
Surgical Neurology International • 2021 • 12(203)  |  1

is is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others 
to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
©2021 Published by Scientific Scholar on behalf of Surgical Neurology International

Original Article

Postsurgical functional outcome prediction model using 
deep learning framework (Prediction One, Sony Network 
Communications Inc.) for hypertensive intracerebral 
hemorrhage
Masahito Katsuki1, Yukinari Kakizawa1, Akihiro Nishikawa1, Yasunaga Yamamoto1, Toshiya Uchiyama1

1Department of Neurosurgery, Suwa Red Cross Hospital, Suwa, Nagano, Japan.

E-mail: Masahito Katsuki - ktk1122nigt@gmail.com; *Yukinari Kakizawa - ykakizawajp@yahoo.co.jp; Akihiro Nishikawa - aki.west@gmail.com;  
Yasunaga Yamamoto - yamamotoyasunaga@gmail.com; Toshiya Uchiyama - u_tosh@yahoo.co.jp

INTRODUCTION

Hypertensive intracerebral hemorrhage (ICH) is responsible for 10–30% of all strokes, and it is a 
significant cause of all stroke-related morbidity and mortality.[16] Only 20% of ICH patients regain 
functional independence within 3 months after the onset.[24] Surgical hematoma evacuation or 
conservative therapy are the main treatments for ICH, but the role of surgery for ICH patients 
remains unclear.

ABSTRACT
Background: Reliable prediction models of intracerebral hemorrhage (ICH) outcomes are needed for decision-
making of the treatment. Statistically making such prediction models needs a large number of samples and time-
consuming statistical analysis. Deep learning (DL), one of the artificial intelligence, is attractive, but there were no 
reports on DL-based functional outcome prediction models for ICH outcomes after surgery. We herein made a 
functional outcome prediction model using DLframework, Prediction One (Sony Network Communications Inc., 
Tokyo, Japan), and compared it to original ICH score, ICH Grading Scale, and FUNC score.

Methods: We used 140 consecutive hypertensive ICH patients’ data in our hospital between 2012 and 2019. All 
patients were surgically treated. Modified Rankin Scale 0–3 at 6 months was defined as a favorable outcome. We 
randomly divided them into 100 patients training dataset and 40 patients validation dataset. Prediction One made 
the prediction model using the training dataset with 5-fold cross-validation. We calculated area under the curves 
(AUCs) regarding the outcome using the DL-based model, ICH score, ICH Grading Scale, and FUNC score. The 
AUCs were compared.

Results: The model made by Prediction One using 64 variables had AUC of 0.997 in the training dataset and that 
of 0.884 in the validation dataset. These AUCs were superior to those derived from ICH score, ICH Grading Scale, 
and FUNC score.

Conclusion: We easily and quickly made prediction models using Prediction One, even with a small single-center 
dataset. The accuracy of the DL-based model was superior to those of previous statistically calculated models.
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Theoretically, surgical hematoma evacuation prevents 
herniation by reducing the intracranial pressure. It also 
decreases the pathophysiological impact of the ICH 
on surrounding tissue. However, the Surgical Trial in 
Intracerebral Hemorrhage (STICH) showed that patients 
with spontaneous supratentorial ICH showed no overall 
benefit from the early surgery when compared to the 
initial conservative therapy, though 24% of patients in 
the conservative group finally underwent surgery.[36] The 
STICH II trial showed that early surgery did not increase the 
morbidity and disability at 6 months and may have a bit of 
survival advantage for ICH patients without intraventricular 
hematoma.[35] The STICH II trial’s continuation report 
reported that only patients with a Glasgow Coma Scale 
(GCS) score 10–13 or a large ICH was likely to benefit from 
surgery.[10] The STICH and STICH II trials could not exhibit 
comprehensive benefit for the functional outcome over 
conservative treatment.[31] As a study on minimally invasive 
treatments, Minimally Invasive Surgery Plus Rt-PA for ICH 
Evacuation (MISTIE) trial was done, and it demonstrated 
no functional benefit for the MISTIE procedure in selected 
patients; however, a subgroup analysis showed improvement 
of the 1-year outcomes in patients with an increased 
hematoma removal rate (≤ 15 mL residual hematoma after 
the surgery).[13] Besides, an endoscopic evacuation arm of 
MISTIE II, called the Intraoperative Stereotactic Computed 
Tomography (CT)-Guided Endoscopic Surgery, also 
demonstrated the safety and effectiveness of the chronic 
neurological outcome.[50] However, after all, the role of 
surgery for ICH has not apparent, although these prospective 
studies were performed.

We practice according to the Japanese Guidelines for the 
Management of Stroke 2009[47] and 2015.[48] The guidelines 
suggest us to perform surgery depending on the patients’ 
neurological status and radiological findings. However, it 
is difficult to determine whether to perform the surgical 
treatment or not because the surgery’s role is unclear, as 
described above. Furthermore, not only the neurological 
status and radiological findings but also patients’ age, 
background, and their comorbidities have large effects on 
the outcomes, so we should determine the treatment strategy 
after a comprehensive evaluation and discussion with their 
families. Therefore, we need a reliable functional outcome 
prediction model to determine whether to perform surgery 
for ICH or not.

