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Abstract 

Background:  Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, includ‑
ing mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial 
mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. 
However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear 
cells (PBMCs) and their responses to LPS stimulation were never reported.

Results:  We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-
accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven 
major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid 
cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular 
differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expres‑
sion, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to 
LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely 
through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription 
of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune 
responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 
complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associ‑
ated with immune-relevant health, milk production, and body conformation traits.
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Introduction
Mastitis is the most severe economic and health prob-
lem associated with dairy cow herds, affecting milk 
yield, milk composition, and productive life. Gram-
negative bacteria are one of the important pathogens 
in cattle causing severe diseases, including mastitis and 
digestive tract infections. Lipopolysaccharides (LPS), 
also known as endotoxins, are components of the outer 
membrane of Gram-negative bacteria and crucial medi-
ators of chronic inflammation in cattle suffering from 
clinical and subclinical infections caused by the bacte-
ria. LPS exposure can result in elevated levels of local 
or systemic inflammation, which could compromise 
animal wellbeing and productivity [1, 2]. In mammals, 
the innate immune system serves as the first line of 
defense involving sensing pathogen-associated molec-
ular patterns (PAMPs) and launching innate immune 
responses against the infections. LPS, a PAMP of the 
Gram-negative bacteria, is a highly potent activator of 
the innate immune system, eliciting strong inflamma-
tory responses in infected animals [3]. The cells of the 
innate immune system, including monocytes (Mono), 
dendritic cells (DC), and granulocytes, function as 
the first line of defense upon encounter of infectious 
agents. Phagocytic macrophages, cytotoxic natural 
killer (NK) cells, and γδ T cells also play a crucial role 
in the innate immunity [4, 5]. Studies have been con-
ducted to demonstrate the mechanisms by which LPS 
modulates the immune responses in  vivo and in  vitro. 
LPS can activate cellular responses by binding to the 
TLR4/CD14/MD2 receptor complex and activating 
pro-inflammatory transcription factors [6, 7]. Activated 
monocytes and DCs release nitric oxide, interleukin-1 
(IL-1), IL-6, tumor necrosis factor-alpha (TNFα), and 
other factors [8]. Additionally, the innate immune cells 
such as monocytes and DC play a crucial role in bridg-
ing the innate and acquired immunities by responding 
to various PAMPs and serving as antigen-presenting 
cells (APCs) in the context of major histocompatibility 
complexes (MHC) [9]. The APCs must be adequately 
activated and conditioned upon their engagement 
with T cells, resulting in T cell activation in the pres-
ence of a cytokine and cell surface costimulatory mol-
ecule milieu, which is essential for the development of 
recall T cell responses required for host defense and 

protection. Surface marker genes on many immune 
cell types, like B cells and T cells, have been extensively 
studied [10]. For example, based on the expression lev-
els of CD14 and CD16, monocytes can be divided into 
two types in the human blood [11].

A bulk human RNA-seq study demonstrated that 
LPS-responsive genes could be characterized as two 
co-regulated programs, i.e., the “antiviral-like” pro-
gram and “inflammatory-like” program, based on their 
expression profiles [12]. The antiviral program is mainly 
mediated by interferon regulatory factors (IRFs). In 
contrast, the inflammatory program is primarily medi-
ated by the Nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) [12]. Single-cell-based 
analyses have been used to define human and mouse 
immune cells [13–15] and their responses to LPS. Addi-
tionally, single-cell RNA-seq studies further partitioned 
the inflammatory program genes into two modules, a 
peaked inflammatory module consisting of genes such 
as TNF, IL1B, and CXCL2 that responded rapidly, yet 
transiently, when stimulated by LPS, and a sustained 
inflammatory module which included genes such as 
Mmp14, Marco, and IL6, exhibiting a continued rise in 
expression under LPS stimulation [13, 16].

The cell types and functions of cattle peripheral blood 
mononuclear cells (PBMCs) have been extensively 
studied [17–20]. In general, cattle PBMCs, similar to 
those of mammals, consist of primarily T and B cells, 
NK cells, monocytes, and DC [17, 20]. Cattle PBMC 
composition is unique in that young calves have higher 
levels of gamma/delta (γδ) T cell receptor (TCR) posi-
tive T cells in comparison to those of humans and mice 
[18]. However, large-scale single-cell analyses in cattle 
PBMCs have never been reported. There is a need to 
document the gene transcriptional, chromatin accessi-
bility, and gene-based changes in PBMCs at the single-
cell resolution before and after LPS stimulation. These 
studies will permit investigators to interrogate complex 
cellular regulations and interactions and delineate cell 
differentiation and lineage relationships within a sam-
ple of heterogeneous cell populations at the single-cell 
level. They will facilitate further understanding of LPS-
mediated bovine PBMC responses and complement the 
existing methodologies determining PBMC cell types 
and functions. This is particularly important in cattle or 

Conclusion:  This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to 
the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future 
study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like 
mastitis at single-cell resolution.
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other livestock species. There is a general lack of critical 
immunological reagents for thorough profiling of cell 
phenotypes, activation status, and cytokine production.

This study presents the first cattle single-cell PBMC 
profiling and their responses to LPS stimulation 
in  vitro. The analyses of scRNA-seq data of the present 
study demonstrate robust clustering and assignment 
of naïve bovine PBMC populations and cell type-spe-
cific responses to LPS at the single-cell level. This study 
reports trait-relevant cell types and genes underlying 
complex traits by integrating LPS-induced DEGs with 
large-scale GWAS of 45 complex Holstein traits.

