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As a consequence of misspecification of the hemodynamic response and noise variance models, tests on general linear model coe
cients are not valid. Robust estimation of the variance of the general linear model (GLM) coecients in fMRI time series is therefore
essential. In this paper an alternative method to estimate the variance of the GLM coe cients accurately is suggested and compared
to other methods. The alternative, referred to as the sandwich, is based primarily on the fact that the time series are obtained
from multiple exchangeable stimulus presentations. The analytic results show that the sandwich is unbiased. Using this result, it
is possible to obtain an exact statistic which keeps the 5% false positive rate. Extensive Monte Carlo simulations show that the
sandwich is robust against misspeci cation of the autocorrelations and of the hemodynamic response model. The sandwich is seen
to be in many circumstances robust, computationally efficient, and flexible with respect to correlation structures across the brain.
In contrast, the smoothing approach can be robust to a certain extent but only with specific knowledge of the circumstances for
the smoothing parameter.
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1. Introduction

Brain activity maps from functional magnetic resonance
imaging (fMRI) time series are becoming increasingly
important in the cognitive sciences [1]. An fMRI brain activ-
ity map contains thousands of volume elements (voxels) that
make up the entire brain. For each of these voxels a blood-
oxygenation level dependent (BOLD) time series is available.
In order to increase the signal-to-noise ratio, exchangeable
stimuli are repeated several times in experiments [2]. Since
there are many voxels, analyses are often performed voxelwise
to decrease computational load (mass univariate approach).
In the general linear model (GLM), the time series of each
voxel is represented by a linear combination of modeled time
series corresponding to a condition or effect [3]. Amplitude
coefficients and their variances are then computed such that
hypothesis testing can be performed on (a function of) these
coefficients to, for example, test between conditions. This
paper is about estimating the variance of the amplitude
coefficients as accurately as possible such that hypothesis
testing is valid.

Hypothesis tests on functions of parameters are greatly
influenced by the estimate of the variance of the model
parameters, which in turn is greatly influenced by the
autocorrelations of the time series [1, 4, 5]. Generally,
two approaches to estimate the variance of the coefficients
can be distinguished: (i) transforming the data such that
the time series becomes uncorrelated or “white,” and (ii)
transforming the data such that the data are smoothed or
“colored,” and then using the known, smooth structure for
variance estimation [6, 7]. In prewhitening, on the one hand,
a model for the autocorrelations of the time series is used
which should render the data uncorrelated [8]. Often an
autoregressive (AR) process is used [9], but many other
strategies exist [10–13]. The advantage of prewhitening is
that the obtained variance estimate is the smallest compared
to all other unbiased estimates [14]. However, this advantage
holds only if the model for the correlation structure is correct
[7], which is, of course, difficult to maintain. It has been
suggested that accounting for bias due to autocorrelations is
not required because the estimates did not improve enough
[7]. However, Marchini and Smith [7] did not consider
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an incorrect correlation structure, only bias due to limited
length of the time series. Precoloring, on the other hand, has
the advantage that the assumed correlation structure need
not be correct [4]. A disadvantage is that a smoothing param-
eter of, for example, a Gaussian kernel needs to be chosen
(see, e.g., [15]). Such a decision can influence the quality of
the variance estimate [7, 13]. Another disadvantage of the
smoothing approach is that high-frequency components in
the data can be attenuated [11].

In addition to misspecification of the autocorrelations,
the model for the hemodynamic response is also likely to
be incorrect [16]. This means that the residuals contain
misspecification which is carried into the estimator of the
variance of the GLM coefficients. It is therefore important
to take such misspecification into account in any statistical
analysis of fMRI time series. Recognizing that any model is
strictly incorrect, it makes sense to consider the degree of
misspecification; that is, the difference between the truth and
its approximation is important instead of the actual model
used.