Previously, many studies tried to make the prediction model 
for ICH outcomes, including the original ICH score,[15] ICH 
Grading Scale,[42] Essen-ICH score,[52] max-ICH score,[43] the 
simplified ICH score,[3] ICH functional outcome score,[19] 
modified ICH score,[2] ICH outcome project score,[11] and the 
functional outcome (FUNC) score.[41] Validation studies and 
meta-analyses on their utilities have also been done, and their 

pooled area under the curve (AUC) of the receiver operating 
curve for functional outcome or mortality varied from 
0.76 to 0.85 [Table  1].[9] These statistically-made prediction 
models or scoring systems need a large number of samples 
over thousands, so these studies tend to be country-initiated 
or academic association-initiated research. However, the 
larger the sample size, the less detailed information is 
available, such as comorbidities, use of antithrombotic drugs, 
or laboratory test data, and the more there are missing data. 
Furthermore, the treatment strategies vary from hospital 
to hospital, and patient backgrounds differ depending on 
countries and regions. Therefore, these prediction scores 
work as the greatest common denominator worldwide but 
not necessarily applicable to the respective hospital.[21]

Deep learning (DL), one of the machine learning, is recently 
attractive. DL is starting to be used in the neurosurgical 
situations in decision-making for spinal canal stenosis,[1] 
predicting outcomes after subarachnoid hemorrhage,[21] 
automated diagnosis of primary headache,[26] predicting 
the occurrence of stroke[25] and ambulance transport,[51] 
pathological diagnosis[33] or radiomics studies of brain 
tumors.[4,34] However, there are no reports on the DL-based 
outcome prediction of ICH, though studies using other 
machine learning methods, such as decision tree, random 
forest, support vector machine, and XGBoost, have been 
reported.[12,37,53]

We hypothesized that we could make a good prediction 
model for our own hospital using DL, even with a small 
dataset with detailed variables. Therefore, we herein 
produced the DL-based functional outcome prediction 
model using DL framework, Prediction One (Sony Network 
Communications Inc., Tokyo, Japan)[44] with our ICH dataset 
and compared the utility of the model made by Prediction 
One to other statistically-made scores, including original 
ICH score,[15] ICH Grading Scale,[42] and FUNC score,[41] 
for functional prediction at 6 months. If we could make an 
excellent functional outcome prediction model, it would 
be beneficial for decision-making for whether to perform 
surgical hematoma removal or not. This is the first report to 
use DL to predict functional outcomes after surgery for ICH.

MATERIALS AND METHODS

Study population

We retrospectively retrieved data from medical records of 
all the consecutive 140 hypertensive ICH patients admitted 
between 2012 and 2019 and surgically treated at our 
institution. Patients who did not undergo surgical treatment, 
those without GCS score at admission nor the outcome data 
at 6 months, were excluded from the study. The detail of the 
dataset is available online.[23] The diagnosis of ICH was based 
on the clinical history and the presence of ICH on CT. The 
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inclusion criteria for the study were as follows; (1) patients 
with ICH at the basal ganglia or subcortex, (2) patients 
designated for surgical treatment according to the Japanese 
Guidelines for the Management of Stroke 2015[48] and 2009[47] 
(described in detail in the General management section) and 
treated by surgical hematoma evacuation with craniotomy 
or endoscopically, and (3) the interval between onset and 
hematoma removal was <24 h. The exclusion criteria were 
as follows; (1) ICHs due to the tumor, trauma, aneurysm, 
arteriovenous malformation, and hemorrhage after 
infarction, and (2) patients who had a thalamic or caudate 
head hemorrhage with an intraventricular hemorrhage 
treated by the flexible neuroendoscope to only remove the 
intraventricular hematoma. There were no patients with 
preoperative cognitive impairment. Our hospital’s research 
ethics committee approved this study, and we gained written 
informed consent for this study from all of the patients, the 
legally authorized representative of the patients, or next 
of kin of the deceased patients. All methods were carried 
out in accordance with relevant guidelines and regulations 
(Declaration of Helsinki).

General management

During admission and in the acute phase, patients were first 
administered nicardipine to maintain the normal systolic 
blood pressure at under 140 mmHg. The prothrombin 
time of patients undergoing anticoagulation therapy was 
normalized by the administration of Vitamin K and/or 
fresh frozen plasma. Then, a surgical indication was made 
following the Japanese Guidelines for the Management of 
Stroke 2009[47] and 2015.[48] Both versions describe the same 
surgical indications, which are as follows: patients with 
hematoma at the basal ganglia which was more than 30 mL, 
and who were neurologically deteriorating were designated 
for surgery. Patients with superficial lobar hemorrhage 
within 1 cm of the cortical surface and with disturbance of 
consciousness or moderate neurological deficits were also 
designated for surgery. Patients with a small hemorrhage and 
without severe neurological symptoms that could be treated 
by conservation or patients with cardiopulmonary arrest on 
arrival did not undergo any surgical treatment. Rehabilitation 
and nutritional support were started immediately after the 

Table 1: Previously reported ICH outcome prediction scales.

