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Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation
promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is
associated with the detoxification of ROS-mediated lipid peroxidation-generated
reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and
acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly
associated with the prognosis and chemoradiotherapy sensitivity of many types of
cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer,
hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored
the possible relationship between ALDH2 and urological cancers from the aspects of
ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular
senescence.
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ALDH2: STRUCTURE, FUNCTION AND MOLECULAR GENETICS

Acetaldehyde dehydrogenase-2 (ALDH2), encoded by a nuclear gene located on chromosome 12q24
(Raghunathan et al., 1988), is an enzyme rich in mitochondria with the activity of dehydrogenase,
reductase and esterase (Mukerjee and Pietruszko, 1992; Chen and Stamler, 2006). ALDH2 is
composed of 4 ~56 kDa identical subunits, each of which mainly consists of the oligomerization
domain, the catalytic domain, and the NAD+ -binding domain. ALDH2 provides protective effects
not only by mediating ethanol metabolism and catalyzing the decomposition of acetaldehyde into
nontoxic acetic acid but also by metabolizing other toxic short-chain fatty aldehydes and aromatic
aldehydes (Klyosov, 1996). Furthermore, biochemical processes including decomposing endogenous
aldehydic products, such as 4-HNE, malondialdehyde (MDA) and acrolein, derived from lipid
peroxidation and tobacco smoking are associated with ALDH2 (Chen et al., 2010). The gene
encoding ALDH2 is highly polymorphic. The most frequent point mutation, called ALDH2*2,
occurs when an adenine is replaced by a guanine (rs671) at nucleotide 1459. Mutation of the
ALDH2*2 enzyme disturbs the stabilization of hydrogen bonds and leads to damage to the structure
of the NAD+ -binding site and several other catalytically important residues, ultimately resulting in
enzyme inactivation (Li et al., 2016). Moreover, the combination of the mutant type (ALDH2*2) and
the wild type, called AlDH2 *1/*2, can also result in a decrease in the catalytic activity of ALDH2
(Wang et al., 2002). It was reported that the activity of AlDH2 *1/*2 varied with the amount of
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AlDH2 *1/*2 in the ALDH2 tetramer, possibly reducing ALDH2
activity by 60%–80% compared to the wild-type (Weiner et al.,
2001).

ALDH2 and Cancer
Increasing body of evidence has revealed a link between the
ADLH2*2 genotype and many age-related, life-shortening
diseases, such as cancers and osteoporosis (Chen et al., 2014).
In upper aerodigestive track (UADT) cancers, Yokoyama et al.
first reported a significant high risk of esophageal cancer in
ALDH2*2 carriers (Yokoyama et al., 1996). Multiple original
studies, reviews and meta-analyses and from Asia also found that
the mutation of ALDH2*2 and the deficiency of ALDH2 enzyme
activity were commonly implicated in UADT cancers due to the
increased DNA damage induced by acetaldehyde cancers
(Matsuda et al., 2006; Asakage et al., 2007; Yang et al., 2007;
Hiyama et al., 2008; Ding et al., 2009; Lee et al., 2009; Cadoni
et al., 2012). The ALDH2 polymorphism was also reported to be
linked with an increased risk of gastrointestinal cancer including
gastric cancer, pancreatic cancer, hepatocellular cancer, and
colorectal cancer (Miyasaka et al., 2005; Li et al., 2016).
Unexceptionally, among urological cancers, it was found that
heterozygous ALDH2 carriers had a higher risk of bladder cancer
(BCa) (Masaoka et al., 2016). And low expression of ALDH2 was
related to lower overall survival in upper tract urothelial
carcinoma (Wu et al., 2014). Furthermore, as an age-related
disease, prostate cancer (PCa) is one of the most common

malignant tumors in European and American senior citizens
and is also the main cause of death (Siegel et al., 2021). In
particular, it was found that the rs671 allele of the ALDH2
gene was associated with human longevity (Park et al., 2009),
indicating a potential link between PCa and ALDH2. We
summarized the reaches investigating the effects of ALDH2 in
urological cancers in this study in Table 1.