I agree with Friston et al. [4] that robust variance
takes priority over efficient variance, regardless of whether
the model for the correlations is correct or not. However,
optimally a robust variance estimate should also be able to
adapt to local variations of correlation structure. Variation of
correlation structure exists across different locations of the
brain [9]. A variance estimate like the smoothing approach
that works well on average of brain locations can therefore be
improved. I suggest a robust variance estimate based on the
residuals but taking into account the individual replications
or events. This variance estimate adapts to correlational
changes, is computationally efficient, and is robust. I show
that this robust variance estimate is unbiased and as a result
can be used for hypothesis testing even with few replications.

The paper is organized as follows. Section 2 introduces
the differences between the true underlying process and the
GLM, the working model. This section also discusses existing
methods of estimating the variance of the coefficients and
introduces the new, robust variance estimate. Subsequently,
hypothesis testing is discussed for the different estimators.
In Section 3 extensive Monte Carlo simulations are discussed
to show how the different estimators perform in different
circumstances for blocked and event-related designs.

2. Model Specification and Misspecification

In model specification a data generating process (DGP) is
assumed to exist. This DGP is in general unknown and
is therefore approximated by a working model. Such an
approximation can be misspecified in at least two ways: (i)
the model for the mean can be incorrect, and (ii) the model
for the autocorrelations noise can be incorrect. An example
of a misspecified model for the mean is using a gamma
function as a model for the hemodynamic response when the
BOLD response is in fact generated by the balloon model;
see, for example, [16]. An example of misspecification of
the autocorrelations is using an autoregressive model for
temporal correlations, when the correlations are actually

1/frequency [1]. First, statistical assumptions of the DGP are
described followed by misspecification of the GLM for fMRI
data as a working model.

Data of i = 1, . . . , p time points or scans are available
measured on j = 1, . . . ,n independent trials or replications.
The data are collected in the p-vector Yj . The DGP for Yj is
Yj = gθ(Z)+ej , where gθ(Z) <∞ is an unknown (non)linear,
nonrandom function with fixed regressors Z = (z1, . . . , zm)
and unknown parameters θ. The noise ej has joint distribu-
tion function F(e) with mean zero and unknown variance
E{eje′k} = Σ for j = k and zero otherwise. So, there is
autocorrelation, but no correlations among replications.

The working model specifies an approximation to the
DGP for the mean and the variance of the data. In the GLM
a linear function Xβ is used as an approximation to the
mean E{Yj} = gθ(Z), where X is a p × k matrix and β a k-
vector of coefficients. The noise is assumed to have temporal
correlations but remains unspecified for the moment. Then
the working model on replication j is Yj = Xβ + r j , where
the residual r j = gθ(Z)−Xβ+ ej contains both the modeling
error gθ(Z)−Xβ and noise ej . The variance of the residual r j
is again Σ since the modeling error is fixed (but see below for
the estimated residual). The model Xβ could correspond to
the mean of the DGP, that is, gθ(Z) = Xβ, but in general they
are different. It is assumed that the matrix X has full column
rank, r(X) = k, such that X ′X is nonsingular.

The main parameters of interest in fMRI are the ampli-
tude parameters β of the BOLD response time series. To
model the delayed response, a hemodynamic response func-
tion (HRF) is used, convolved with the stimulus presentation
timing of the experiment. A possible HRF used in analyses
is a double gamma function [17, 18]. The stimulus (“on-
off”) function is given by s(t) = 1 for all time points t that
the stimulus is present and zero otherwise. An example of
the convolution of the time series is given in Figure 1, where
conditions A and B are the same except for presentation
times. The experiment can either be event related or blocked
[1, 19]. In an event-related design each presentation in a
sequence can belong to any of the conditions, whereas in a
blocked design a sequence of presentations for a particular
condition is given in blocks (see, e.g., [1, 20]). An example of
each is given in Figure 1. The convolutions form the columns
of the design matrix X . The design matrix X can also include
temporal derivatives to account for latencies in the BOLD
signal [21, 22].