Original ICH score[15] Points ICH Grading Scale[42] Points FUNC score[41] Points

GCS score GCS score GCS score
3–4 2 3–8 3 <9 0
5–12 1 9–12 2 ≧9 2
13–15 0 13–15 1

Hematoma volume Hematoma volume Hematoma volume
≧30 mL 1 Infratentorial >60 mL 0
<30 mL 0 >20 mL 3 30–60 mL 2

10–20 mL 2 <30 mL 4
<10 mL 1

Supratentorial
>70 mL 3
40–70 mL 2
<40 mL 1

Hematoma location Hematoma location Hematoma location
Infratentorial 1 Infratentorial 2 Infratentorial 0
Supratentorial 0 Supratentorial 1 Deep 1

Lobar 2
Age (y.o.) Age (y.o.) Age (y.o.)
≧80 1 >65 3 ≧80 0
<80 0 45–64 2 70–79 1

<45 1 <70 2
Intraventricular hematoma Intraventricular hematoma Cognitive impairment

Present 1 Present 1 Present 0
Absent 0 Absent 0 Absent 1

Total score 0–6 Total score 5–13 Total score 0–11
Pooled AUC for functional 
outcome prediction at 3 
months[9]

0.78 (95% CI 
0.74–0.82)

Pooled AUC for functional 
outcome prediction at 3 
months[9]

0.78 (95% CI 
0.77–0.80)

AUC for functional 
outcome prediction at 3 
months[9]*

0.81 (95% CI 
0.79–0.82)

AUC: Area under the curve, CI: Confident interval, GCS: Glasgow Coma Scale, ICH: Intracerebral hemorrhage, *Data refer to the single study, hence 
pooled analysis could not performed.[9]
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operation, and steps were undertaken to prevent and treat 
the complications. Antithrombotic agents were discontinued 
postoperatively for several days depending on the patients’ 
condition and comorbidities.

Hematoma removal with craniotomy was performed 
primarily from 2012 to 2013 and the endoscopic hematoma 
removal began in 2013. We gradually transitioned from 
craniotomy to endoscopic hematoma removal as a first-
choice treatment between 2014 and 2015. During this period, 
patients who received antithrombotic drugs and displayed 
apparent extravasation on the contrast-enhanced CT image 
were likely to undergo a craniotomy. Since 2015, endoscopic 
procedures have been routinely performed in our hospital 
regardless of age, comorbidities, presence of antithrombotic 
drugs, and extravasation on the contrast-enhanced CT 
image. However, a craniotomy was still performed when the 
endoscope was unavailable due to reasons such as cleaning or 
the unavailability of the medical staff in the operating room 
(i.e., weekends and holidays). We performed craniotomy 
under general anesthesia but endoscopic hematoma removal 
under local anesthesia. The details of each surgical procedure 
and anesthesia method were described in our previous 
reports.[22,24]

Clinical variables

We collected data regarding physiological symptoms 
at admission for patients included in this study, that is, 
year, age, sex, height, weight, preoperative GCS score, 
National Institutes of Health Stroke Scale score, systolic 
blood pressure, administration of antithrombotic drugs, 
history of smoking and massive alcohol intake (over 
450 g ethanol intake/week), and comorbidities (history or 
present treatment by a clinician for hypertension, diabetes 
mellitus, dyslipidemia, cardiovascular diseases, previous 
stroke, cancer, hepatic cirrhosis, chronic kidney diseases, or 
orthopedic disease). We also measured serum total protein, 
albumin, total bilirubin, aspartate aminotransferase, alanine 
transaminase, lactate dehydrogenase, alkaline phosphatase, 
gamma-glutamyl transpeptidase, glucose, hemoglobin A1c, 
sodium, potassium, chlorine, blood urea nitrogen, creatinine, 
C-reactive protein, uric acid, triglycerides, total cholesterol, 
high-density lipoprotein cholesterol, and low-density 
lipoprotein cholesterol levels. We also investigated whole and 
differential white blood cell counts, hemoglobin level, platelet 
count, prothrombin time-international normalized ratio, 
activated partial thromboplastin time, and D-dimer level.