In addition to the direct effect of ALDH2 polymorphism,
ALDH2-related aldehyde metabolites are also closely
associated with cancers. 4-HNE was found to exhibit both
endogenous carcinogenesis and antitumor effects (Zhang and
Fu, 2021). Elevated oxidative stress and increased ROS
generation have been confirmed to be related to a majority
of cancer types by a large amount of strong evidence (DeNicola
et al., 2011; Bellot et al., 2013), and 4-HNE generated from
oxidative stress-induced lipid peroxidation plays a major role
in the carcinogenic effects of lipid peroxidation (Zhong and
Yin, 2015). In addition, p53 mutation induced by 4-HNE-
DNA adducts is also one of the carcinogenetic mechanisms
(Hu et al., 2002). Remarkably, the association between 4-HNE
and early-stage carcinogenesis was first described in the case of
renal cancer (RCa) (Segura-Aguilar et al., 1990). Interestingly,
the antitumor effects of 4-HNE are linked to its concentration
and cell type (Ayala et al., 2014). At a physiological or lower
concentration, especially when it is similar to those in human
tissues (Esterbauer et al., 1991), 4-HNE stimulates gene
expression (especially Nrf2) to strengthen the antioxidant

FIGURE 1 | Functions of 4-HNE-protein adduct formation and their effects on cellular metabolic pathways, including the antioxidant response, inflammation, and
apoptosis. The red arrow represents activation; the gray arrow represents inhibition. Abbreviations: 4-HNE, 4-hydroxynonenal; UCP, uncoupling protein; ERK,
extracellular signal–regulated kinase; JNK, c-Jun N-terminal kinase; NFκB, nuclear factor kappa B; Nrf2, nuclear factor (erythroid-derived 2)-like 2; p38, protein 38; p53,
protein 53; TLRs, toll-like receptors; TNF-α, tumor necrosis factor-α; PGE2, prostaglandin E.
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capacity of cells, prevent inflammation, and promote the
adaptive response of immune cells for maintenance of
homeostasis (Marantos et al., 2008). However, with
concentration increasing, 4-HNE will tend to promote
organelle and protein damage and thus inhibit cell
proliferation and angiogenesis (Stagos et al., 2009).
Simultaneously, it will induce apoptosis, differentiation,
autophagy, and cellular senescence (Barrera et al., 2008;

Pizzimenti et al., 2010). At a much higher level, 4-HNE will
promote apoptosis or necrosis programmed cell death to avoid
cancerization and eventually lead to cell death (Ayala et al.,
2014). In this process, 4-HNE elicited its antitumor effect by
regulating oncogenic signaling pathways and the expression of
key genes, such as oncogenes c-myc (Fazio et al., 1992; Rinaldi
et al., 2000; Pizzimenti et al., 2006), c-myb (Barrera et al.,
1996), cyclin D, cyclin A (Skorokhod et al., 2010), and Notch1

FIGURE 2 |Mechanisms and regulation of ALDH2 in urological cancer tumorigenesis. ALDH2 exerts its antitumor effects in urological tumors through a variety of
mechanisms. ALDH2 can play a regulatory role through epigenetic modifications and some pathways, such as the Akt-Notch pathway, and it can also regulate the
generation of its metabolites, including 4-HNE, MDA, and acrolein, and play an antitumor role through ferroptosis, oxidative stress, autophagy andmany other pathways.
The blue arrow indicates inhibition; the orange arrow indicates activation; the black arrow indicates both activation and inhibition; and the green arrow indicates
mutual interaction. Abbreviations: STAT3, signal transducer and activator of transcription-3; mTOR, mammalian target of rapamycin; DNMT, DNA methyltransferase;
HO-1, heme oxygenase; HDAC, histone deacetylase; ROS, reactive oxygen species; UPR, unfolded protein response; ER stress, endoplasmic reticulum stress; MHC-I,
major histocompatibility complex-I; mtDNA, mitochondrial DNA; TME, tumor microenvironment.
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(Pizzimenti et al., 2008). Moreover, the Doorn team confirmed
that 4-HNE was not only a substrate but also an inhibitor of
ALDH2, the inhibitory effect of which was reversible at a low
concentration until 10 µM (Doorn et al., 2006). Therefore,
ALDH2 inactivation induced by 4-HNE may play an essential
role in the progression of some cancer species. As mentioned
above, the effects of 4-HNE also depend on the cell type. For
example, in hepatic cells, 4-HNE was found to promote p53
mutation and result in tumorigenesis, while it induced p53
expression in neuroblastoma cells, thus regulating cell cycle
arrest or apoptosis induction and ultimately playing an
antitumor role (Hu et al., 2002; Laurora et al., 2005). A
similar phenomenon occurred in the regulation of NF-κB
signaling pathway by 4-HNE (Ayala et al., 2014).
Meanwhile, Lee et al. reported that long-term therapy with
0.1 µM 4-HNE led to an increase in cell growth in young
smooth muscle cells (SMCs) but showed cytotoxicity to aged
SMCs (Lee et al., 2006). In particular, 4-HNE is now believed to
help normal cells defend cancer invasion and is more toxic to a
variety of both hematological and solid tumor cells than
normal cells. The differential effects of 4-HNE may be the
consequence of changes in aldehyde-metabolizing enzymes,
antioxidant defenses, and mitochondrial function (Pizzimenti
et al., 2010; Barrera, 2012; Gasparovic et al., 2017).