Results
Data generation and quality assessment
Using the 10 × Genomics Chromium Controller [21], 
we performed scRNA-seq and scATAC-seq of Holstein 
PBMC samples treated without (Control) or with LPS 
for 2 h (2 h-LPS), 4 h (4 h-LPS), and 8 h (8 h-LPS). We 
sequenced a total of 30,756 single cells with approxi-
mately 62,254 reads per cell (Table S1). After quality fil-
tering and integration, we obtained 26,141 single cells, 
corresponding to a median of 4,581 unique molecular 
identifiers per cell and ~ 15,000 total genes in the whole 
population. Overall, we obtained 7,107 (Control), 9,174 
(2 h-LPS), 6,741 (4 h-LPS), and 3,119 (8 h-LPS) cells.

Cell clustering and cell type assignment
Using Seurat v3.2 [22], we performed a graph-based clus-
tering on cells according to the gene expression profiles. 
After visualizing the Uniform Manifold Approximation 
and Projection (UMAP) plots, we found that the single-
cell transcriptomes of the four samples analyzed were 
similar (Figure S1A and 1B), indicating a high degree of 
reproducibility among them. We obtained a total of 7 

distinct clusters designated by Cluster (C)0, C1, C2, C3, 
C4, C5, and C6 (Fig. 1A). We utilized canonical marker 
genes of immune cells derived from published literature 
and the online database PanglaoDB Field [23] to assign 
cell types. Based on gene expression patterns, we gen-
erated violin plots (Figure S2A) and UMAP projections 
(Figure S2B) for each gene. We then assigned immune 
cell types in cattle PBMC samples based on the com-
bined unique patterns of these cell marker gene expres-
sions as shown in parentheses (Figure S2A, Table S2). 
For example, CD4 T cells (CD4, CD5, and LEF1) and 
CD8 T cells (CD8A and CD8B) in C0, B cells (MS4A1, 
CD79A, CD79B, and VPREB3) in C1, monocytes (CD14, 
S100A12, ADGRE1, MEFV, and HCK) in C2 and C5, 
innate lymphoid cells (ILCs) (SLC4A4, PLIN3, and 
COL5A1) in C3, NK cells (GNLY, NKG7, CTSW, PRF1, 
and IL2RB) in C4, and DCs (IRF8 and CD83) in C1 and 
C6. Of note, some combinations of these top marker 
genes were uniquely expressed in only one cell type, such 
as CD14 and S100A12 (S100 calcium-binding protein 
A12) in monocytes, whereas IRF8 (interferon regulatory 
factor 8) and CD83 (nuclear receptor subfamily 4, group 
A, member 3) in DCs. However, some known marker 
genes were not detected, such as FCER1A, which is con-
sidered a gene marker for cDC2. FCER1G, a related gene 
coding for the gamma chain of the high-affinity receptor 
for the Fc fragment of IgE (FCER), was detected as a DEG 
in all cell types except for CD8 T cells (Table S2).

We further confirmed the above cell type assignments 
using two other methods: Azimuth (Fig. 3A) and SingleR 
(Figure S3B). With Azimuth [24], we generated cell-type 
annotation results at three resolutions: low, medium, and 
high (Figure S3A, Table S3). As shown in Figure S3A, we 
detected Treg, TEM, and TCM cells, as well as naïve and 
memory B cells. Additionally, we assigned cell types using 

Fig. 1  Cluster analysis of single-cell transcriptomes using four cattle PBMC samples. A UMAP projection plot showing seven major clusters of the 
26,141 individual cell transcriptomes from all four PBMC samples. B The cell types were annotated using Azimuth (https://​satij​alab.​org/​azimu​th/), 
based on their similarity to the human PBMC reference. C Plots and relative proportions of seven clusters/cell types across four PBMC samples, as 
annotated in B. The percentages in the table represent the relative proportions of cell types in four samples

https://satijalab.org/azimuth/
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SingleR [25] and the human cell reference datasets, Blue-
print and Encode (Table S4). By combining all three cell 
assignment efforts, consistent assignment results were 
demonstrated across three different methods (Tables S2, 
S3, and S4), where the main cell types were CD4 T cells 
and CD8 T cells for C0, B cells, and DCs for C1, mono-
cytes for C2 and C5, and NK cells and CD8 T cells for C4 
(Fig. 1B). We also successfully assigned CD14 monocytes 
and CD16 monocytes in C2 using SignleR (Figures S2A) 
or Azimuth (Figures S3A), separately.

Cross‑species comparison
To verify our cell clustering and assignments, we com-
pared results between the cattle and human PBMCs. We 
downloaded the scRNA-seq dataset of the human PBMC 
from the GSE96583 [14, 15] and performed a joint Seurat 
clustering analysis with our Control cattle PBMC sample 
[22]. Plotting the single-cell transcriptomes via UMAP 
projection yielded largely overlapping distributions of 
cells from cattle and human samples (Figures S4A, B, and 
C), validating our scRNA-seq data generation, process-
ing, clustering, and cell type assignment. With Azimuth 
[24], we obtained 13,601 individual cell transcriptomes 
of eight-cell types from the two samples (Figure S5A and 
B). The UMAP plot distribution reflected that the main 
cell types were CD4 T cells, CD8 T cells, B cells, NK cells, 
monocytes, DCs, and other minor populations (Figure 
S5A), confirming the seven cell types identified in our 
cattle Control sample. We also calculated the correlation 
between paired clusters of humans and cattle based on 
the top 2000 variable gene expressions. We showed the 
correlations were higher than 0.4 between humans and 
cattle, indicating a high similarity of these two species 
(Figure S4D). In summary, the analysis produced seven 
major cell types and their corresponding subtypes: CD4 
T cells (CD4 Naïve, CD4 TCM, CD4 TEM, and Treg), 
CD8 T cells (CD8 Naïve, CD8 TCM, and CD8 TEM), B 
cells (B intermediate, B memory, B naïve, and plasmab-
last), monocytes (CD14 Mono and CD16 Mono), NK 
cells, ILCs, and DCs (cDC and pDC) (Fig.  1B). We will 
focus on these seven cell types for the subsequent sec-
tions unless specified otherwise.