When the coefficients are estimated, a function of the
estimate ̂β is usually tested, which is called a contrast. The

variance of a contrast c′ ̂β is then c′var{̂β}c. A possible test of
the contrast is the F-test

F = kn
(c′ ̂β − a)

2

c′var
{

̂β
}

c
, (1)

where kn is a factor to obtain the correct null distribution for
the hypothesis c′ ̂β = a [18]. This statistic is approximately
F distributed with degrees of freedom dependent on the
estimate of the contrast variance. It is clear from the defi-
nition that the statistic, and therefore the false positive rate,
is directly influenced by the contrast variance. This paper
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Figure 1: Convolution of the HRF and the stimulus function for an event-related (a) and a blocked design (b). Stimulus presentation
latencies for condition A (solid blue) are indicated with filled circles, and open circles for condition B (dashed red). Parameters of the HRF
are taken from [18].

is about finding a robust estimate of this contrast variance
such that inference concerning β through hypothesis testing
is valid.

2.1. Estimation. A general way of estimating the coefficients
and their variance is explained, after which four different
methods of defining an estimator are discussed. This follows
mostly the presentations of [7, 12]. The four methods are also
summarized in Table 1.

Let S be a nonsingular p × p matrix and premultiply the
data, model, and residual with S such that SYj = SXβ +
Srj . Then the variance of the residual r j is SΣS′. The least

squares estimate is ̂β = (X ′S′SX)−1X ′S′SY , where Y =
(1/n)

∑n
j=1 Yj . Because the HRF model is misspecified, ̂β is

biased, that is,

E
{

̂β
}

= (X ′S′SX)−1X ′S′Sgθ(Z) = β∗. (2)

The mean β∗ can be described as a least squares approxima-
tion to the unknown function gθ(Z), which is very different
from linearization of gθ(Z) in terms of a first-order Taylor
expansion. The main difference between the least squares and
Taylor approximation is that the first describes the nonlinear
function on the whole range of Z, whereas the latter is
accurate only in a neighborhood of a specific Z (see [23] for

more details on this). The variance of ̂β is

var
{

̂β
}

= 1
n

(X ′S′SX)−1X ′S′SΣS′SX(X ′S′SX)−1. (3)

Given ̂β, an estimate of the residual is given by

r̂ j =
(

Ip −HSX

)

Sgθ(Z)−HSXSe + Sej , (4)

where HSX = SX(X ′S′SX)−1X ′S′ and e = (1/n)
∑n

j=1 ej . The
mean and variance of the estimated residual are

E
{

r̂ j
}

= QSXSgθ(Z),

var
{

r̂ j
}

= 1
n
QSXSΣS

′QSX +
n− 1
n

SΣS′,
(5)

where QSX = Ip −HSX . These results are different from other

derivations in three ways (see, e.g., [6, 7]): (i) the estimator ̂β
is biased because the incorrect model is used for the mean,
(ii) the expectation of the estimated residual is not zero

because ̂β is biased, and (iii) the variance of the estimated
residual r̂ j contains two terms, one with the design matrix
X and one without X , because the number of replications is
taken into account. Especially this last point will be used to
our advantage, as described below.

The objective is to obtain an unbiased estimate of var{̂β}
without any additional modeling of the autocorrelations. So,
we set S = Ip and obtain the so-called ordinary least squares

estimate ̂βO. If we plug in (5) into (3), we see that only the
second part containing Σ will remain because X ′QX = 0. So,
we need an estimate of var{r̂ j} to make this work. Suppose
that we use

W = 1
n− 1

n
∑

j=1

r̂ j r̂
′
j . (6)

From the variance of the residual in (5) it can be seen that for
the expectation of W we have

E{W} = 1
n− 1

n
∑

j=1

E
{

r̂ j r̂
′
j

}

= n

n− 1
QX

(

gθ(Z)gθ(Z)′ +
1
n
Σ
)

QX + Σ.

(7)
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Table 1: The four methods of estimation and their corresponding variance.