Moreover, other reactive aldehydes, such as MDA and
acrolein, also have similar bioactivities to 4-HNE. MDA was
found to contribute to DNA damage and mutation
(Niedernhofer et al., 2003; VanderVeen et al., 2003), and
MDA-DNA adducts may ultimately lead to cell cycle arrest
(Ji et al., 1998) and apoptosis (Willis et al., 2004) when DNA
repair mechanism is lacking. Furthermore, acrolein seemed to
play similar roles in carcinogenesis as HNE. Strikingly,
acrolein was found to be associated with PCa progression
and biochemical recurrence after prostatectomy and could
be regarded as an excellently predictive biomarker of PCa

relapse with an accuracy of approximately 90% (Custovic et al.,
2010) (Figure 1).

In summary, both ALDH2 and its associated metabolites are
more or less directly or potentially related to cancer (Figure 2).

Ferroptosis
As aging progresses, a disintegrated genome will lead to
intracellular iron retention, resulting in DNA and epigenome
damage, and contribute to genomic destabilization, which is one
of the hallmarks of both aging and cancer. At the same time, DNA
repair process induced by p53 is also blocked, and incomplete
DNA further accelerates aging. This vicious cycle is called
ferrosenescence (Sfera et al., 2018). In the process of
ferrosenescence, retained iron leads to lipid peroxidation and
endoplasmic reticulum (ER) stress, accompanied by cellular
antioxidation failure, and ultimately results in ferroptosis
(Sfera et al., 2018). However, a recent study showed that
senescent cells with excessive accumulation of iron did not
initiate ferroptosis but protected themselves from ferroptosis
by avoiding the body’s self-renewal mechanism and
accelerating body aging (Masaldan et al., 2018). Iron has been
proven to be associated with RCa, PCa and BCa (Torti and Torti,
2013), in which the intracellular free iron concentration increased
abnormally. An RCa model also described the carcinogenesis of
iron overload by promoting DNA damage (Ebina et al., 1986). In
aging and cancer, ALDH2 may be a double-edged sword. On the
one hand, ALDH2 favor the antineoplastic effect of ferroptosis by
lowering the 4-HNE concentration, and was also found to activate
the Nrf2/HO-1 cascade to decrease intracellular iron (Ma et al.,
2018). These effects may reveal the protective effect of ALDH2 at
the initial stage of aging and carcinogenesis. On the other hand, it
was reported that urological cancer was sensitive to ferroptosis
inducers (FIN) (Yu et al., 2017), which indicates that ALDH2may
be a curative target for treatment-resistant PCa (Ghoochani et al.,
2021). Therefore, reasonable activation of ferroptosis may be

TABLE 1 | The effects of ALDH2 on urological cancers in this study.

Mechanisms Tumor type References

Ferroptosis BCa Masaldan et al. (2018)
RCa Torti and Torti (2013); Masaldan et al. (2018)
PCa Yu et al. (2017); Masaldan et al. (2018); Wu et al. (2019)

Epigenetic alterations BCa Jerónimo et al. (2004); Sato et al. (2012); Juengel et al. (2013); Pinkerneil et al. (2016); Juengel et al. (2017); Jylhävä et al.
(2017); Pinkerneil et al. (2017)

RCa Maegawa et al. (2010); Mao et al. (2011); Horvath (2013); Ramakrishnan et al. (2016); Jylhävä et al. (2017); Dugué et al.
(2018); Peters et al. (2018); Zheng et al. (2018)

PCa Wang et al. (2007); Gurel et al. (2008); Hagelgans et al. (2013); Tang et al. (2013); Dumache et al. (2014); Litovkin et al. (2015);
Gurioli et al. (2016); Jylhävä et al. (2017); Kim et al. (2017); Dugué et al. (2018); Giannopoulou et al. (2019)

Proteostasis BCa Rappa et al. (2012); Li et al. (2013); White (2015)
RCa Walker and Lithgow (2003); Gęgotek and Skrzydlewska (2019)
PCa Santarosa et al. (1997); Delie et al. (2013); Li et al. (2013); Li et al. (2019); Chen and Cubillos-Ruiz (2021)

Mitochondria dysfunction BCa Roumeguère et al. (2017); Mollo et al. (2020); Shorning et al. (2020)
RCa Echtay et al. (2003); Singh and Kulawiec (2009); Gęgotek and Skrzydlewska (2019); Mollo et al. (2020)
PCa Zarkovic (2003); Singh and Kulawiec (2009); Pal and Quinn (2013); Parr et al. (2013); Oh et al. (2016); Reznik et al. (2016);

