
Engineering of the Bacillus circulans β‑Galactosidase Product
Specificity
Huifang Yin,† Tjaard Pijning,§ Xiangfeng Meng,† Lubbert Dijkhuizen,*,† and Sander S. van Leeuwen†

†Microbial Physiology and §Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University
of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

*S Supporting Information

ABSTRACT: Microbial β-galactosidase enzymes are widely used
as biocatalysts in industry to produce prebiotic galactooligosac-
charides (GOS) from lactose. GOS mixtures are used as beneficial
additives in infant formula to mimic the prebiotic effects of human
milk oligosaccharides (hMOS). The structural variety in GOS
mixtures is significantly lower than in hMOS. Since this structural
complexity is considered as the basis for the multiple biological
functions of hMOS, it is important to broaden the variety of GOS
structures. In this study, residue R484 near +1 subsite of the C-
terminally truncated β-galactosidase from Bacillus circulans (BgaD-
D) was subjected to site saturation mutagenesis. Especially the R484S and R484H mutant enzymes displayed significantly altered
enzyme specificity, leading to a new type of GOS mixture with altered structures and linkage types. The GOS mixtures produced
by these mutant enzymes contained 14 structures that were not present in the wild-type enzyme GOS mixture; 10 of these are
completely new structures. The GOS produced by these mutant enzymes contained a combination of (β1 → 3) and (β1 → 4)
linkages, while the wild-type enzyme has a clear preference toward (β1 → 4) linkages. The yield of the trisaccharide β-D-Galp-(1
→ 3)-β-D-Galp-(1 → 4)-D-Glcp produced by mutants R484S and R484H increased 50 times compared to that of the wild-type
enzyme. These results indicate that residue R484 is crucial for the linkage specificity of BgaD-D. This is the first study showing
that β-galactosidase enzyme engineering results in an altered GOS linkage specificity and product mixture. The more diverse
GOS mixtures produced by these engineered enzymes may find industrial applications.

Prebiotics are nondigestible food ingredients that selectively
stimulate the growth or activity of specific bacterial species

in the colon, thereby beneficially affecting the colonic
microbiota and improving the host health.1 Galactooligosac-
charides (GOS) have drawn a great deal of attention in the field
of prebiotics because they have been shown to significantly
modulate the species composition of colonic microbiota.2 GOS
are added in infant formula to mimic the molecular size and
prebiotic benefits of hMOS.3,4 Numerous studies have shown
that GOS greatly increased the number of Bifidobacteria and
their metabolic activity in the gut,5−8 reduced the incidence of
allergy,9,10 reduced adhesion of pathogens,11 and mediated the
gut immune system.6,10,12 Moreover, GOS are effective in the
treatment of metabolic diseases.13

GOS are oligosaccharides that consist of a number of
galactose units linked to a terminal glucose or galactose residue
via different glycosidic bonds, with degrees of polymerization
(DP) from 2 to 10 units.14,15 Microbial β-galactosidase
enzymes are widely used as biocatalysts in industry to produce
GOS.5 The formation of GOS proceeds via a double
displacement mechanism (Figure 1). The catalytic nucleophile
first attacks the anomeric center of lactose, forming a galactosyl-
enzyme intermediate while releasing glucose. The second step
depends on the identity of the acceptor substrate: if water
serves as the acceptor, the intermediate undergoes hydrolysis
and releases galactose; if lactose serves as acceptor substrate, a

DP3 GOS (β-D-Galp-(1 → x)-β-D-Galp-(1 → 4)-D-Glcp) is
formed by transgalactosylation.16−21 This DP3 GOS may serve
again as acceptor substrate and undergo another round of
transgalactosylation. The transgalactosylation reaction thus
results in GOS mixtures containing different structures.
Rodriguez-Colinas et al. identified five structures in the GOS

mixture produced by β-galactosidase from Kluyveromyces
lactis.22 Urrutia et al. found nine structures in the GOS mixture
produced by β-galactosidase from Aspergillus oryzae.23 Yanahira
et al. isolated 11 GOS structures from the products of β-
galactosidase of Bacillus circulans.24 We identified 43 structures
in the commercial Vivinal GOS produced with β-galactosidase
of B. circulans.25,26 Recently we compared 6 commercial GOS
products with Vivinal GOS and found 13 new structures.27