We determined the location of the hematoma (subcortex, 
basal ganglia, or cerebellum) and measured hematoma 
volume by ABC/2 methods. We also checked the presence 
of intraventricular hematoma and the apparent destruction 
of the pyramidal tract. We observed the primary motor area, 
radiate corona, posterior limb of the internal capsule, and 

cerebral peduncle for potential destruction. The obvious 
destruction of these areas indicated that the pyramidal 
tract was apparently destroyed; while the equivocal one 
was absent. Moreover, the temporal muscle thickness and 
area[5-7,22,24,27,30,46] were measured on the head CT at admission 
as an indicator of sarcopenia[40] and nutrition[14,38] using the 
method reported by Katsuki et al.[27-30] We used the Aquilion 
ONE (Canon Medical Systems Corporation, Tochigi, Japan) 
to take CT images of 0.5 × 0.5 × 1.0 mm voxels. The slice 
thickness was reconstructed to 5 mm. The window width 
was adjusted to 300 and the window level to 20 for temporal 
muscle measurement.

We also investigated the treatment strategy (hematoma 
evacuation with craniotomy or endoscopic hematoma 
removal with or without neuronavigation). To evaluate 
the outcomes, modified Rankin Scale (mRS) scores at 
6 months after the treatment of all 140 patients were 
collected by either personal outpatient interviews, reports 
from the rehabilitation hospital or home doctor, or 
interviews over the telephone, once the ethical approval was 
obtained for the study. We dichotomized mRS scores into 
favorable (mRS 0–3) or poor (mRS 4–6).

Making prediction model by prediction one

We used Prediction One framework to make the prediction 
model. We divided our 140 patients’ data randomly into 
100 patients training dataset and 40 patient’s validation 
dataset. Prediction One read the 100 patients’ data with 
64 variables, and automatically divided them into five-fold 
cross-validation datasets. Prediction One automatically 
adjusted and optimized the variables that are easy to be 
processed statistically and mathematically and select 
appropriate algorithms with ensemble learning. The missing 
values were automatically compensated, and Prediction One 
made the best prediction model by artificial neural network 
with internal five-fold cross-validation. The details are trade 
secrets and could not be provided.

We let the Prediction One framework make a functional 
outcome prediction model using 100 patients training dataset 
using 64 variables described above. The AUC of the model 
and strong variables with the weights were automatically 
calculated. Then, we performed the model’s validation using 
the 40 patients datasets, and calculated AUC, accuracy, 
precision, recall, and F value, which were used to evaluate the 
prediction model made by artificial intelligence.

Prediction using original ICH score, ICH Grading Scale, 
and FUNC score

We also investigated the original ICH score,[15] ICH Grading 
Scale,[42] and FUNC score[41] of the 100 patients in the training 
dataset and 40 patients in the validation dataset, respectively. 
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We evaluated 3 scores’ AUCs calculated using the sum scores 
and the outcome, and compared them to AUCs of the model 
made by Prediction One.

Statistical analysis

Results are shown as median (interquartile range). The 
difference between the training dataset and the external 
validation dataset was tested using the Mann–Whitney 
U-test, Fisher’s exact test, Pearson’s Chi-square test, or 
Kruskal–Wallis test, appropriately. A two-tailed P < 0.05 was 
considered statistically significant. We calculated AUCs and 
their P values using SPSS software version 24.0.0 (IBM, New 
York, USA).

RESULTS

Clinical characteristics

The clinical characteristics of the 140 ICH patients 
(59 women and 81 men) are summarized in [Table  2]. The 
median (interquartile range) age was 74 (63–82), GCS score 10 
(8–13), and hematoma volume 103 (65–158) mL. Hematoma 
evacuation with craniotomy was performed for 67 patients and 
endoscopic hematoma removal for 73. The median mRS was 
4 (2–5) at 6 months, and 48 patients (34%) were independent 
in their ADLs. Preoperative GCS score, ratio of dyslipidemia 
patients, and gamma-glutamyl transpeptidase level were 
significantly different between training and validation dataset, 
despite the fact that we randomly divided them.

Model development and validation

Prediction One produced the functional outcome prediction 
model using the 100 patients with 64 variables in <4 min. The 
AUC of the model was 0.997 (95% confident interval [CI] 
0.989–1.000). The model’s accuracy, precision, recall, and 
F value were 0.810, 1.000, 0.769, and 0.869, respectively. Its 
AUC for the validation dataset were 0.884 (95% CI 0.753–
1.000) with 80.0% accuracy [Table 3].

The stronger variables and their weights of the model are 
listed in [Table 4]. Alanine transaminase, C-reactive protein, 
%eosinophil, lactate dehydrogenase, uric acid, %neutrophil, 
diabetes mellitus, triglycerides, preoperative GCS score, 
and platelet count had large effects on the outcome in order. 
The presence of intraventricular hematoma, age, hematoma 
volume, and hematoma location (supra or infratentorial 
hematoma) was not so important in our model.

Comparison to original ICH score, ICH Grading Scale, 
and FUNC score

We calculated original ICH score, ICH Grading Scale, 
and FUNC score in the training and validation dataset, 

respectively. The AUCs of these scores in the training dataset 
were 0.610 (95% CI 0.493–0.728), 0.777 (95% CI 0682–872), 
and 0.764 (95% CI 0.670–0.858), respectively. Those in the 
validation dataset were 0.755 (95% CI 0.595–0.915), 0.806 
(95% CI 0.658–0.955), and 0.688 (95% CI 0.509–0.876), 
respectively. These AUCs were all inferior to the models 
made by Prediction One [Table 3].