Type Mean Variance

W ̂βO = (X ′X)−1X ′Y ̂VW = 1
n

(X ′X)−1X ′WX(X ′X)−1

OLS ̂βO = (X ′X)−1X ′Y ̂VO = σ̂2
O(X ′X)−1

GLS ̂βG = (X ′
̂RX)−1X ′

̂RY ̂VG = σ̂2
G(X ′

̂RX)−1

S ̂βS = (X ′S′SX)−1X ′S′SY ̂VS = σ̂2
S (X ′S′SX)−1X ′S′ŜRS′SX(X ′S′SX)−1

Then we have for the variance of ̂βO

E
{

̂VW

}

= 1
n

(X ′X)−1X ′E{W}X(X ′X)−1

= 1
n

(X ′X)−1X ′ΣX(X ′X)−1,

(8)

as required. It works because of the two-part variance in
(5), and there are two parts in the variance because we took
into account the number of replications obtained in the
experiment. This estimator is for obvious reasons sometimes
referred to as the sandwich estimator [24]. In general the
sandwich can be shown to be consistent; that is, the estimator
will be correct for large n [23]. In this particular case where
the design matrix is fixed, the sandwich estimator is even
unbiased, which is usually not the case. As a consequence, the
sandwich is accurate for few number of replications n. The
fact that the sandwich is unbiased without any specification
of smoothing or a model for the noise correlation structure
is especially appealing. Another advantage is that because
the residuals are used, the sandwich estimator adapts itself
according to the correlation structure of each voxel. So, it is
flexible, computationally efficient, and robust. These facts of
the sandwich can be used to create an exact test, shown in the
next section.

Three other common estimators of var{̂β} will be dis-
cussed briefly for comparison. The simplest one is ordinary
least squares (OLS). It is obtained by assuming that the noise
variance is Σ = σ2Ip and setting S = Ip. Then the variance

of the OLS estimate ̂βO is obtained by estimating the scalar
noise variance σ2, which is estimated by the sum of the
squared residuals [1]. The OLS estimator of the variance

of ̂βO is then ̂VO = σ̂2
O(X ′X)−1. This estimator is biased

because the estimator ̂βO is biased because from (4) we have
E{r̂′j r̂ j} = gθ(Z)′QXgθ(Z) + σ2. It is well known that if there
are autocorrelations, then OLS will lead to variance estimates
that are too small (see also simulation section below); see for
example, [4, 25, 26].

The second estimator is called (feasible) generalized least
squares (GLS). It is obtained by assuming that there are
autocorrelations and these are estimated. Then set S such
that the estimate of the noise variance is ̂Σ = SS′ [8].
The variance of the GLS coefficient ̂βG is often written as
a product of a scalar variance and a correlation matrix,

Σ = σ2R. Then the estimate of σ2 using ̂βG in the residuals
is obtained similarly to OLS and is referred to as σ̂2

G. The
correlation matrix R can be estimated by any number of

suggested algorithms. Often an AR(p) process is assumed for
R with p = 1, 2 [9, 18], or sometimes higher [27]. Other
GLS methods include transforming the time series to the
frequency domain [10–12] and transforming the time series
to the wavelet domain, retaining the correlation structure to
obtain an estimator for R [13]. The variance of the coefficient
̂βG estimated by GLS is ̂VG = σ̂2

G(X ′ ̂R−1X)−1. It is known
that if the model for the variance is correct, then GLS is
most efficient; that is, the estimator attains the Cramér-Rao
lower bound of the variance of all unbiased estimates [14].
The problem is that it is very difficult to find an unbiased
estimate of R, even for large time series (large p, note the
difference in asymptotics with the sandwich), not in the
least because the model used for the temporal correlations
is incorrect [4, 28, 29]. If no correct model is known, then
GLS could lead to very inaccurate variance estimates for the
coefficients β. Friston et al. [4] show clearly that assuming
an incorrect model for the noise correlations can lead to
variance estimates that are too high or too low (see also the
section Monte Carlo Simulations).