Mahalingaiah et al. (2017)
Cellular senescence BCa Chen et al. (2005); Toso et al. (2014); Gorgoulis et al. (2019)

RCa
PCa

BCa: bladder cancer; RCa: renal cancer; PCa: prostate cancer.
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beneficial for both antiaging and antitumor effects. (Tao et al.,
2019) reported that ALDH2*2 (rs671) male carriers had lower
serum ferritin levels and that rs671 was significantly associated
with ferritin concentrations. Accordingly, ALDH2 may regulate
iron metabolism and thus contribute to ferroptosis. Different
genotypes of ALDH2 among different populations may
correspond to tumorigenic effect of alcohol in different degree,
which could partly explain the contradictions on whether alcohol
is a risk factor for urinary cancers. Furthermore, as a metabolite of
lipid peroxidation, 4-HNE also has a strong connection with
ferroptosis. Wang et al. reported that compared to low-stage
cancers and normal tissues, the level of 4-HNE was relatively
lower in high-stage cancer, and lower 4-HNE level was also
associated with higher ferroptosis sensitivity in tumors (Wang
et al., 2021). Previous studies also confirmed that tumors with a
higher degree of malignancy were more sensitive to ferroptosis,
manifesting higher propensity to metastasis and drug resistance,
which indicated a potential antitumor role of 4-HNE
(Viswanathan et al., 2017; Wu et al., 2019; Elgendy et al., 2020).

Given that ferroptosis acts specifically on malignant cells and
protects normal cells, ferroptosis-targeted treatment has great
therapeutic prospects for clinical applications. Precise therapy
targeting ALDH2 and 4-HNE could be potential treatment
approach for promoting ferroptosis sensitivity and inducing
cell death and eventually achieve better prognosis among
urological cancer patients.

EPIGENETIC ALTERATIONS

DNA Methylation
DNA methylation, as a common epigenetic mechanism of gene
regulation, has been widely studied for the past few years. It is
mainly mediated by DNA methyltransferases (DNMTs).
Hypermethylation and hypomethylation in the promoter
region is associated with gene silencing and transcription,
respectively. Aging is the leading reason for the increased
frequency of hypermethylation in CpG islands and promoters
in many genes. Increasing global hypomethylation is associated
with an increase in age, while many tumor suppressor genes are
still hypermethylated (Maegawa et al., 2010; López-Otín et al.,
2013). In addition, it is well established that local inflammation
can predispose normal tissues to cancer, in which DNA
methylation may have been involved (Easwaran et al., 2014).
Modeled according to DNA methylation level, DNA methylation
(DNAm) age, i.e., epigenetic age, is a more accurate predictor of
human aging and biological age than telomere length (Jylhävä
et al., 2017). DNAm age is strongly related to the occurrence and
development of cancer. A meta-analysis found that accelerated
DNAm age might increase the risk of death and adversely affect
survival outcomes of RCa, PCa, and urothelial cancer (Dugué
et al., 2018). Another study also found that DNAm age
acceleration was highly correlated with genetic mutations in
RCa and PCa (Horvath, 2013). For RCa, hypermethylation in
genes such as TGF-β/RUNX3, NELL1, and ECRG4 can promote
cell proliferation, EMT, tumor progression, migration, invasion,
and metastasis of RCa (Ito and Miyazono, 2003; Mabuchi et al.,

2010; Luo et al., 2016; Kim et al., 2017; Peters et al., 2018; Zheng
et al., 2018). In PCa, hypermethylation of RARβ, cyclin D2
(CCND2), GSTP1, MGMT (Tang et al., 2013; Dumache et al.,
2014; Litovkin et al., 2015; Gurioli et al., 2016) and
hypomethylation of MYC, uPA, PLAU, S100P (Wang et al.,
2007; Gurel et al., 2008; Hagelgans et al., 2013), may promote
cancer cell proliferation, progression and metastasis and lead to
poor clinical outcomes. (Jerónimo et al., 2004) showed that
retinoic acid receptor beta2 (RARβ2) was hypermethylated in
more than 90% of PCa and prostate intraepithelial neoplasia
(PIN) cases while in only 20% of benign prostatic hyperplasia
patients. Therefore, hypermethylation of RA receptor genes may
affect PC progression bymediating gene expression. Additionally,
it was also reported that DNA methylation is highly expressed in
patients with BCa and might be relevant for bladder
carcinogenesis (Jordahl et al., 2020).