Cell cycle analysis for PBMC
We performed the cell cycle analyses to calculate their 
cell cycle indices (i.e., the ratio of actively proliferating 
cells of each feature, such as different samples and differ-
ent developmental stages) and explore cell proliferation 
status, using sets of 43 G1/S and 55 G2/M genes (Table 
S5). The expression profiles of cell cycle-related genes 
revealed that the cell cycle indices were 50.63%, 45.61%, 
60.48%, 22.19%, 38.18%, 37.13%, and 36.30% for CD4 T 
cells, CD8 T cells, B cells, monocytes, NK cells, ILCs, 

and DCs, respectively (Fig. 2A). Over LPS treatment time 
points, we found that monocyte cell cycle indices were 
3.61%, 2.30%, 1.91%, and 31.88% in Control, 2  h-LPS, 
4 h-LPS, and 8 h-LPS, respectively (Figure S6A). The cell 
cycle indices revealed that monocyte cell cycle progres-
sion was upregulated, suggesting that monocyte prolif-
eration was dramatically activated during the early LPS 
treatment.

Transcription factor analysis for PBMCs
To understand LPS-induced transcriptional activities of 
PBMC transcription factors (TF), we performed a tran-
scription factor analysis using SCENIC [26] to iden-
tify regulators and gene regulatory networks. Through 
this analysis, we identified 24 active regulons in cattle 
PBMCs (Fig.  2B). Most of the regulons are related to 
immune functions in the differentiation and proliferation 
of T cells and B cells (ETS1, RUNX3, KLF6, SPI1, SPIB) 
or involved in mediating immune and inflammatory 
responses (REL, STAT1, IRF7, IRF9, EOMES, IKZF2, 
KLF2). The count range of target genes of these regulons 
was between 11 and 174 (Table S6). SCENIC analysis 
revealed several critical transcriptional regulators modu-
lating cell type-specific gene regulatory networks. For all 
PBMCs, especially in CD4 T cells, CD8 T cells, B cells (to 
a lesser extent), monocytes, NK cells, DCs, and ILCs, we 
identified several universal TFs like ETS1, RUNX3, and 
KLF6_extended, as shown in Fig. 2B (red rectangle). We 
detected PU.1/SPI1, SPIB, and REL, primarily in B cells 
and monocytes (Fig. 2B, green rectangle). In CD4 T cells, 
CD8 T cells, B cells, monocytes, NK cells, and DCs, spe-
cific TFs, such as IRF5, IRF7, IRF9, and STAT1, were 
identified. For monocytes, we further identified their spe-
cific TFs, including CEBPD_extended, ETS2_exteneded, 
BATF_extended, IKZF2, NFKB1, NFKB2, and RELB, 
EGR1, ATF3_extended, and JUNB (Fig.  2B, blue rec-
tangle). Therefore, TFs, as essential regulators of gene 
expression, are also marker genes for identifying cell 
types.

Pseudotime analysis
To understand the developmental states of monocytes 
and DCs, we conducted a pseudotime analysis to infer 
cell trajectories using Monocle 2 [27]. Following a “devel-
opmental/transitional” path according to their tran-
scriptomic similarity, we identified one significant and 
long-trajectory branch, with which cells are ordered in 
an arrangement from proximal to distal distribution 
(Fig. 2C). Combining with the pseudotime values (Table 
S7), we observed that the long-trajectory tree rooted 
from the bottom right to the top left, covering CD4 T 
cells, CD8 T cells, B cells, NK cells, ILCs, monocytes, 
and DCs (Fig.  2D). Larger portions of monocytes and 
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DCs were observed at the top left end of the trajectory. 
The path also appeared to agree with our Seurat cluster 
results, i.e., monocytes in C2 and C5, while DCs in C6. 
Thus, those monocytes and DCs with the highest pseu-
dotime scores might represent their terminal develop-
mental states.

Co‑expression analyses
To systematically investigate the genetic program dynam-
ics, we performed a weighted gene co-expression net-
work analysis (WGCNA) [28] using the top 2,000 marker 
genes reported by Seurat. Seven gene modules were 
identified by WGCNA (Fig.  3A), each containing gene 
sets that tend to be co-expressed (Table S8). To assign 
co-expressed gene functions to cell types, we calculated 
the correlation between each module (module eigengene) 
and each cell type (UMI) and generated a correlation 
heatmap in Fig. 3B. We then performed GO analyses for 
genes in each module to investigate their biological func-
tions (Fig.  3C, Table S9). For example, Module E genes 
(blue) were enriched for immune responses, lymphocyte 

activation, differentiation, proliferation, and migration, 
especially with B cells and alpha–beta TCR T cells. Mod-
ule E was also more correlated with B cells, NK cells, 
CD4 cells, and CD8 T cells. Module A genes (green) were 
enriched for the G protein-coupled receptor signaling 
pathway, kinase regulator activity, chemokine-mediated 
signaling pathway, regulation of chemotaxis, leukocyte 
adhesion and migration, regulation of cell death, cal-
cium ion transport, and T cell activation. Module A was 
more correlated with CD8 T cells, B cells, NK cells, and 
CD4 cells. Module F genes (turquoise) were enriched 
for multiple GO terms, including (1) cellular response to 
LPS, LPS-mediated signaling pathways, innate immune 
responses, regulation of adaptive immune responses, 
leukocyte differentiation and adhesion, regulation of 
CD4 + alpha–beta TCR T cell activation, T-helper cell 
differentiation, macrophage migration, positive regu-
lation of cytokine production, regulation of cell death; 
(2) positive regulation of interferon-γ production, posi-
tive regulation of interleukin-6 production, regulation 
of interleukin-1ß production and response, cellular 

