graphics (lattice); linear models and smoothing

(mgcv, nlme, KernSmooth); recursive partitioning (rpart); survival

analysis (survival); and functions and datasets to support the

book Modern Applied Statistics with S10 (VR). By default, these

packages are installed with the R system. By contrast,

contributed packages are from other users and require

install.packages() for installation and library() command to load.

The R system is available for most computer systems,

including Unix, Linux, Windows and MacOS X. With the

R system is an object-orientated programming language, a

powerful tool for organising the representation of information

(classes) and the actions that are applied to these represen-

tations (methods). It now supports the S4 class system,11 which

is distinguished from the S3 class system12 and allows for

object-orientated programming within an interactive

environment, consistent validity check and multiple method

dispatches. In addition, R has a flexible graphical facility and

is able to read data in a number of formats, including dBase,

Stata, SPSS and SAS. It also includes a linear algebra package

(LAPACK, http://www.netlib.org/lapack/). As R was devel-

oped using the model of S, from an institution where the C/

Cþþ language was born, it is native to C/Cþþ
and Fortran programs. Furthermore, it can be run both

through GUI and in batch mode, which allows new and

experienced users to customise it to their own needs. TCL/Tk

is now part of the system, which may be used to create a

user-defined GUI. There are also packages which provide

interface to common gateway interface (CGI) and generate

HTML/XML outputs. A closely related project is Omega,

‘. . .a joint project with the goal of providing a variety of

open-source software for statistical applications’ (http://www.

omegahat.org), which aims to provide facilities to communi-

cate between R and other applications such as Matlab, Perl

and Python. The packages RMySQL and RODBC are useful

for connecting the MySQL database system and Open Data-

Base Connectivity (ODBC).

More information about R, including documentation and

recommended reading, is available from CRAN.

A list of R packages for genetic data
analysis

This section describes some packages for genetic data analysis

according to their package descriptions in CRAN. They fall

into several categories: data manipulation (genetics); phylo-

genetic analysis (PHYLOGR, ape); association analysis of

population data including population structure (biodem,

genetics, hapassoc, haplo.score, haplo.stats, hierfstat, hwde, ldDesign,

LDheatmap, Malmig, popgen, R/gap, rmetasim); family data

(tdthap); and QTL for experimental design (bim, bqtl, happy,

qtlDesign, R/qtl). Others (BradleyTerry, epitools, evd, gllm, locfdr,

rmeta, vcd) are fairly general and are not limited to analysis of

genetic data. There are a large number of packages for

microarray analysis, as described below.

ape. Analyses of Phylogenetics and Evolution: provides

functions for reading and plotting phylogenetic trees in

parenthetic format (standard Newick format), analyses of

comparative data in a phylogenetic framework, analyses of

diversification and macroevolution, computing distances from

allelic and nucleotide data, reading nucleotide sequences from

GenBank via the internet, and several tools such as Mantel’s

test, computation of minimum spanning tree or the

population parameter theta based on various approaches.

bim. Bayesian interval mapping diagnostics: functions to

interpret QTLCart and Bmapqtl samples.13

biodem. Biodemography functions.

bqtl. QTL mapping toolkit for inbred crosses and recom-

binant inbred lines. Includes maximum likelihood and

Bayesian tools.

genetics. Classes and methods for handling genetic data.

Includes classes to represent genotypes and haplotypes at single

markers up to multiple markers on multiple chromosomes.

Functions include allele frequencies, flagging homo/

heterozygotes, flagging carriers of certain alleles, estimating

and testing for Hardy–Weinberg disequilibrium, estimating

and testing for linkage disequilibrium.

hapassoc. A package used for likelihood inference of trait

associations with haplotypes and other covariates in generalised

linear models. The functions accommodate uncertain haplo-

type phase and can handle missing genotypes at some SNPs.14

haplo.score. A suite of routines that can be used to compute

score statistics to test associations between haplotypes and a

wide variety of traits, including binary, ordinal, quantitative

and Poisson.15 These methods assume that all subjects are

unrelated and that haplotypes are ambiguous (due to unknown

linkage phase of the genetic markers). The methods provide

several different global and haplotype-specific tests for

association, as well as provide adjustment for non-genetic

covariates and computation of simulation p-values (which may

be needed for sparse data).