DISCUSSION

We made the postsurgical functional outcome prediction model 
using the DL framework, Prediction One. We created the model 
with a high prediction rate using a small dataset (n = 100) with 
several missing data. It would be reliable for the functional 
prediction in our own hospital with 80% accuracy. Furthermore, 
this is the first report on creating a functional outcome 
prediction model of postoperative ICH patients using DL.

Advantages of DL

Conventional time and cost-consuming statistical analysis 
need laborious standardization of variables like a logarithmic 
transformation to increase the prediction model’s accuracy. 
It also requires the arbitrary selection of variables based on 
the previous studies, and multivariate analysis needs 10 folds 
number of samples against the variables.[39] Therefore, there 
is a risk that variables that might be important cannot 
be included in the statistical analysis, or that even the 
multivariate analysis cannot be performed in a small hospital 
with a small dataset. Furthermore, in statistical analysis, when 
there is missing data, we should do multiple imputations or 
list wise deletions, which also affects accuracy. However, DL 
has the potential to overcome these problems. DL develops 
beneficial models with less effort or time using the small 
dataset, without time-consuming variable optimization nor 
arbitrarily choosing variables because the DL framework 
automatically does these processes. Furthermore, the 
number of variables used in the DL framework is not limited, 
and DL sometimes finds interesting variables as important 
that have not been taken into account in the previously 
reported statistical models. Furthermore, the DL framework 
automatically substitutes appropriate values instead of the 
missing ones, and calculates the best prediction model 
without our statistical trial and error.

We then review these benefits of DL in our study. 
Conventionally, we could have used only ten variables for 
statistical analysis due to the small sample size of the training 
dataset (n = 100). Furthermore, the dataset contains several 
missing data. However, we could use 64 variables for making 
the prediction model by Prediction One, and make a good 
prediction model from the small dataset. We did not need 
to perform variable optimization nor manipulations for the 
missing values. Furthermore, some unexpected serological 
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Variables Total (n = 140) Training dataset (n = 100) Validation dataset (n = 40) P value†

Age (years) 74 (63–82) 73 (66–80) 78 (59–83) 0.401
36–50 12 (9%) 10 2 (5%)
51–65 25 (18%) 14 11 (28%)
66–75 36 (26%) 31 5 (13%)
76–85 49 (35%) 33 16 (40%)
86–96 18 (12%) 12 6 (15%)

Women: Men (%Women) 59:81 (42%) 37:63 22:18 (55%) 0.051
Height (cm) 160 (152–168) 162 (152–169) 159 (150–165) 0.289
Weight (kg) 54 (43–62) 55 (45–62) 52 (40–63) 0.569
Preoperative GCS score 0.023*

E 3 (1–4) 3 (2–4) 2 (1–3)
V 2 (1–4) 2 (1–4) 1 (1–3)
M 5 (5–6) 6 (5–6) 5 (4–6)
Total 10 (8–13) 10 (9–13) 9 (7–13) 

NIHSS score (n = 81) 22 (12–33) 22 (12–27) (n = 59) 23 (13–38) (n = 22) 0.758
Hematoma location

Subcortex 54 (39%) 40 14 (35%) 0.583
Basal ganglia 74 (53%) 50 24 (60%) 0.284
Cerebellum 12 (8%) 10 2 (5%) 0.340

Hematoma volume (mL) 103 (65–159) 101 (67–162) 106 (62–142) 0.724
Presence of the apparent destruction of 
the pyramidal tract

90 (64%) 65 25 (63%) 0.780

Presence of intraventricular hematoma 73 (52%) 50 23 (58%) 0.422
TMT (mm) 5.5 (4.2–7.3) 5.7 (4.3–7.4) 5.4 (4.0–6.5) 0.355
TMA (mm2) 276 (198–413) 283 (216–425) 257 (151–388) 0.192
Systolic blood 
pressure (mmHg) (n = 134)

165 (143–188) 168 (144–187) (n = 94) 165 (141–199) (n = 40) 0.871

Surgical method
Craniotomy: Endoscope (%Craniotomy)

67:73 (48%) 46:54 21:19 (53%) 0.794

Past history
History of smoking (n = 103) 41/103 (40%) 36/77 (47%) 5/26 (19%) 0.132
History of drinking (n = 105) 22/105 (21%) 20/79 (25%) 2/26 (8%) 0.055
Hypertension (n = 138) 118/138 (86%) 85/99 (85%) 33/39 (85%) 0.852
Diabetes mellitus (n = 137) 23/137 (17%) 17/98 (17%) 6/39 (15%) 0.933
Dyslipidemia (n = 137) 47/137 (34%) 39/98 (40%) 8/39 (21%) 0.032*
Cardiovascular disease 38 (27%) 27 11 (28%) 0.784
Previous stroke 30 (21%) 20 10 (25%) 0.334
Cancer (n = 73) 16/73 (22%) 13/51 (25%) 3/22 (14%) 0.261
Hepatic cirrhosis 7 (5%) 7 0 0.300
Chronic kidney disease 11 (8%) 8 3 (8%) 0.921
Orthopedic disease 12 (9%) 10 2 (5%) 0.332
Antithrombotic drugs use 26 (19%) 20 6 (15%) 0.735