The third estimator is called the smoothing approach,
sometimes called precoloring. It is obtained by assuming that
Σ = σ2R, with R a correlation matrix, and setting S such that
SRS′ ≈ ŜRS′ [30]. So, the temporal correlations in the time
series are dominated by a smoothing matrix S such that the
true temporal correlations become irrelevant to estimating

the variance of the coefficient ̂βS. Then σ2 is estimated by
σ̂2
S , which is the average squared residuals divided by the

degrees of freedom [30]. The estimator σ̂2
S is biased if ̂βS is

biased. The correlation matrix R can be estimated, which
can be done in the same manner as described above for
GLS, for example with an AR(p) model [18]. The variance

estimator for the coefficient ̂βS using a smoothing matrix S is
(3) with ̂Σ = σ̂2

S
̂R, which is referred to as ̂VS. The smoothing

matrix is often generated by the Gaussian function exp[−(i−
j)2/2τ2], where i is the row, j is the column of SS′, and τ2 is
the variance [31]. Suggested values for τ2 are 4 to 8 s2. An
advantage of ̂VS is that it is robust against using an incorrect
model for R, which is likely to be the case. However, it is
in general difficult to set S such that SRS′ ≈ ŜRS′ for each
correlation structure [7]. Friston et al. [4] suggest a bandpass
filter for S which minimizes the the squared difference for
a contrast between the true and estimated variance over all
possible (autoregressive) correlations in the time series. This
will result on average in a reasonable estimate for all voxels
with different correlation strengths which is computationally
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efficient. Optimally, however, one would like to use the
same estimator for each voxel that somehow adapts to the
particular correlation strengths of that voxel.

2.2. Hypothesis Testing. Contrasts are used to create a func-
tion of the coefficient that will allow to test for differences
between conditions. For example, a single contrast could be
c′ = (1,−1), to test between the amplitudes of different
conditions. An F-test can be used to test the null hypothesis
H0 : c′β = a against the alternative HA : c′β /= a. Depending
on which estimator for β and which variance estimate is
used, a specific F-test will result. For the simple contrast like
c′ = (1,−1) and a = 0 the F-test is the square of the t-test. In
general, for a set of q independent contrasts, collected in the
q × k matrix C, the F-test is [32]

F = n− q

nq

(

C ̂β − a
)′

(C ̂VC′)
−1(

C ̂β − a
)

, (9)

which under H0 is distributed approximately as F with
degrees of freedom dependent on the statistic for the variance
̂V (see Table 1). If OLS or GLS is used, then the statistics
FO and FG are approximately F(q, p − k) distributed. If
the smoothing approach is used, then usually the so-called
Satterthwaite approximation fS to the degrees of freedom
is used, which depends on both the autocorrelation and
the design [7, 30]. So, for the smoothing approach, the
statistic FS is approximately F(q, fS) distributed. Finally, if the
sandwich estimator is used, an exact test FW exists which is
F(q,n−q) distributed, provided that the data are multivariate
normal, that is, if F(e) = Np(0,Σ) (see appendix for details
on this). The degrees of freedom do not contain the length
of the time series (p) because the correlation structure of
the time series is entirely estimated from the information of
the replications. The fact that it is an exact test means that
even for very small number of replications n the F statistic
is very accurate, that is, has a false positive rate of 5%, say.
The assumption of multivariate normal noise in fMRI is
important, of course, and has been investigated. It appears
that the assumption of Gaussian noise is valid in general for
low and high signal-to-noise ratios and is very accurate when
considering difference images, as is often the case in fMRI
analyses [33].

3. Monte Carlo Simulations

In this section Monte Carlo simulations are used to show
in which circumstances each of the four variance estimates
works best. This is done by considering four variables: (i)
the autocorrelation of the time series, (ii) misspecification of
the correlation structure, (iii) misspecification of the mean
model, and (iv) the type of design. The focus of these
simulations is on model misspecification instead of specific
models for the HRF and autocorrelations. In so doing the
results of these simulations apply to many different situations
with different models but similar misspecification.

3.1. Data Generation. A time series is created of fMRI data of
length p = 100 seconds. The data generating process is linear