haplo.stats. A suite of S-PLUS/R routines for the analysis of

indirectly measured haplotypes.16 The statistical methods

assume that all subjects are unrelated and that haplotypes are

ambiguous (due to unknown linkage phase of the genetic
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markers). The genetic markers are assumed to be co-dominant

(ie one-to-one correspondence between their genotypes and

their phenotypes), and the measurements of genetic markers

are referred to as genotypes. The main functions in haplo.stats

are: haplo.em, haplo.glm and haplo.score. The haplo.score function

is an extension of an earlier function in the haplo.score package.

hierfstat. Estimation of hierarchical F-statistics from haploid

or diploid genetic data with any numbers of levels in the

hierarchy, and tests for the significance of each F and variance

components.17

hwde. fits models for genotypic disequilibria, as described by

Weir and Wilson18 and Huttley and Wilson.19 Contrast terms

are available which account for the first-order interactions

between loci.

kinship. A package that contains several functions. 1. coxme

(general mixed-effects Cox models, kinship): routines to create

and manipulate n by n matrices that describe the genetic

relationships between n persons. 2. pedigree: creates and plots

pedigrees. 3. bdsmatrix: a class of objects for sparse block-

diagonal matrices (which is how kinship matrices are stored).

4. gchol: generalised Cholesky decompositions.

ldDesign. A package for design of experiments for association

studies for detection of linkage disequilibrium. Uses an

existing deterministic power calculation for detection of

linkage disequilibrium between a biallelic QTL and a biallelic

marker, together with the Spiegelhalter and Smith–Bayes

factor to generate designs with power to detect effects with

a given Bayes factor.20

LDheatmap. A package to create a heat map (a false colour

image with a dendrogram added to the left side and to the top)

of linkage disequilibrium involving SNPs, using both r and D 0.

Malmig. Malecot migration model functions.

PHYLOGR. Manipulation and analysis of phylogenetically-

simulated datasets (as obtained from PDSIMUL in package

PDAP) and phylogenetically-based analyses using GLS.

qtlDesign. Tools for the design of QTL experiments.21

R/gap. An integrated package for genetic data analysis of

both population and family data. It contains functions for

sample size calculations of both population- and family-based

designs, probability of familial disease aggregation, kinship

calculation, some statistics in linkage analysis and association

analysis involving one or more genetic markers, including

haplotype analysis. The functions included are: hwe, hwe.hardy

for Hardy–Weinberg equilibria involving SNPs and highly

polymorphic microsatellite markers; s2k, gcontrol for single-

locus association analysis of polymorphic markers and genomic

control;22,23 genecounting; gcp for haplotype analysis of all

chromosomes and missing data24 and permutation tests;

tbyt, kbyl for linkage disequilibrium statistics for SNPs and

multiallelic markers; htr, hap.score for extracting haplotype

information for haplotype trend regression analysis and

regression incorporating covariates based on conditional

regression, as implemented in the haplo.score package.15 For

family data, it includes family plotting through graphviz

( pedtodot), exact probability of familial clustering disease

( pfc and pfc.sim),25 kinship calculation, involves genetic index

of familiality (gif) and a simple kinship calculation (kin.morgan).

Currently, it is bundled with an experimental version of

POINTER and PATHMIX.8

rmetasim. An interface between R and the metasim

simulation engine.26 Facilitates the use of the metasim engine

to build and run individual-based population genetics

simulations.