Laboratory data
Total protein (mg/dL) (n = 134) 7.1 (6.8–7.5) 7.2 (6.8–7.5) (n = 97) 7.1 (6.8–7.5) (n = 37) 0.720
Albumin (mg/dL) (n = 136) 4.2 (3.9–4.5) 4.2 (3.9–4.5) (n = 98) 4.1 (3.8–4.5) (n = 38) 0.581
Total bilirubin (mg/dL) (n = 134) 0.83 (0.66–1.16) 0.83 (0.66–1.16) (n = 97) 0.82 (0.69–1.22) (n = 37) 0.547
AST (U/L) (n = 137) 27 (23–39) 27 (22–38) (n = 98) 29 (24–39) (n = 39) 0.481
ALT (U/L) (n = 136) 19 (14–26) 19 (14–25) (n = 98) 20 (15–30) (n = 38) 0.594
LDH (U/L) (n = 136) 247 (213–276) 242 (210–277) (n = 98) 253 (228–273) (n = 38) 0.597
ALP (U/L) (n = 131) 239 (192–299) 239 (192–299) (n = 95) 242 (207–302) (n = 36) 0.863
γ‑GTP (U/L) (n = 133) 23 (14–41) 26 (15–45) (n = 95) 19 (13–28) (n = 38) 0.042*
Glucose (mg/dL) (n = 120) 141 (116–170) 144 (116–166) (n = 87) 138 (126–173) (n = 33) 0.953
Hemoglobin A1c (%) (n = 119) 5.8 (5.5–6.2) 5.8 (5.5–6.2) (n = 83) 5.7 (5.4–6.2) (n = 26) 0.521
Na (mEq/L) (n = 134) 142 (139–143) 141 (139–143) (n = 95) 142 (139–143) (n = 39) 0.877

Table 2: Characteristics of the datasets.
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Variables Total (n = 140) Training dataset (n = 100) Validation dataset (n = 40) P value†

K (mEq/L) (n = 135) 3.9 (3.5–4.1) 3.9 (3.6–4.2) (n = 96) 3.8 (3.5–4.1) (n = 39) 0.359
Cl (mEq/L) (n = 135) 105 (102–107) 105 (101–108) (n = 96) 105 (103–106) (n = 39) 0.750
BUN (mg/dL) (n = 75) 18.3 (14.6–23.2) 18.3 (13.9–23.1) (n = 55) 18.7 (16.1–23.2) (n = 20) 0.422
Creatinine (mg/dL) (n = 134) 0.73 (0.58–0.92) 0.70 (0.57–0.89) (n = 96) 0.79 (0.59–1.03) (n = 38) 0.247
C‑reactive protein (mg/dL) (n = 130) 0.16 (0–0.41) 0.18 (0–0.40) (n = 92) 0.11 (0–0.61) (n = 38) 0.665
Uric acid (mg/dL) (n = 124) 5 (4–6) 5.0 (4.0–5.9) (n = 92) 5.1 (4.0–6.3) (n = 32) 0.547
Triglycerides (mg/dL) (n = 124) 97 (65–139) 104 (71–148) (n = 91) 93 (62–125) (n = 33) 0.242
Total cholesterol (mg/dL) (n = 111) 184 (160–215) 191 (160–222) (n = 81) 179 (160–197) (n = 30) 0.222
High‑density lipoprotein cholesterol 
(mg/dL)(n = 113)

58 (46–69) 58 (47–68) (n = 84) 57 (42–72) (n = 29) 0.440

Low‑density lipoprotein 
cholesterol (mg/dL)(n = 117)