DNA methylation plays a significant role in both aging and
urological cancer, and ALDH2 may be involved in aging and
urological cancer by regulating DNA methylation directly or
indirectly. Firstly, ALDH2 may directly regulate the expression
of methylated genes at the transcriptional level to exert its
antitumor effect. For example, the ALDH2 promoter was
found to contain a retinoid response element, which might
contribute to gene regulation (Pinaire et al., 2003), which may
be one of the antitumor mechanism for ALDH2 in PCa.
Furthermore, ALDH2 also regulates gene methylation levels
through its metabolites. Acetaldehyde was found to inhibit
DNMT activity (Garro et al., 1991), and compared to healthy
controls, long-term drinkers had significantly reduced mRNA
levels of DNMT3a and DNMT3b (Bönsch et al., 2006).
Metabolites of ALDH2, such as acetaldehyde and 4-HNE, have
been proven to influence the clinical characteristics of liver
cancer, colorectal cancer, breast cancer and upper
aerodigestive tract cancer by regulating DNA methylation
levels (Varela-Rey et al., 2013). Therefore, we speculated that a
similar mechanism existed in urological cancer. Metabolites of
ALDH2 may also regulate downstream signaling pathways of
methylated genes since a low concentration of 4-HNE was found
to stimulate cell proliferation and cell migration by promoting the
nuclear factor kappa B (NF-κB) signaling pathway, and the
expression of cyclin D1 and c-Myc (Xu et al., 2017) and 4-
HNE also induced the production of TGF-β (Yang et al., 2019),
which meant ALDH2 activation might decrease cell proliferation,
migration, invasion, and EMT by reducing the concentration of
4-HNE.

Histone Modification
Changes in histone modifications are important in the aging
process (Muñoz-Najar and Sedivy, 2011). The acetylation
levels of histones are affected by the catalytic equilibrium of
histone acetyltransferases (HATs) and histone deacetylases
(HDACs). In HDACs, the activity of the sirtuin family is
directly linked to biological life cycle control. In aging cells,
decreased SIRT1 activity leads to increased genomic
aneuploidy and instability (Fatoba and Okorokov, 2011). In
addition, SIRT6 depletion is associated with telomere
dysfunction, resulting in chromosomal fusions and
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premature cellular senescence (Michishita et al., 2008).
Further study showed that SIRT6 could participate in the
antiaging process by reversing the effect of the NF-κB
pathway (Kawahara et al., 2009). Additionally, as a
component of DNA-dependent protein kinase, SIRT6 can
directly participate in DNA damage repair by exerting
homologous recombination and nonhomologous terminal
junctions, maintaining genome stability and inhibiting the
aging process (Mao et al., 2011). In RCa, it was reported
that the overexpression of HDAC1 and HDAC6 both
increased cell invasion and motility through increasing the
expression of matrix metalloproteinase (Ramakrishnan et al.,
2016). It was also reported that combining an HDAC inhibitor
with an HIV protease inhibitor was effective for RCa cells (Sato
et al., 2012). For BCa, HDAC1 mRNA was significantly
overexpressed in BCa compared with normal tissues
according to a small-scale study (Pinkerneil et al., 2017).
While another study confirmed that HDAC1 and HDAC2
double knockout impaired cell proliferation function and
led to apoptosis of urothelial carcinoma cells, which
indicated the vital contribution of HDAC to BCa
tumorigenesis and development (Pinkerneil et al., 2016).
HDAC inhibition could induce a strong response of drug-
resistant BCa cells (Juengel et al., 2017) and could exert
adhesion-blocking properties on BCa cells (Juengel et al.,
2013), which might also reveal a tumor-promoting effect of
HDAC in BCa. Many studies have also described the oncogenic
role of SIRT1-3 and the tumor suppressor role of SIRT4 and 6
in BCa (Giannopoulou et al., 2019). In PCa, it was observed
that increased activity of HDACs was associated with elevated
levels of serum PSA and increased invasiveness of tumor cells
(Damaschke et al., 2013).

ALDH2 also participates in the process of aging and urological
cancers by regulating histone modification. Several studies confirmed
that ALDH2 could modulate SIRT1-mediated senescence by
reducing the amount of 4-HNE (Gu et al., 2013; Xue et al., 2018).
Furthermore, Choi et al. reported that ALDH2 could play an
epigenetic regulatory role in gene translocation. It could bind to
HDACs and result in higher HDAC activity, suggesting that ALDH2
would induce transcriptional repression (Choi et al., 2011). To sum
up the above, we come to the conclusion that ALDH2 can inhibit the
proliferation and development of urological cancer cells.