in the parameters, gθ(Z) = Zθ. The columns of the design
matrix Z = (z1, z2) are generated according to the double
gamma function and represent time series corresponding
to two different experimental conditions A and B of either
an event-related or a blocked design [3]. The event-related
design was generated using random stimulus presentations
with 8 presentations per condition in the 100 second interval
with the constraint that the interstimulus interval was at least
2 seconds. In the blocked design there was one block for each
of the two conditions with 10 stimulus presentations in each
block. The exact designs used are shown in Figure 1. The
parameter θ represents the amplitude of the BOLD response
corresponding to a condition. Noise ej is added to the signal
Zθ which is Np(0,Σ) for j = 1, . . . ,n with Σ = σ2R. The
correlation matrix R = (ρ)i j is induced by either an AR(1) or
AR(2) process, which are, respectively,U(t) = φU(t−1)+ε(t)
and U(t) = γ1U(t − 1) + γ2U(t − 2) + ε(t), where ε(t)
is white noise [35]. The coefficients of the AR(2) process
have been sampled from the upper right quadrant of the
stationary area: 0 < γ1 + γ2 < 1 [35]. A single parameter is
created to indicate strength of dependence in the time series
φ = γ1 + γ2, which is varied from 0.2 to 0.9, with γ1 at most
0.1 larger than γ2. This also reflects the possible differences in
correlation structure as found between voxels. The variance
of the time series at t = 0 is taken as σ2

0 = 1. Then the data
are Yj = Zθ + ej for j = 1, . . . ,n. The variance of the noise
is set such that the signal-to-noise ratio (SNR) for the time
series is approximately one for the average over replications.
This is achieved by multiplying the variance of the noise by
the number of replications. As a consequence the number of
replications is irrelevant; only the SNR is important which is
set at an appropriate low level (see [36]).

3.2. Estimation. Estimation with the working model Yj =
Xβ + r j is performed using a different HRF, h(t)∗, which is
a single gamma function [1]. The resulting time series form
the columns of X in the working model, such that Z /=X , and
as a result θ /=β. The main difference between the functions is
that there is no undershoot using the single gamma function.
Additionally, a parameter is varied in the single gamma
function to vary the degree of misspecification. At the largest
misspecification this induces a reduction of amplitude to
about 30% and a delay of about 2 seconds, shown in
Figure 2. To quantify the difference between the DGP and
working model, the relative difference between the functions
is computed, defined as the sum of the absolute difference
between the functions divided by their sum over the whole
range. This relative difference was for the event-related
design between 0.072 and 0.278 and for the blocked design
between 0.075 and 0.149. The lowest relative difference is
solely due to selecting the incorrect single gamma function.
The largest effect of misspecification is in the event-related
design. This is to be expected since the shape of the HRF is
more important in event-related designs [1].

The misspecification in the correlation structure for
GLS and the smoothing approach is created by using as a
working model an AR(1) instead of an AR(2). The amount
of misspecification depends on the correlation strength of the
generated structure with AR(2); see Figure 2. It is clear that
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Figure 2: (a) and (b) Misspecification of the HRF for condition A with the largest relative difference of 0.278 for the event-related design
and 0.149 for the blocked design. (c) Three spectra of AR processes are displayed as a function of frequency for [−π,π] [34]. The AR(1)
process was generated with parameter φ = 0.2, and the two AR(2) processes are generated with γ1 = γ2 = 0.3, γ1 = 0.5, and γ2 = 0.4.
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Figure 3: Ratios of estimated and true contrast variance for event-related and blocked designs as a function of correlation strength φ and
smoothing parameter τ2 for the smoothing approach.

estimating the correlation structure using an AR(1) process
will capture mostly frequencies around zero, whereas it will
represent poorly frequencies further away from zero.

The smoothing approach requires setting the smoothing
matrix S by the parameter τ2. The value of this parameter
depends on both the correlation strength and the design.
Therefore, we first looked at the effect on the variance
estimate for different values of correlation strength φ and τ2.
As can be seen in Figure 3, there is no absolute correct value
of τ2 for both event-related and blocked designs and all cor-
relation strengths when only the correlation structure is mis-
specified. The value of τ2 = 8 seems to be most optimal in the
sense that it is robust against correlation strength, especially
in the event-related design. This value is used in the simula-
tions for the smoothing approach unless specified otherwise.