111 (86–127) 113 (85–128) (n = 86) 107 (89–124) (n = 31) 0.718

White blood cell (/μL) (n = 137) 8845 (6425–11875) 8845 (6358–11756) (n = 100) 8605 (6448–12178) (n = 40) 0.825
Hemoglobin (g/dL) (n = 137) 14.2 (12.4–15.5) 14.3 (12.6–15.8) (n = 98) 13.0 (12.4–14.8) (n = 39) 0.055
Platelet (×104/μL) (n = 136) 18.9 (14.9–23.0) 19.3 (15.1–23.0) (n = 97) 17.0 (14.7–21.8) (n = 39) 0.131
%Neutrophil (n = 131) 77.3 (58.4–86.7) 76.9 (58.4–86.1) (n = 94) 79.7 (58.5–87.5) (n = 37) 0.638
%Lymphocyte (n = 131) 16.3 (9.0–30.5) 16.9 (9.1–30.1) (n = 94) 15.2 (8.3–30.1) (n = 37) 0.746
%Monocyte (n = 131) 4.6 (3.4–5.8) 4.8 (3.3–5.8) (n = 94) 4.4 (3.5–5.1) (n = 37) 0.493
%Eosinophil (n = 131) 0.8 (0.1–2.5) 0.8 (0.1–2.6) (n = 94) 0.5 (0.1–2.2) (n = 37) 0.539
%Basophil (n = 131) 0.3 (0.1–0.5) 0.3 (0.1–0.5) (n = 94) 0.3 (0.2–0.6) (n = 37) 0.696
PT‑INR (n = 133) 1.04 (0.95–1.11) 1.04 (0.95–1.11) (n = 97) 1.06 (0.98–1.10) (n = 36) 0.535
APTT (sec) (n = 133) 28.5 (25.1–33.1) 27.8 (25.4–32.5) (n = 97) 30.2 (24.3–34.1) (n = 36) 0.881
D‑dimer (μg/mL) (n = 114) 1.1 (0.7–3.4) 1.1 (0.7–2.8) (n = 82) 1.05 (0.7–4.2) (n = 32) 0.912

mRS 6‑mo postop 4 (2–5) 4 (2–5) 5 (3–5) 0.071
mRS 0–3 48 (34%) 38 10 (25%)
mRS 4 36 (26%) 28 8 (20%)
mRS 5 40 (29%) 24 16 (40%)
mRS 6 16 (11%) 10 6 (15%)

ALP: Alkaline phosphatase, ALT: Alanine transaminase, APTT: Activated partial thromboplastin time, AST: Aspartate aminotransferase, BUN: Blood 
urea nitrogen, GCS: Glasgow Coma Scale, γ‑GTP: Gamma‑glutamyl transpeptidase, LDH: Lactate dehydrogenase, mRS 6‑mo postop: Modified Rankin 
Scale 6 months after the operation, NIHSS: National Institutes of Health Stroke Scale, PT‑INR: Prothrombin time‑international normalized ratio, TMA: 
Temporal muscle area, TMT: Temporal muscle thickness, *P < 0.05, †Mann–Whitney U‑test, Fisher’s exact test, Pearson’s Chi‑square, or Kruskal–Wallis test 
was appropriately performed.

Table 3: Models for functional prediction at 6 months.

Model AUC derived from the 
training cohort (n=100)

F value AUC derived from the 
validation cohort (n=40)

Accuracy for the 
validation cohort

Prediction One 0.997 (95% CI 0.989–1.000)
P<0.001

0.869 0.884 (95% CI 0.753–1.000)
P<0.001

80.0%

Original ICH score[15] 0.610 (95% CI 0.493–0.728)
P=0.066

‑ 0.755 (95%CI 0.595–0.915)
P=0.016

‑

ICH Grading Scale[42] 0.777 (95% CI 0.682–0.872)
P<0.001

‑ 0.806 (95% CI 0.658–0.955)
P=0.004

‑

FUNC score[41] 0.764 (95% CI 0.670–0.858)
P<0.001

‑ 0.688 (95% CI 0.509–0.876)
P=0.067

‑

AUC: Area under the curve, CI: Confident interval, ICH: Intracerebral hemorrhage

Table 2: (Continued)

test results such as alanine transaminase, C-reactive protein, 
%eosinophil, lactate dehydrogenase, and uric acid levels were 
judged to be more important among many other previously 
reported important factors, such as age, hematoma volume, 
and hematoma location. We usually think that some 

variables, such as age, hematoma volume, and preoperative 
GCS, largely affect the outcomes, with common sense. 
However, the DL framework treats many variables equally 
and without preconceptions, revealing the very important 
factors that were not expected.



Katsuki, et al.: Functional outcome prediction model for postoperative ICH patients by deep learning

Surgical Neurology International • 2021 • 12(203)  |  8

Besides, the time needed for creating each model 
was <4 min. Finally, the models achieved high accuracy with 
the AUC of 0.997 in the training dataset and that of 0.884 in 
the validation dataset. Putting it bluntly, our study showed 
that our DL-based prediction model, even made from 
the small dataset, can predict the ICH patients’ outcomes 
surgically treated in our hospital with higher accuracy than 
other scores, which was made from the large cohort study.

Recent study on artificial intelligence and ICH

Andrew reported that decision tree and random 
forests could be useful to predict 3 months functional 
outcomes.[12] Independent predictors selected by the 
algorithms as important included hematoma volume at 
hospital admission, hematoma expansion, intraventricular 
hemorrhage, total ICH Score, and GCS. Different from DL, 
in which the weights of the variables are comprehensively 
calculated, decision tree, and random forest can suggest 
us a few critical and important factors in order, so they are 
helpful for clinicians to make decisions simply. Nie reported 
that random forest had better performance in predicting 
in-hospital mortality for cerebral hemorrhage patients in 
intensive care units compared to other machine learning 
methods.[37] They suggested the possibility of the dreamlike 
efficient medicine. All the selected variables in their model 
were initial clinical data and electronic monitoring data 
that can be automatically obtained by the monitor or can 
be simply evaluated, such as age, gender, and GCS score. 
Therefore, their model can be completed by nurses or 
assistants, thereby significantly reducing the burden of 
clinical work for doctors. Xu et al. reported an outcome 
prediction model using CT radiomics with random forest 
and XGBoost.[53] It is worth noting that they suggested the 

possibility of making a prediction model only from CT 
images. In the future, these attempts can be completed by 
artificial intelligence monitoring instruments, achieving full 
automation.