Fig. 2  Cell-cycle, SCENIC, and Pseudotime analyses. A Cell-cycle analysis. Heatmap showing expression levels of cell-cycle-related genes in each 
cell type. Cells were ordered according to the average expression level of cell-cycle-related genes. The color key from white to red indicated 
expression levels from low to high. The cell-cycle index of each cell type is shown at the right. B SCENIC results. SCENIC binary regulon activity 
matrix showing all correlated regulons that were active in at least 1% of all regulons. Each column represents a single cell, and each row represents 
one regulon. The “regulon” refers to the regulatory network of TFs and their target genes. “On” indicates active regulons; “Off” indicates inactive 
regulons. Cluster labels correspond to those used in the UMAP plot. Representative transcription factors are highlighted. All cells (C) or individual 
cell type (D) pseudotime analysis using Monocle 2 for cell transcriptomes. Solid black lines indicate the main diameter path of the minimum 
spanning tree (MST) and provide the backbone of Monocle’s pseudotime ordering of the cells
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response to fibroblast growth factor (FGF) stimulus, 
p38 mitogen-activated protein kinases (MAPK) cascade, 
and tumor necrosis factor (TNF) superfamily cytokine 
production; and (3) cell chemotaxis, response to reac-
tive oxygen species, positive regulation of endopeptidase 
activity, response to glucocorticoid, collagen metabolic 
process, regulation of translation and transcription, 
lysosome, and osteoclast differentiation. Module F was 
mainly correlated with monocytes, followed by CD8 T 
cells, CD4 T cells, ILCs, and B cells (Fig. 3C, Table S9). 
Therefore, our co-expression analyses identified criti-
cal gene sets corresponding to cell type-differential 
functions.

Marker gene expression for PBMC clusters
Marker gene expression analysis was aimed to deter-
mine the expressions of essential known marker genes 
and their nearby chromatin accessibilities in several cell 
types. Based on the Seurat results, we obtained distinct 
sets of marker genes among these cell types (Table S2). 
For example, CXCL2 (C-X-C motif ligand 2) expression 
was higher in monocytes than others (Fig. 4A). When we 
analyzed cell type-specific responses over time, we found 
that CXCL2 expression was higher in monocytes than 
other cell types; its expression was elevated in Control, 
2 h-LPS, and 4 h-LPS samples decreased in 8 h-LPS. Cor-
respondingly, we also detected increased levels of chro-
matin accessibility in the CXCL2 promoter (Fig.  4A). A 
similar pattern was also found for CXCL5 (Figure S7B). 

When we plotted individual or combined marker gene 
expression over time, IRF9 was expressed higher in DCs 
than other cell types (ANOVA test, p < 2 × 10–16). How-
ever, due to the small cell count of DCs, we did not detect 
significant differences in gene expression or chromatin 
openness over time points (Fig.  4B). CCL2 (C–C motif 
ligand 2, encoded by the negative-sense strand) expres-
sion was higher in Control and 8  h-LPS than 2  h-LPS 
and 4  h-LPS, which were in line with higher chroma-
tin accessibility in Control and 8  h-LPS (Fig.  4C). Also, 
in monocytes, we detected IL1B expression, which was 
decreased from early (2  h-LPS, 4  h-LPS) to late time 
points (8 h-LPS), while in DCs and ILCs, IL1B expression 
was increased (Figure S7A). Hence, we found a consistent 
correlation between expression and chromatin accessibil-
ity for selected marker genes.

Gene expression patterns during LPS treatment
In humans, Shalek et  al. [13] used the single-cell gene 
expression profiles to partition the LPS-responsive 
genes into two programs: the antiviral programs and the 
inflammatory programs, which include three modules: 
the core antiviral module (enriched for annotated anti-
viral and interferon response genes), the peaked inflam-
matory module and the sustained inflammatory module. 
We obtained these three human LPS-responsive gene 
lists and plotted the expression patterns of the bovine 
ortholog genes from monocytes with or without LPS 
treatment (Fig.  4D). The analysis showed that the gene 

Fig. 3  Co-expression analyses. A Dendrogram showing the gene co-expression network constructed using WGCNA. The color bar labeled as 
“Module colors” beneath the dendrogram represents the module assignment of each gene. B The relationship between modules and cell type. 
The upper numbers within each grid are the correlation between each module and cell type. The numbers in brackets represent the p values. C 
Selected significantly enriched GO terms based on genes within each module
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expression sustained until four hours post LPS treat-
ment for the sustained inflammatory module and then 
decreased slightly at eight h. But for the core antivi-
ral module and the peaked inflammatory module, gene 
expression was increased from Control to 4  h-LPS and 
fell to Control levels in 8 h-LPS. These results were con-
sistent with the observation in human PBMCs that the 
antiviral and inflammation responses mainly occurred 
early but decreased in the late-stage [13]. Therefore, we 
observed similar gene expression patterns for those three 
modules in cattle and humans during LPS treatment.