As a hallmark of aging, epigenetic alteration occurs not only in
tumor cells but also in immune and stromal cells located in the
tumor microenvironment (TME) by immune editing and
reprogramming (Liu et al., 2017). Tumor cells escape
elimination from the immune response through numerous
mechanisms, including inhibiting the expression of genes
related to tumor-associated antigens and antigen processing by
DNA methylation and histone deacetylation (Dunn et al., 2017).
In our previous study, we found that the number of CD8+ T cells,
B cells, neutrophils and macrophages was positively correlated
with the expression of ALDH2 in PCa and that ALDH2 could
regulate the immune TME and decrease the inhibition of CD8+

T-cell activation and proliferation by reducing acetaldehyde
accumulation. Here, we speculated that ALDH2 could also
participate in immune TME regulation by not only its

metabolites but also epigenetic alterations including DNA
methylation and histone acetylation, while the latter is
associated with human aging.

Proteostasis
It is well accepted that aging and some aging-related diseases
including varies urological cancers are associated with the loss of
proteostasis (Powers et al., 2009). The heat shock response (HSR),
unfolded protein response (UPR) and other mechanisms all help
maintain protein homeostasis by assisting protein folding
correctly and eliminating proteins that fail to fold. Lab
animals overexpressing molecular chaperones was reported to
possess an extensive life span (Walker and Lithgow, 2003;
Morrow et al., 2004). Meanwhile, autophagy and other
processes play an equally important role in protein
homeostasis by cleaning and recycling garbage proteins
through protein degradation. Significantly upregulated heat
shock protein levels were observed in RCa (Santarosa et al.,
1997), PCa (Rappa et al., 2012), and BCa (Ischia and So,
2013). However, the exact effect of ALDH2 on HSR in both
aging and urological cancers is still unknown. It was reported that
lipid peroxidation products could bind to HSPs to inhibit their
degeneration; therefore, ALDH2might act as an aging-promoting
factor. However, ALDH2may play a role in the antitumor process
by inhibiting the function-enhancing extracellular release of
HSP70 of 4-HNE (Yang et al., 2019). 4-HNE can bind to a
variety of peptides and proteins, including glutathione, carnosine,
enzymes, proteins on membranes and cytoskeleton, chaperones,
uncoupling proteins (UCPs) in mitochondria, and antioxidant
proteins to form 4-HNE-protein adducts (Poli et al., 2008; Ischia
and So, 2013; Zhao et al., 2014). Approximately one-third of the
binding target proteins are located in mitochondria (Poli et al.,
2008; Zhao et al., 2014). 4-HNE-protein adducts affect the
functions and bioactivities of these proteins. After that,
adducts of 4-HNE and cyclin-dependent kinases alter enzyme
activity, contributing to cell cycle delay (Camarillo et al., 2016).
Adducts of 4-HNE with extracellular signal–regulated kinases
also changed the function of 4-HNE, resulting in a decrease in
Nrf2 activity and a loss of signal transduction, resulting in
disorders in cellular homeostasis and cell proliferation (Lin
et al., 2014). 4-HNE also adheres to histones and elongation
factor-2, modifying gene expression at the transcriptional and
translational levels, respectively (Gęgotek and Skrzydlewska,
2019). Furthermore, when bound to other proteins, such as
Toll-like receptors, 4-HNE could mediate immune regulation
(Gęgotek and Skrzydlewska, 2019). Previous studies have
confirmed that 4-HNE protein adducts formed in RCa tissues
are related to cancer proliferation and progression (Shoeb et al.,
2014).

The TME, partly characterized by high metabolism, hypoxia,
nutrition limitation, and acidosis, changes the protein processing
capacity of the ER of both cancer cells and infiltrating immune
cells, thus leading to accumulation of errant proteins and
eventually ER stress. A persistent, yet moderate ER stress
response promotes cancer cell proliferation, invasion,
metastasis, drug resistance, angiogenesis and immune escape
through several mechanisms (Chen and Cubillos-Ruiz, 2021),
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and cells respond to ER stress by activating the UPR. As a marker
of ER stress, GRP78 is overexpressed in PCa and BCa, which is
related to tumor development, recurrence and a poor survival
outcome (LeRoy et al., 2007; Delie et al., 2013; Li et al., 2013).
ALDH2 may inhibit urological cancers by regulating ER stress.
For instance, it was found to strengthen the UPR by reducing
oxidative stress (Long et al., 2020), and increased expression of
ALDH2 was associated with reduced ER stress (Yan et al., 2020).
The ER stress of cancer cells can also influence tumor progression
by changing the function of the immune TME. It was reported
that induction of ER stress impaired major histocompatibility
complex class I-peptide (MHC I-peptide) presentation
(Granados et al., 2009), and it altered NK-cell-mediated
recognition of tumors (Obiedat et al., 2019). Therefore,
ALDH2 may also possess an antitumor effect by regulating
the TME.