Our study is the first attempt to make a prediction model 
using DL, not other machine learning methods. DL 
treats variables comprehensively, so it could not present 
particularly important factors as in a decision tree or 
XGBoost, and Prediction One could not treat CT radiomics. 
However, the AUC of the model in the training dataset of 
0.997 and that in the validation dataset 0.884 were much 
higher compared to the other machine learning methods 
in these previous studies. It is also a strong point that we 
could easily create a prediction model in <4 min without 
vigorous effort except for collecting data. Each artificial 
intelligence algorithm has its own merits and demerits, and 
it is necessary to consider which method is better in the 
future.

Future outlook

Despite the easiness, advantages, and future potential 
of DL, the majority of medical staff cannot treat DL 
frameworks.[45] As simple DL frameworks like Prediction 
One are being developed, there is a need for an active 
interest in using them to benefit medical staff and patients. 
Our study is just one example but suggested the utility 
of the DL framework. DL-based tailormade and efficient 
medicine, depending on each patient and hospital, would 
be performed as the DL framework becomes more popular. 
DL framework can produce predicting models specific to 
individual centers that would be based on their own unique 
experience in managing ICH patients. Furthermore, with 
modern electronic medical records, the clinical variables 
and clinical outcome data could be automatically fed to 
the DL framework, leading to progressive improvement 
in predictions over time. This evolutionary prediction will 
be a benefit to patients, health-care providers, and hospital 
managers. Furthermore, the big data have been stored, such 
as Miyagi medical and welfare information network,[17] 
Tohoku Medical Megabank,[8,20] Japanese Stroke Databank,[32] 
or the Japan Neurosurgical Database.[18] When these 
data are open for researchers, it will spur competition to 
develop further prognostic models using such big data, like 
Kaggle competition.[49] In the future, various data would be 
evaluated at once, including neurological and physiological 
information, from video systems at the outpatient, inpatient, 
surgery, rehabilitation, chronological information from the 
monitoring system, radiological information, laboratory test 
results, and any other information. The paradigm shift will 
come when we can know the optimal treatment if these data 
will be shared worldwide, although treatment strategies differ 
in each hospital and doctor.

Table 4: Stronger variables of each model made by Prediction One.

Order of strength Variables Weight

1 Alanine transaminase 0.0893
2 C‑reactive protein 0.0857
3 %Eosinophil 0.0820
4 Lactate dehydrogenase 0.0778
5 Uric acid 0.0741
6 %Neutrophil 0.0731
7 Diabetes mellitus 0.0730
8 Triglycerides 0.0695
9 Preoperative total GCS score 0.0665
10 Platelet 0.0640
15 Presence of intraventricular 

hematoma
0.0561

34 Age 0.0442
38 Hematoma volume 0.0426
57 Cerebellar hemorrhage 0.0251
GCS: Glasgow coma scale
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Limitation of this study

First, we did not use other scores, such as Essen-ICH 
score,[52] max-ICH score,[43] the simplified ICH score,[3] ICH 
functional outcome score,[19] modified ICH score,[2] or ICH 
outcome project score,[11] because we did not have data to be 
used for these scores. Second, we dichotomized the outcome 
as mRS 0–3 or 4–6, but other standards such as functional 
independent measure could be used as detailed outcomes. 
Third, the prediction model derived from our own data 
cannot be applied to other institutions, and the training and 
validation dataset must be updated to keep up with advances 
in medical science and changes in surgical techniques. 
Fourth, DL can treat images, sentences, and chronological 
data, and this is the very strong point compared to other 
algorithms, but we did not use these advantages. Prediction 
One cannot treat radiological images or videos at this time. 
Fifth, it is unknown why serological test results such as 
alanine transaminase, C-reactive protein, %eosinophil, 
lactate dehydrogenase, and uric acid levels were judged to be 
important among many other previously reported important 
factors. We should be very careful in interpreting the results. 
Sixth, we did not investigate patients treated conservatively, 
so this study would be helpful only in determining the 
surgical indication.

CONCLUSION

We easily and quickly made the functional outcome 
prediction model using Prediction One framework, and it 
is superior to other prediction scores, such as the original 
ICH score, ICH Grading Scale, and FUNC score, which were 
statistically calculated with a large cohort. Even with a small 
single-center dataset, containing missing data, prognostic 
models made by the DL framework can be useful at the 
institution and may be beneficial for us to determine the 
surgical indication.
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