Trait‑relevant cell clusters
Using edgeR [29], we detected thousands of marker genes 
among seven cell types (Table S10-S16). Using a permu-
tation-based marker-set test approach (Methods), we 
tested the enrichment of 45 GWAS signals within these 
marker genes of distinct cell types (FDR < 0.05) (Fig. 5A). 
Reproduction traits were significantly associated with all 
cell types, reflecting the potential functions of these cell 
types related to fertility and tissue development. Since all 
cell types in the present study were immune cells, their 
high correlation with reproduction traits confirmed our 
previous findings [30]. Additionally, health traits, such 
as SCS (somatic cell score, an indicator of mastitis), were 
associated with most cell types, confirming that these cell 
types have a role in immunity and tissue integrity. Body 
conformation traits were also significantly associated 
with monocytes.

Moreover, based on the marker genes reported by 
edgeR between cell clusters across the LPS-untreated 
(Control) and LPS-treated (2  h-LPS, 4  h-LPS, and 
8 h-LPS) PBMC samples, we also detected similar results 
(Fig. 5B). In all three comparisons, we found that the cell 
types with the most DEGs were monocytes, CD4 T cells, 
and B cells. Generally, all cell types were significantly 
associated with reproduction, body conformation, and 
health traits. In both Control vs. 2 h-LPS and Control vs. 
4  h-LPS comparisons, monocytes were associated with 
heath traits, especially immune traits, such as SCS and 
Livability, but not with the health traits relating to meta-
bolic diseases.

Discussion
In the current cattle single-cell analyses, we successfully 
detected and confirmed seven major cell types (includ-
ing CD4 T cells, CD8 T cells, B cells, monocytes, NK 
cells, ILCs, and DCs), as well as their responses to LPS 
challenge in  vitro using scRNA-seq and scATAC-seq. 
We characterized these cells and their genes in detail. 
Our bioinformatic analyses indicated that LPS could 
increase PBMC cell cycle progression, cellular differen-
tiation, and chromatin accessibility. Our gene analyses 
further showed significant changes in differential expres-
sion, transcription factor binding site, gene ontology, 
and regulatory interactions during the PBMC responses 
to LPS. These results of cattle PBMC generally agreed 
with the existing human and cattle studies [2, 13, 16]. 
The reactions to LPS treatment include innate immunity 
activation of monocytes and dendritic cells, featuring the 

Fig. 4  Specific gene expression responses of innate immunity induced by lipopolysaccharide in cattle PBMC. Gene expressions of CXCL2 (A), IRF9 
(B), and CCL2 (C) in seven cell types, four PBMC samples of different treatment time points, or across their combinations. On their right, the changes 
of chromatin accessibility peak profiles near these three gene promoters over the treatment time course were derived from scATAC-seq. D Heatmap 
showing scaled expression levels of three gene modules (core antiviral, peaked inflammatory, and sustained inflammatory) in monocytes
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antiviral program mediated by interferon regulatory fac-
tors (IRFs) and the inflammatory program mediated by 
NF-κB and pro-inflammatory cytokines such as CCL2 
and CXCL2. LPS induced activation of monocytes and 
dendritic cells, likely through their upregulated TLR4 
receptor. NF-κB was observed to be activated by LPS and 
increased transcriptions of an array of pro-inflammatory 
cytokines, in agreement that NF-κB is an LPS-responsive 
regulator of innate immune responses.

For example, our transcription factor analysis dis-
covered crucial TFs, like NFKB1, NFKB2, RELB, and 
others for monocytes (Fig.  2B blue rectangle). We 
also compared the expression patterns of NFKB1 and 
NFKBIZ (Figure S7C and D). NFKB1 displayed a uni-
versal gene expression pattern in all cell types over 
all time points, while NFKBIZ was mainly detected in 
monocytes, DCs, and ILCs, especially in 2  h-LPS and 
4 h-LPS. It is generally accepted that NF- κB is a known 
pleiotropic TF present in almost all cell types and is 
involved in many biological processes such as inflam-
mation, immunity, differentiation, cell growth, tumori-
genesis, and apoptosis. Moreover, we found other TFs, 
such as IRF5, IRF7, IRF9, and STAT1 (Fig. 2B). Earlier 
bulk studies have shown that IRF5, IRF7, and IRF9 
belong to the interferon response factor (IRF) family. 
After activation via the JAK-STAT signaling pathway, 
these TFs bind specifically to the interferon consensus 
sequence (ICS) in the upstream promoters [31] and 

regulate transcription of interferons and inflammatory 
cytokines [32]. They control many aspects of innate 
and adaptive immune responses, including responding 
to pathogens to induce pro-inflammatory responses 
and regulating immune cell differentiation. There-
fore, our single-cell analyses confirmed the previous 
bulk study results of these critical TFs. In our DEG 
analyses, we pinpointed many factors like monocyte 
chemotactic protein-1 (CCL2) and monocyte chemot-
actic protein-3 (CCL7), which can regulate the chemo-
taxis and other functions of monocytes [33]. CCL2 is 
a chemokine that belongs to the CC chemokine fam-
ily [34]. CCL2 is also called monocyte chemoattract-
ant protein 1 (MCP1) and small inducible cytokine 
A2. CCL2 recruits monocytes, memory T cells, and 
dendritic cells to the sites of the inflammation [35]. 
CXCL2 is another small cytokine belonging to the 
CXC chemokine family. It activates cells via binding to 
a cell surface chemokine receptor CXCR2 [36].

Additionally, our previous studies using bulk RNA-
seq data demonstrated that the immune system was 
significantly associated with many health and fertility 
traits in the cattle [30, 37]. This study further detected 
trait-relevant cell types by integrating LPS-induced 
DEGs with large-scale GWAS of 45 complex traits in 
Holstein. We found that selected DEGs were signifi-
cantly associated with immune-relevant health, milk 
production, and body conformation traits.