R/qtl. Analysis of experimental crosses to identify QTLs.27

The following packages are not available from CRAN, but

conform to the R standard:

happy. an R interface into the C package HAPPY for fine-

mapping QTL in heterogeneous stocks,28 which is an

advanced intercross between (usually eight) founder inbred

strains of mice suitable for fine-mapping QTL. The happy

package is an extension of the original C program happy; it

uses the C code to compute the probability of descent from

each of the founders, at each locus position, but happy allows a

much richer range of models to be fit to the data.

tdthap. Transmission/disequilibrium tests (TDT) for

extended haplotypes, according to Clayton and Jones.29

popgen. A package which implements a variety of statistical

and population genetic methodology.30

An ld2 function for two-locus log-linear models is available

from the gllm, routines for log-linear models of incomplete

contingency tables,31 including some latent class models via

expectation maximisation (EM) and Fisher scoring

approaches. Basic tools for applied epidemiology are

implemented in the general-purpose package epitools, and the

visualizing categorical data32 (vcd) package Woolf ’s test includes

for homogeneity on 2 £ 2 £ k- tables over strata (ie if the log

odds ratios are the same in all strata). The locfdr package is

for computation of local false discovery rates.33 The rmeta

package contains many functions for meta-analysis which

would be appropriate for the genetic analysis setting, while the

BradleyTerry package can be used for TDT analysis. A poten-

tially useful package for genome-wide association analysis is
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evd, implementing extreme value distribution. R functions

associated with specific papers include link/tdt,34,35 EHP,36

tdtexact37 and htpower/Nstage.38,39 A number of R programs,

including those for methods of genomic controls, are available

from the University of Pittsburg computational genetics lab

(http://wpicr.wpic.pitt.edu/wpiccompgen/). They use the

familiar format of input/output files, but are somewhat

informal compared with many packages on CRAN.

Many packages for microarray data analysis are available

from CRAN and the Bioconductor project (http://www.

bioconductor.org); for example, affy for Affymetrix, marray

and arrayMagic for cDNA data processing and packages for

extracting signals from the scanner (Spot), for gene annotation

and delineating biological pathways (annotate). Unlike geno-

type data, gene expression data–after data pre-processing

including normalisation–can generally be analysed using the

recommended packages installed with R for standard statistical

analysis. Bioconductor additionally provides packages for

adjusting for multiple testing (multtest), which is a typical issue

in analysing high-dimensional microarray data. Taking

advantage of the extensive graphical abilities of R, the package

geneplotter allows users to associate microarray expression data

with chromosomal location and to visualise their data using

whole genome or single chromosome plots. The package

Rgraphviz can be used for laying out biological pathways.

The numerous packages available may appear daunting, but

a recent feature of R is the so-called CRAN task views, which

allow users to browse packages by topic and provide tools

to automatically install all packages for special areas of interest.

A version for genetic analysis has been developed by Gregor

Gorjanc (http://www.bfro.uni-lj.si/MR/ggorjan/software/

R/Genetics.html) and will be available soon.

Example applications

In this section, some examples are given to illustrate the

development and use of the R packages described above.

Example 1. Haplotype frequency estimation including

haplotype association with case-control data. A number of

computer programs have been written by one of the authors

(J.H.Z.) for this purpose: 2LD,40 EH þ ,41 fastEH þ ,42

GENECOUNTING and HAP.24,43 They have now been

integrated into functions available from R/gap, so that haplo-

type frequencies can be estimated using the EM algorithm,44

including data on Chromosome X, to be served as input for

tbyt or kbyl to obtain linkage disequilibrium measures such as

D 0 and r 2 and linkage disequilibrium heat map. Instead of

calling the executable files with utilities such as LDSHELL,45 a

simple loop is sufficient to run a sliding windows analysis and

for estimation using data from several populations.

Furthermore, haplotype assignment can be read into R for

haplotype trend regression46 of cross-sectional or longitudinal

data. In addition, some well-known datasets47,48 can be stored

in compact form with detailed documentation and retrieved

when needed.