Currently, as a nexus of aging and cancers, autophagy can
determine key physiological decisions from cell fate to body
lifespan through metabolism and proteostasis pathways.
Autophagy works by degrading defective mitochondria and
thus provides extra energy, including fatty acids and
glutamine, for tumor cells (White, 2015). The blockade of
autophagy significantly decreased drug-induced resistance in
BCa (Li et al., 2019) and PCa (Farrow et al., 2014). The mTOR
and AMP kinase (AMPK) signaling pathways are also
significantly involved in aging and cancer. Upregulated
mTOR signaling was confirmed to be associated with the
development, progression and metastasis of PCa (López-
Otín et al., 2013), and downregulated mTOR extended the
lifespan of many kinds of laboratory animals (Zaytseva et al.,
2012). It was reported that overexpression of ALDH2
suppresses autophagy (Wang and Wu, 2019), possibly by
restoring the Akt-mTOR-STAT3-Notch signaling cascade
(Ge and Ren, 2012), and ALDH2 might play a repressive
role in transcriptional control by AMPK activation (Choi
et al., 2011). Thus, ALDH2 could be a possible therapeutic
target for both aging and urological cancer.

Mitochondrial Dysfunction
A decline in mitochondrial function occurs with aging. Many
studies have shown that mtDNA increases with age in the human
body (Corral-Debrinski et al., 1992; Fayet et al., 2002).
Experimental evidence revealed the exact relationship between
mtDNA and aging, which showed that the accumulation of
mtDNA mutations could result in a premature aging
phenotype (Trifunovic et al., 2004). In addition to primary
mitochondrial dysfunction, abnormal mitochondrial
biogenesis, secondary to abnormalities in nuclear genes and
mitochondrial metabolism-dependent factors, such as ROS,
NO, NAD+/NADH, ATP, and Ca2+, also promotes aging
(Ryan and Hoogenraad, 2007). SIRT3 can help maintain
mitochondrial and cellular homeostasis by regulating the ROS
impacts of numerous physiologies linked with aging (van de Ven
et al., 2017). The PI3K/Akt/mTOR signaling pathway is also
involved in the regulation of mitochondrial biosynthesis,
autophagy and apoptosis. The increase in mTOR activity in
aging cells not only results in the accumulation of damaged

mitochondria by inhibiting mitochondrial autophagy but also
leads to mismatched production of mitochondria and metabolites
by improving cell metabolic activity, thus aggravating the damage
to mitochondrial function (Mollo et al., 2020).

Compared to normal tissues, there was a tendency of
depletion in mtDNA in RCa and BCa (Reznik et al., 2016),
especially in PCa (Parr et al., 2013). For example, the mtDNA
G10398A polymorphism was related to a higher risk of PCa
(Singh and Kulawiec, 2009). Many studies have also shown the
significance of oxidative stress in the malignant
transformation of kidney epithelial cells (Mahalingaiah
et al., 2017), PCa tumorigenesis (Oh et al., 2016;
Roumeguère et al., 2017), and the etiology and progression
of BCa (Islam et al., 2019). It is widely known that since
1993,4-HNE has been regarded as a “toxic product of lipid
peroxidation” and a “second toxic messenger of free radicals,”
taking part in several signaling pathways related to
proliferation, cell cycle arrest, apoptosis, and the regulation
of the expression of a large number of genes (Cheng et al.,
2001; Yang et al., 2001; Sharma et al., 2004; Vatsyayan et al.,
2011), and has become a reliable biomarker of oxidative stress
(Zarkovic, 2003). 4-HNE is also involved in the progression of
RCa through oxidative stress-associated mechanisms (Shoeb
et al., 2014). Therefore, modulation of 4-HNE-associated
oxidative stress and 4-HNE-associated mitochondrial
dysfunction can be utilized as a treatment method in cancer
prevention and treatment. Existing studies have suggested that
4-HNE may decrease ROS and its related production and
reduce oxidative damage in cancer by activating UCPs
(Echtay et al., 2003; Esteves and Brand, 2005; Valle et al.,
2010). Moreover, strong 4-HNE formation can affect
mitochondrial function and ultimately lead to cell death
(Zhao et al., 2014).