Fig. 5  Associations of cell clusters with complex traits based on GWAS signal enrichment analyses using DEGs/marker genes among cell types (A) 
and among cattle PBMC LPS-treatment samples (top 5%) (B). “*” denotes FDR < 0.05
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Limitations and future directions
Some essential marker genes are not detected in this 
study. These can be due to methodological noise, where 
a gene is expressed but not detected by the sequenc-
ing technology, and/or due to the biological absence of 
expression. Moreover, we did see discrepancies in cell-
type assignments using different methods. For exam-
ple, SingleR assigned C5 and C6 as monocytes, while 
marker gene expressions and Azimuth annotated them 
as DCs and macrophages. These are not surprising par-
tially because monocytes, some DCs, and macrophages 
are closely related, such that in silico predictions may 
not be reliable. We also checked the relative portion 
changes among the seven cell types across different time 
points during LPS treatment (Fig. 1C). We found mono-
cytes decreased first from 11.42% in Control to 7.96% 
in 2 h-LPS and 6.33% in 4 h-LPS and then increased to 
29.21% in 8 h-LPS (Table S1). This corresponded to that 
monocyte’s cell cycle index increased over the LPS treat-
ment time course. However, it is noted that these cell 
number changes were from one-time measurement and 
may be impacted by the Azimuth cell type assignment. 
T cells also changed gene expression and cell activation, 
resulting from bystander effects secondary to the mono-
cyte response. In addition, T cells may respond to LPS 
because a recent report shows that TLR2/4 are expressed 
by bovine T cells [26]. There are also known differences 
in PBMCs of these two mammalian species, which we 
did not detect. For example, besides common α and β 
T cells, γ and δ T cells typically represent 1–10% of cir-
culating T lymphocytes in adult human individuals and 
approximately 10–25% in adult cattle. This number can 
be as high as 40% in the young calves [38]. Previous work 
has also shown that human and bovine γδ T cells can be 
directly activated by LPS, suggesting an innate role of γδ 
T cells [39]. We were unable to demonstrate a sufficient 
number of γδ T cells for analysis in this study because 
adult cattle have much lower levels of circulating γδ T 
cells. Our ability of γδ T cell assignment was also under-
mined, probably because we used human reference cell 
types to assign cattle cells. These designations might be 
biased towards human-specific features and functions. 
Therefore, more dedicated experiments are warranted 
to investigate the roles of ruminant-specific γδ T cells in 
cattle.

Conclusions
The functional results inferred from these single-cell-
based data sets were consistent with previous findings. 
They revealed new findings in LPS-driven cell prolifera-
tion and differentiation, differential gene transcription, 
and correlation between DEGs and production traits in 
cattle. Single-cell analyses provide an unprecedented 

opportunity to dissect cell lineages and heterogeneity and 
understand their identity, differentiation, and function. 
The successful applications of these new technologies in 
farm animals like cattle indicated that some research bot-
tleneck problems could be alleviated, e.g., only limited 
immunological reagents are available in cattle. This study 
provides an initial example for cattle single-cell analysis. 
It opens the door for discoveries about the roles of cell 
types and marker genes in complex traits at single-cell 
resolution.

Materials and methods
Sample collection
All samples were collected with the approval of the Dairy 
Cattle Research Centre in Shandong Academy of Agri-
cultural Sciences under Protocol 20–123, and all experi-
ments were carried out in compliance with the ARRIVE 
guidelines.

Four 2-year old Holstein female lactating cattle were 
used for blood collection from the tail vein in Jinan Jia-
bao Dairy Co., Ltd. After pooling; four whole blood sam-
ples included either no LPS treatment—control sample 
CO, or three treated samples with LPS (2  μg/ml, Prod-
uct Number: L2880, Sigma-Aldrich, Saint Louis, MO, 
USA) for 2 h (2 h-LPS), 4 h (4 h-LPS), and 8 h (8 h-LPS) 
at 37 °C. PBMCs were isolated by centrifugation of whole 
blood on Hanks’ Balanced Salt Solution (Solarbio; Bei-
jing, China) at 500 g for 20 min at room temperature.

Single‑cell isolation, scRNA‑seq, and scATAC‑seq library 
preparation and sequencing
After cell isolation, scRNA-seq Library for 10 × Genom-
ics v3 chemistry was generated following the Chromium 
Single Cell 3’ Reagent Kits v3 User Guide: CG000183 Rev 
C. In brief, cells were barcoded and mixed with reverse 
transcriptase into a Gel Beads-In-Emulsions (GEMs), 
then R1 (read 1 primer sequence) was put into the mol-
ecules during GEM incubation. P5, P7, a sample index, 
and Read 2 primer sequence were included during library 
construction via end repair, A tailing, adaptor ligation, 
and PCR. The final libraries containing the P5 and P7 
primers were used in Illumina bridge amplification.

For scATAC-seq, PBMC nuclei were prepared for 
library preparation sequencing. Library generation 
was accomplished following the Chromium Single Cell 
ATAC Reagent Kits v1.1 User Guide: CG000209 Rev 
D. Concisely, Nuclei suspensions were incubated in a 
Transposition Mix that includes a Transposase, which 
preferentially fragmented the DNA in open regions 
of the chromatin. Instantaneously, adapter sequences 
were added to the ends of the DNA fragments. Nuclei 
were barcoded into a Gel Beads-In-Emulsions (GEMs), 
a sample index, P7, and Read 2 sequence were added 
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during library construction via PCR. In the same way, the 
scATAC-seq libraries contained the P5 and P7 primers 
used in Illumina bridge amplification. Finally, scRNA-seq 
and scATAC-seq libraries were sequenced on the Illu-
mina Novaseq 6000 platform (Illumina, San Diego, CA, 
USA) with double-end 150 bp.