To compare the four approaches three measures are
discussed: the ratio of estimated to true contrast variances,

the false positive rate, and power. The contrast tested is c′ =
(1,−1). The true contrast variance is obtained by computing
the variance from the N = 500 simulations of the estimate
̂β for each of the methods. Note that the true variance is
defined differently from that defined in [4], where a second-
order approximation to the mean squared error was used.
The bias formulation ignored stochasticity of the estimated
correlation matrix ̂R which was approximated to the second
order. Let D denote the true variance obtained from the N
simulations. The ratio of contrast variance is then c′ ̂Vc/c′Dc.
If the estimated variance is good, then the ratio will be 1,
it is overestimated if the ratio is larger than 1, and it is
underestimated if the ratio is smaller than 1.

The false positive rate or size of a test is the probability
of a test to reject the null hypothesis when it is true. The
false positive rate (FPR) is set at 5%. It is expected that when
the contrast variance is underestimated, then the FPR will
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be too high, that is, higher than 5%, and when the contrast
variance is overestimated, the FPR will be too low. In relation
to FPR, power is compared between methods as a function
of effect size. Power refers to the probability of rejecting the
null hypothesis when it is incorrect. Power should be close to
1 given a sufficient effect size. Effect size η is here defined as
the difference between amplitude parameters divided by the
true contrast variance. If the FPR is too low, then the power
will also be low, and when the FPR is too high, the power will
be high.

3.3. Results. We first look at the contrast variance when the
assumptions about the correlation structure and HRF are
correct. Then we determine the effect of misspecification
of the autocorrelations on the contrast variance, FPR, and

power. And finally we look at possible interactions of
misspecification of the autocorrelations and the HRF.

When both the HRF and autocorrelations are correctly
specified, all methods should work well, except OLS when
there are autocorrelations. In Figure 4 it is clearly seen that
for the event-related and blocked design both the sandwich
and GLS perform equally well for any value of φ. As expected,
OLS is close to one only when φ = 0. In the event-related
design the contrast variance of the smoothing approach with
τ2 = 8 is quite close to one, but the contrast variance for this
τ2 is underestimated in the blocked design. In the blocked
design the contrast variance is very accurate for all values of
φ when τ2 = 4. So, when the model for the noise variance
is correct, the sandwich is almost exactly the same as the
minimum variance GLS regardless of design. The smoothing
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approach, on the other hand, depends strongly on the design,
and different smoothing parameters are required for accurate
contrast variance estimates.

If there is misspecification in the correlation structure,
then the contrast variance of a robust estimator should still
be accurate for all levels of correlation strength. It is clear
from Figure 5 that now OLS and GLS perform poorly. OLS
always underestimates the true contrast variance, and GLS
either underestimates or overestimates contrast variance.
Both the smoothing approach and the sandwich are robust
for misspecification of the correlation structure in the event-
related design. However, in the blocked design only the
sandwich is robust at all levels of correlation strength. As a
consequence the smoothing approach has a slightly higher
FPR than the nominal 5% in the event-related design but
a dramatically higher FPR in the blocked design, shown
in Figure 6. This was expected because from Figure 5 the

contrast variance was underestimated, and so the FPR is
expected to be too high. In contrast, the sandwich has FPR
slightly below the nominal 5% in both designs because it
overestimated the contrast variance slightly. In accordance
with the contrast variance and FPR results, the power of
the smoothing approach is slightly higher than that of the
sandwich, as can be seen in Figure 7. The power for the
blocked design is comparable.

In addition to misspecification of the correlation struc-
ture the HRF model can be misspecified. To look at possible
interactions with correlation strength, we varied both HRF
misspecification and correlation strength. As can be seen in
Figure 8, for the event-related design the sandwich is more
accurate than the smoothing approach, which underesti-
mates the contrast variance. But there is only a small effect of
HRF misspecification for both the sandwich and smoothing
approach. For the blocked design, on the other hand,
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the smoothing approach underestimates contrast variance
greatly. Accordingly, the FPR of the smoothing approach in
the event-related design is too low, around 2.5%. This is due
to overcompensation of the degrees of freedom fS in the
smoothing approach. When there are no autocorrelations,
fS is high, and when there are autocorrelations, fS is low.
When the HRF is modeled incorrectly, fS is too low so that
the FPR is too low. In the blocked design the FPR behaves as
expected for the smoothing approach: the contrast variance
is underestimated which leads to overestimated FPR. The
sandwich remains in both designs relatively stable around
5%. The power behaves as expected in this case (not shown):
for the smoothing approach the power is similar to that
in Figure 7 for the event-related design and higher for the

blocked design. The power of the sandwich is similar to that
of Figure 7.