Overactivation of PI3K-Akt-mTOR signaling also promoted
RCa cell proliferation, migration and metastasis, as well as
angiogenesis and treatment resistance (Pal and Quinn, 2013)
through the same mechanism as PCa (Shorning et al., 2020) and
BCa (Xu et al., 2020). A decrease in mitochondrial detoxification
induced by lipid peroxidative aldehydes has been observed and
was hypothesized as a potential mechanism of aging in animal
models (Yu, 2005; Ohsawa et al., 2008). Since ALDH2 is a
mitochondrial chaperone (Chen et al., 2014; Wang et al.,
2020) confirmed that ALDH2 deficiency might be linked to
mtDNA accumulation in the cytoplasm, which indicated that
mtDNA damage and ALDH2 recruitment preserve
mitochondrial integrity. Elevated oxidative stress products
(such as MDA), secondary to ALDH2 loss, not only mediate
mitochondrial dysfunction, leading to mtDNA damage and
contributing to cellular senescence and aging-associated
phenotypes (Gosselin et al., 2009) but also promote cancer
development through damaged mtDNA in hepatocellular
carcinoma (Seo et al., 2019). It was shown in a preclinical
model that the ability of ALDH2 to degrade 4-HNE declines
with aging (Chen and Yu, 1996). Therefore, ALDH2 activation
may slow down the aging process. Although the role of this
mechanism of ALDH2 in the occurrence and development of
urological cancers is still unknown, we assumed a similarity here.
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The interaction between SIRT3 and ALDH2 affects ALDH2-
NAD+ binding (Harris et al., 2017), which indicates that ALDH2
might inhibit urological cancer by regulating ROS and oxidative
stress.

Cellular Senescence
Cellular senescence was first described by (Hayflick, 1965) as
cell proliferative activity decreased with an increase in
division number and ultimately cell cycle arrest and cell
death, which was called replicative senescence. Recently, it
has been pointed out that cell senescence is a kind of cell state
generated by pressure signal stimulation and exists in specific
physiological processes with four typical characteristics: cell
cycle arrest, senescence-associated secretion phenotype
(SASP), macromolecular damage and metabolic disorder
(Gorgoulis et al., 2019). Cellular senescence is the basis of
biological aging, and most single-cell senescence also has the
same characteristics as aging. In addition to epigenetic
alterations, proteostasis, and mitochondrial dysfunction,
cellular senescence is involved in altered intracellular
communication through SASP. Senescent cells play a dual
role in promoting and attenuating cancer. On the one hand,
senescent tumor cells were found in prostate intraepithelial
neoplasia but not in the corresponding malignant stage (Chen
et al., 2005). This evidence suggests that senescence is an
obstacle to the malignant development of tumors and can
effectively inhibit the malignant transformation of tumors.
Activation of specific oncogenes or inactivation of tumor
suppressor genes can induce the senescence process to help
cell cycle arrest. For instance, senescent hallmarks were also
detected in early-stage prostate tumors (Courtois-Cox et al.,
2006). SASP also has antitumor effects. Some SASPs, such as
IL-6 and IL-8, promote senescence through a positive
feedback loop of autocrine signaling and reduce cell
transformation and metastasis by inhibiting the activation
of some oncogenes (Wajapeyee et al., 2008). However, on the
other hand, SASP is more likely to play a role in
carcinogenesis in PCa. It is mainly reflected in the
following two aspects: 1) SASPs provide an
immunosuppressive microenvironment for tumors and
promote tumor immune escape. 2) SASPs promote tumor
invasion and metastasis. Senescent cells suppress the
antitumor immune response by inducing granulocytic
myeloid-derived suppressor cell infiltration and thus
inhibiting T cell activity (Toso et al., 2014). Levels of both
IL-6 and sIL-6R were found to be strongly associated with
bone metastases, tumor volume, and risk of progression in
prostatectomy patients (Nguyen et al., 2014). IL-8 was found
to induce FGF2 expression, promoting abnormal
proliferation in the transition zone (Giri and Ittmann,
2001). Other SASPs, such as TGF-β1, CXCL12, MMP2,

and MAPK, are also involved in this process (Fiard et al.,
2021). Furthermore, SASPs have also been shown to decrease
EMT in cancer cells (Coppé et al., 2008), and a phenotype has
been shown to be resistant to chemotherapy and radiation in
BCa (McConkey et al., 2009).

ALDH2 may inhibit stress-induced senescence by
reducing some aldehyde metabolites of oxidative reactions.
It was found that ALDH2 impairment accelerated the
acquisition of a premature senescent phenotype mainly
due to the impairment of mitochondrial bioenergetic
functions and cellular communication (Nannelli et al.,
2018). This evidence indicates a potential association
between ALDH2 and senescence. NF-κB was activated and
enriched in the chromatin portion of senescent cells (Acosta
et al., 2008; Kuilman et al., 2008; Chien et al., 2011),
regulating senescence by directly regulating SASPs,
including IL-8 and IL-6, which in turn controlled SASP
transcription and expression. mTOR also regulates SASPs
by mediating the translation of MAP kinase–activated protein
kinase 2 (MAPKAPK2) (Herranz et al., 2015). Therefore, for
urological cancer, as mentioned before, ALDH2 may play an
antitumor role in regulating SASPs such as TGF-β, IL-6, and
IL-8 by regulating the NF-κB and mTOR pathways.

CONCLUSION

ALDH2might be involved in the development and progression of
urological cancers through multiple cellular processes.
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