Generation of single‑cell transcriptomes
10X Genomics raw data were handled by the Cell Ranger 
Single-Cell Software Suite (release 3.1.0) and Cell Ranger 
“mkfastq” was used to demultiplex raw base-call files into 
FASTQ files followed by using Cell Ranger “count” to 
perform alignment, filtering, barcode counting, and UMI 
counting. Using default parameters, the raw reads were 
aligned to the ARS-UCD1.2 cattle reference genome 
[40] by Cell Ranger “pipeline.” using default parameters. 
The results are summarized in Supplemental Table S1. 
All downstream single-cell analyses were accomplished 
using the Seurat 3.2 [22] R package v3.6.3.

Quality control, dimension reduction, and cell clustering
Seven thousand one hundred seven (Control), 9,174 
(2  h-LPS), 6,741 (4  h-LPS), and 3,119 (8  h-LPS) cells 
passed the quality control thresholds. All genes expressed 
in fewer than three cells were removed. The cut-off of the 
number of gene expressions per cell was set at 200 as low 
and < 3,000 as high; UMI counts less than 200; the percent 
of mitochondrial-DNA derived gene-expression < 20%. 
LogNormalize method of the "Normalization" function 
was used to determine the expression value of genes. 
We then constricted the corrected expression matrix to 
the subsets of HVG, centered, and scaled values before 
performing dimension-reduction and clustering. We 
selected 2,000 genes as HVG using the “FindVariableFea-
tures” function with default parameters. The “RunPCA” 
function was used to perform the principal components 
analysis (PCA) on the single-cell expression matrix with 
genes restricted to HVG. Using a permutation test imple-
mented by the “JackStraw” function, we determined the 
number of significant principal components (PC). The 
top 12 PCs were used for clustering and UMAP analysis. 
The weighted Shared Nearest Neighbor (SNN) graph-
based clustering method executed by the “FindNeigh-
bors” function was used to find clusters. We utilized the 
“FindClusters” function to conduct the cell-clustering 
analysis by inserting cells into a graph structure in the 
PCA cluster. Based on the number of cells in our study, 
we set the parameter resolution to 0.05. Visualization of 
the cells was performed using the UMAP algorithm as 
implemented by the Seurat “RunUMAP” function. With 
default parameters, canonical cell-type marker genes 
maintained across conditions were identified using the 
“FindConservedMarkers” function.

Assigning cell type labels to single‑cell clusters
We utilized two methods to label the cell clusters identi-
fied by Seurat. First, we projected the PBMC data onto an 
annotated PBMC CITE-Seq reference dataset [41] using 
Azimuth [24]. Each cell received an assignment and pre-
diction score to a cell class in the reference. We normal-
ized data using the “SCTransform” function [42] and then 
found anchors between reference and query using “Find-
TransferAnchors.” Here we used a precomputed super-
vised PCA (spca) transformation. We then transferred 
cell type labels and protein data from the reference to 
the query using “MapQuery.” Additionally, we used Sin-
gleR [25] to annotate raw expression data for the filtered 
cells with default parameters using the Blueprint [43] and 
Encode [44] human cell atlases.

Pseudotime trajectory analysis
For trajectory analysis, we used Monocle 2 [27] to order 
cells in pseudotime based on their transcriptional simi-
larities, with UMI counts modeled using a negative bino-
mial distribution. First, we integrated the preprocessed 
Seurat objects into Monocle 2 utilizing the “newCell-
DataSet” function. We then determined the differentially 
expressed genes or marker genes using the “differential-
GeneTest” function. We next reduced the dimensionality 
of the data to two dimensions using the discriminative 
dimensionality reduction with trees (DDRTree) method 
implemented in the “reduceDimension” function. Finally, 
after pseudotime calculations were made for each cell, we 
projected clusters derived from the Seurat object onto 
the minimum spanning tree upon cell order using the 
“plot_cell_trajectory” function.

Cell‑cycle analysis
Sets of 43 G1/S and 55 G2/M genes [45] were used in the 
cell-cycle analysis. To calculate the ratio of actively prolif-
erating cells of each feature, such as different clusters and 
different time points, we first calculated the total expres-
sion levels of all 98 cell-cycle genes in every single cell, 
and only cells with mean expression levels higher than 
the average values of all clusters were regarded as actively 
proliferating.

Single‑cell regulatory network inference and clustering 
(SCENIC) analysis
We conducted SCENIC analysis on cells after filtering for 
each major cell type using the R package SCENIC v1.1.2 
[26], a computational workflow that predicts TF activities 
from scRNA-seq data. Briefly, SCENIC infers co-expres-
sion modules between TF and candidate target genes 
using machine learning regression techniques (e.g., ran-
dom forest or gradient boosting machines), pruned based 
on the enrichment of the TF motif around the TSS of the 
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potential target genes, resulting in regulons. Based on the 
AUCell algorithm, SCENIC calculates each regulator’s 
activity in single-cell transcriptomes to obtain the corre-
sponding area under the curve (AUC) scores, which are 
used to rank the cells for a given regulon and determine a 
threshold for active or inactive expression. Then the net-
work activity was converted into ON/OFF, thus making 
the final output binary (binary regulon activity matrix). 
Individual regulons were constructed from the scRNA-
seq data. Regions for TF searching were restricted to a 
10  kb distance centered on the transcriptional start site 
(TSS) or 500 bp upstream of the TSS. First, TF-gene co-
expression modules were defined in a data-driven man-
ner with GENIE3 v1.8.0. Subsequently, those modules 
were refined via RcisTarget by keeping only those genes 
that contain the respective transcription factor binding 
site (TFBS). Once the regulons were constructed, the 
method AUCell scored individual cells by assessing for 
each TF separately whether target genes were enriched in 
the top quantile of the cell signature.