4. Discussion

It has been repeatedly shown that the false positive rate in
fMRI brain activity maps can be quite high if the assump-
tions of the method are violated (see, e.g., [4, 7]). Therefore,
the robustness of the variance estimator of the GLM
coefficients is an important issue. It has been shown here
that the sandwich is unbiased and accordingly an exact F-
test with the sandwich exists. Additionally, misspecifications
in both autcorrelation and HRF model are accommodated
by the sandwich for both event-related and blocked designs.
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In contrast, the smoothing approach is affected by both
autocorrelation and HRF misspecification. Additionally, the
smoothing approach requires a smoothing parameter which
must be specified for each correlation structure to get
accurate results. In contrast, the sandwich variance has
two main advantages to the smoothing approach: (i) the
sandwich adapts to local changes in correlation structure,
whereas the smoothing approach does not, and (ii) no model
or parameter needs to be determined for accurate results with
the sandwich.

The potential of the application of the sandwich to real
data is large. For example, we have applied the sandwich
to real fMRI data in Weeda et al. [37]. In that paper we
took a multivariate approach to model the GLM coefficients
using Gaussian shaped functions. Using an incorrect shape
function and incorrect autocorrelation assumptions, we
showed that the contrast variance is still accurate of the
sandwich. Using the sandwich we were able to find a plausible
set of areas of brain activity in an auditory task.

Another area where the sandwich can be used is random
effects analysis [38], which is our current work. The first level
of a two-level random effects model requires only an OLS
estimate of the coefficient of each subject and its sandwich.
Then at the second level, the group effects are estimated with
OLS again, and another sandwich is formed which is simply
the sandwich of the first-level variance with the group design
for all subjects.

Appendix

To prove the distributional result of the statistic FW we
assume three things: (i) the DGP as stated in Section 2,
(ii) the working model of Section 2, and (iii) the noise is
multivariate normal, that is, F(e) = Np(0,Σ). Then, to prove
that FW is central F distributed with degrees of freedom q

and n − q, we need to show that (i) the variance C ̂VWC′

is Wishart distributed, (ii) C ̂β and ̂VW are independent,
and (iii) the degrees of freedom are q and n − 1 (see,
e.g., [39, chapter 7 and 8]). (i) By Proposition 7.4 of [39]
we have that if (n − 1) ̂VW ∼ Wk(n − 1,V), then (n −
1)C ̂VWC′ ∼ Wq(n − 1,CVC′), where V = var{̂βO}. So, if
̂VW is Wishart distributed, we are done. Rewrite ̂VW , such
that if Uj = (X ′X)−1X ′r j , then n(n − 1) ̂VW = ∑n

j=1 UjU
′
j .

Now Uj is Nk(0, (n − 1)V). This is seen by noting that
E{Uj} = (X ′X)−1X ′QXgθ(Z) = 0 and var{Uj} = ((n −
1)/n)(X ′X)−1X ′ΣX(X ′X)−1, because of the variance of the
residuals. Then by definition (n−1) ̂VW ∼Wk(n−1,V). For

(ii), to show independence of C ̂βO and ̂VW , it is sufficient

to show independence of ̂βO and Uj . Because the data are

normal by assumption, the covariance of ̂βO and Uj needs
to be zero to show independence. Since the covariance of

(Y
′
, r′j)

′
is (1/n)QXΣ, it then follows that C ̂βO and ̂VW are

independent. To show (iii), that the degrees of freedom are q
for the numerator and n−1 for the denominator, proposition

8.2 of [39] is used. It implies that if C ̂βO − a ∼ Nq(0,CVC′)
and (n− 1)C ̂VWC′ ∼Wq(n− 1,CVC′), then FW ∼ F(q,n−

q). The first part is true under H0 and from the variance of

the OLS estimate ̂βO, and the second part was shown in (i).
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