Example 2. A collaborative study on genetics of alcoholism

(COGA) data from the Genetic Analysis Workshop 14

(GAW14). The microsatellite markers are given in fixed ASCII

format. In previous analysis,49 C utility programs had to be

written to read the marker data in allele size. Now, one can use

read.fortran to read such formatted data. One can also use

the genetics package to test for Hardy–Weinberg Equilibrium,

and pedigree diagrams can be drawn all in one go for the

143 pedigrees involved (see http://www.ucl.ac.uk/~rmjdjhz/

r-progs.htm). The use of the kinship package for the

mixed-effects Cox model of alcoholism in extended pedigrees,

including family relationship and with microsatellite markers,

has been reported.50

Example 3. Log-linear models for genotype data. The

R package, hwde, has provided an example from Huttley and

Wilson;19 see the detailed information given in the package

vignette.

Example 4. Bayesian analysis of population data. This can

be achieved with the R package mcmc by Charles Geyer. One

can also use the more familiar Windows packages WinBUGS,

via the package R2WinBUGS. It is easier to set up than the

original WinBUGS and the convergence of Markov chain

Monte Carlo (MCMC) analyses can be monitored with the

coda package.

Example 5. Open database connection. RODBC imple-

ments ODBC with compliant databases when drivers exist on

the host system. The following is an example for reading

all columns of tblOutput in an Microsoftw Access database

aedata.mdb. The end result is a data frame called tblOutput.

# load the library and connect to Microsoft Access

library(RODBC)

c2 ,- odbcConnectAccess(“c:/aesop/mdb/aedata.mdb”)
# select one table from the database

tblOutput ,- sqlQuery(c2,paste(“select * from tblOutput”))

# a data.frame

class(tblOutput)

This shows that R is able to make queries using structured

query language (SQL) to a formal database system, so that

marker information from genome-wide linkage and associa-

tion studies can be organised and retrieved in a similar fashion

and synchronised updates and communications are possible.

Comparison and integration with
other software systems

As R has many functions available in a single environment,

minimum effort is needed to write programs for data handling.
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One can, then, concentrate on the statistical algorithm

and analysis. This is clearly advantageous over stand-alone

programs. The need to integrate internet capability within

the data analytical system is also essential, given that data

on several international projects are available from the

internet.

Some researchers prefer to analyse data from large genetic

studies using a hybrid of Perl or other scripts with programs

written in C/Cþþ ; however, these programs are more
targeted at computing professionals, having a relatively smaller

statistical component. It may be more difficult to re-use

codes written for such purposes. Program development may

be more time-consuming, especially when analysis involving

both genetic and environmental factors is required.51 Even

so, it is possible to use R as an independent program for such

purposes. Likewise, compiled R packages for specific

computer systems, but not the source code, can be distributed

if necessary.

A large number of programs with a GUI have been

developed recently. A notable example in multilevel modelling

is the MIXOR/MIXREG and associated programs for

longitudinal data analysis. With few exceptions, such as

UNPHASE and JPAP, the source codes are largely unavailable,

so it is sometimes difficult to assess the validity of the

programs. Users should therefore remain familiar with a

variety of implementations. They will encounter the usual

problems of idiosyncratic data formats and source codes that

are difficult to reuse. An alternative would be to use Java as

an interface to the standard-alone programs, in order to run

them in batch mode. The documentation associated with

individual functions, however, is often poorer than those in

R. In this regard, a different interface is provided by Rweb.52

It provides a simple text entry form that returns output and

graphs and a more sophisticated Javascript version that pro-

vides a multiple window environment and a set of point and

click modules that are useful for introductory statistics courses

and require no knowledge of the R language. All of the Rweb

versions can analyse internet-accessible datasets if a URL is

provided. It has also been shown that Perl can be used within

R (see the gregmisc package).

Software development could be based on other

environments — for example, Stata, SAS and S-PLUS,

including some corporate efforts, such as SAS/GENETICS.

The R package foreign provides commands to read and write

dBase, Stata, SPSS and SAS xport files or access to Microsoft

Excel/Access via ODBC, whereas data transformations

between Stata and other applications require STAT/Transfer.

Most programs written in R can be used with little alteration

under S-PLUS. R has a clear advantage on graphics, and it is

easier to incorporate routines written in C/Cþþ/Fortran.
Unlike SAS, it does not require a separate module for matrix

operations.