Weighted gene co‑expression network analysis
WGCNA was performed with functions in the WGCNA 
v1.69 R package following the previously published study 
by Tosches and colleagues [46]. According to the meth-
ods, the analyses were performed on pseudocells, cal-
culated as averages of 100 cells randomly chosen within 
each cluster. DC was not included due to its small cell 
number. The top 2,000 highly variably expressed genes 
determined in Seurat were used for analysis. Briefly, the 
topological overlap matrix (TOM) was constructed with 
softPower and was set to 2. The hub genes for each mod-
ule were identified as module eigengene. The GO enrich-
ment analysis was performed by ClusterProfiler [47] R 
package using hub gene data sets, and the Benjamini–
Hochberg method was employed for multiple test cor-
rection. GO terms with a P-value lower than 0.05 were 
considered as significantly enriched.

Gene differential expression analysis
To get the lists of marker genes, we first extracted the 
genes’ UMIs across cells within each cluster and then 
assigned cells to each sample. Based on the gene × cells 
matrix, we utilized edgeR [29] to detect DEGs for each 
cluster in each pairwise comparison among Control, 
2 h-LPS, 4 h-LPS, and 8 h-LPS (Tables S10-15).

Single‑cell ATAC‑seq alignment and data processing
For scATAC-seq analyses, we aligned the sequence using 
the 10 × Genomics Cell Ranger ATAC pipeline (ver-
sion 1.2) against the UCD-ARS1.2 genome. The “Cell 
Ranger Aggr” function normalizes the number of con-
fidently mapped reads per cell across the libraries. We 

processed the data with Seurat and the additional pack-
age Signac (v1.1.0) [48]. We first computed quality con-
trol (QC) metrics and removed the cells with the number 
of expressed genes < 500. We then normalized the filtered 
data by the “RunTFIDF” function and removed features 
in less than 20 cells with the “FindTopFeatures” function. 
We next ran singular value decomposition (SVD) using 
“LSI” with the features selected above. Next, we per-
formed graph-based clustering by “FindNeighbors” and 
“FindClusters” functions using the first 30 dimensions 
of reduction as an input. Finally, the read coverage of 
regions near specific genes in each group was plotted by 
the “CoveragePlot” function. On average, 3,798 fragments 
per cell were obtained, and 4,200 cells were recovered.

GWAS signal enrichment analysis
Details of the single-marker GWAS and fine-mapping 
analyses designed for the body type, reproduction, 
and production traits from 27,214 U.S. Holstein bulls, 
intended for health traits from 11,880–24,699 bulls, and 
feed efficiency (i.e., RFI) from 3,947 Holstein cows were 
previously reported [30, 49–51]. As the complex traits 
being explored were highly polygenic, the sum-based 
marker-set test methodology shown in Eq.  1 was uti-
lized as in QGG package v1.0 [52] to establish whether 
GWAS signals were enhanced in marker genes of dis-
tinct cell clusters and DEGs of six pairwise comparison 
groups (Control vs. 2 h-LPS, Control vs. 4 h-LPS, Con-
trol vs. 8 h-LPS, 2 h-LPS vs. 4 h-LPS, 2 h-LPS vs. 8 h-LPS, 
4  h-LPS vs. 8  h-LPS). We included 20-kb windows 
around gene regions to identify the potential cis-regula-
tory variants. Previous studies indicated that this method 
had at best equal power compared to other commonly 
used GWAS signal enrichment methods in humans [37, 
53], Drosophila melanogaster [54], and livestock [55–57], 
especially for the highly polygenic traits.

In this equation, mf is the number of genomic markers 
within a list of genes (marker genes of each cell cluster 
or DEGs from pairwise comparisons in each cell cluster), 
and b is the marker weight from single-marker GWAS. 
We restricted marker-set sizes and linkage disequilibrium 
patterns among markers by utilizing the genotype cycli-
cal permutation strategy [52]. We first organized marker 
effects (i.e., b2 ) utilizing their chromosome positions 
(i.e., b2

1
 , b2

2
 , ⋯ b2m−1

 , b2m ). We then at random designated 
one marker (i.e., b2k ) from this vector as the first place, 
and altered the remaining ones to new positions while 
retaining their original orders (i.e., b2k , b2k+1

 , ⋯ b2m−1
 , b2m , 

b2
1
 ⋯ b2k−1

 ) to conserve LD patterns among markers. We 
determined a new summary statistic for an allocated list 

(1)Tsum =

∑mf

i=1
b2
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of genes using their original chromosome locations. To 
attain an empirical P-value for the list of genes, we went 
over this permutation procedure 10,000 times. We used 
a one-tailed test of the proportion of random summary 
statistics greater than that observed.

Cross‑species comparison
We downloaded a single-cell RNA-seq dataset of human 
PBMC from GSE96583. We first merged expression 
matrices of the two species (cattle and human) based on 
the intersection of the detected homologous genes. Next, 
we performed expression matrix preprocessing sepa-
rately for the two species, followed by integrating three 
datasets using functions in Seurat v3.2 [22]. The top 13 
PCs were selected, and the resolution was set to 0.18 to 
yield 13 cell clusters.
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