A final note is given here regarding feedback that the

authors received when developing R/gap and kinship, so as to

show the benefit of the collaborative work that R encourages.

The hwe.hardy function in R/gap was originally designed

to accept only the full array containing the genotype counts,

but was later extended according to a recommendation to use

the genotype objects created by the genetics package. The C

output format, %lf, was not supported by the American

National Standards Institute (ANSI) standard and was

subsequently changed following the advice of the R core

development team. A compiling error with emx.f in the

original POINTER program was also pointed out and later

fixed. The kinship package was ported directly from S-PLUS.

Extensive efforts were required for debugging; however,

this has been greatly facilitated by the package debug from

CRAN. There was also a problem with MacOS X in

kinship, but this was subsequently changed according to

suggestions.

Discussion

The authors have described both the motivation and prospects

for using R as an integrated environment for genetic data

analysis. While a formal presentation of R and comparison

with R systems might have been given, the description

has been deliberately kept informal. The following recaps the

features of the R system.

First, it provides a flexible, integrated environment for

statistical computing using an object-orientated programming

language. It provides standard formats for data input,

documentation and an interface to general statistical packages

such as Stata, SPSS, SAS, S-PLUS and databases such as

dBase, Microsoft Access/Excel, Oracle (http://www.oracle.

com) and MySQL (http:/www.mysql.com). Above all, the R

system is now a collaborative work, involving many people,

and is available on most computer systems. Secondly, the

environment can be greatly enhanced by contributed

packages, which can either be implemented in the native R

language or as a hybrid with external languages such as

C/Cþþ/Fortran/Perl. This allows for the easy incorporation
of rich collections of algorithms and programs that have

already been developed over the years. Packages can also

be usefully incorporated from other areas of research.

For example, packages for operations research, statistics in

psychology, social network analysis, neuroimaging and

spatial disease mapping are available in the same repository.

Thirdly, standard datasets or benchmarks can be included

as native objects in a package; these are ideal for evaluating

new analytical methods. Fourthly, the functions and data

in a package can serve for a variety of analyses.

In haplotype analysis, for example, this could include

estimation of haplotype frequencies, assignment of possible

haplotypes, A linkage disequilibrium heat map and

conditional and joint analysis with environmental factors,

among others.
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Given that the development of the R system is relatively

recent, the wide range of tools available is impressive.

The comprehensive and powerful features of R in data

management, graphics and standard statistical analysis are

making it a very useful platform for microarray data

pre-processing, visualisation and advanced statistical analysis.

There is also a rich array of packages for the analysis of

population data and analysis, phylogenetic analysis and the

analysis of quantitative traits from experimental design,

although there is still a relative shortage of packages for the

calculation of identify-by-descent and therefore of discrete

traits or QTLs in human pedigrees. Packages for complex

segregation analysis and path analysis are still experimental.

Given the ease of creating packages from code that is

already available, however, we expect that this situation will

soon change.

Two important points should be made here. First, it should

be pointed out that the use of R should not block the devel-

opment of stand-alone programs. Secondly, a distinction should

be made between potential and reality. The authors have come

across arguments that implementations are trivial and that

computer programming including R programming by

statisticians are by default, straightforward. This may not be the

case, however, and a more thoughtful approach is necessary.

Often, software is cursorily written and poorly documented

with no consideration for generality and use of examples, and

consequently is hardly of any practical value. Fortunately, with

the help of the R core development team, it is possible to

produce industry-standard applications. The authors note

that, at the time of writing, a special issue of the Journal of

Statistical Software (http://www.jstatsoft.org) has been devoted

to the transition of packages in XLISP-STAT to R. Given

the current situation in genetic data analysis, it is now time

for action.

In summary, the authors believe that R can potentially serve

as an integrated platform for analysis of genetic data. While

the packages currently available are limited in R, it is expected

that its rich features will increasingly attract more developers

and users. Further attention by theoretical and applied

geneticists for software development and analysis will be

very rewarding in the long term.
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