Taken together, a total of 60 structures have been characterized
in the GOS produced by various β-galactosidase enzymes.
However, the structure and linkage variability in these GOS
mixtures is far less than that of human milk oligosaccharides
(hMOS) structures.28 The structural complexity of hMOS is
considered as the basis for their multiple biological functions.29

We therefore studied the synthesis of GOS mixtures with
enhanced structural variety.
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At present it is unknown what features in β-galactosidase
proteins determine the structural and linkage diversity of their
GOS product mixtures. Previously we have shown that in

glucansucrase enzymes residues near the acceptor binding site
play important roles in the linkage and reaction specificity.30,31

Site saturation mutagenesis was performed on the R484 residue
of BgaD-D to elucidate its role in determining enzyme
specificity and the effects of mutagenesis on products
synthesized, since it is close to the +1 acceptor subsite (Figure
2) in both B. circulans β-galactosidase (PDB ID: 4YPJ) and β-
galactosidase from Streptococcus pneumoniae (PDB ID:
4CUC).32,33 Mutant enzymes showing altered product
specificity were studied in more detail, and their GOS mixtures
were characterized. MALDI-TOF-MS, NMR spectroscopy, and
HPAEC-PAD profiling revealed that these GOS mixtures
mainly contained (β1 → 3) and (β1 → 4) linkages, which is
different from any known commercial GOS products. Their
structural characterization resulted in the identification of 14
new GOS compounds, thus greatly enriching the currently
available GOS variety.

■ EXPERIMENTAL SECTION
Plasmid Construction and Mutagenesis. The C-

terminally truncated B. circulans β-galactosidase (BgaD-D)
protein was used as wild type enzyme in this study.16,17,34,35

PCR amplification was performed in order to add a 6× His tag
at the N-terminus of BgaD-D. The template was plasmid pET-
15b containing the BgaD-D encoding gene.16 A forward primer
(5′-CAGGGACCCGGTATG GGAAACAGTGTGAGC-3′)
and reverse primer (5′-CGAGGAGAAGCCCGGTTATG-
GCGTTACCGTAAATAC-3′) were used for PCR amplifica-
tion; the PCR product was purified on an agarose gel. Vector
pET-15b-LIC was digested by FastDigest KpnI (Thermo
Scientific) and purified with a PCR purification kit (GE
Healthcare). Subsequently, the PCR product was treated with
T4 DNA polymerase (New England BioLabs) in the presence
of 2.5 mM dATP, while the vector was digested with T4 DNA
polymerase in the presence of 2.5 mM dTTP. Both reactions
were incubated at room temperature for 60 min, followed by 20
min at 75 °C to inactivate the enzymes. The reaction mixture
containing 2 μL of the target DNA and 1 μL vector was
incubated at room temperature for 15 min to allow ligation.
Then the mixture was transformed into Escherichia coli DH5α
competent cells (Phabagen). The DNA sequence was verified

Figure 1. Reaction scheme of β-galactosidase enzymes. This figure has
been adapted from Bultema et al.6 In B. circulans β-galactosidase, the
nucleophile is E532, the acid/base catalyst is E447. The hydrolysis
reaction uses water as acceptor substrate, while the transgalactosylation
reaction uses lactose and other carbohydrates as acceptor substrate.

Figure 2. Stereoview of the active site of two β-galactosidase structures: BgaD-D (PDB entry 4YPJ, blue) superimposed with the nucleophile mutant
(E645Q) of β-galactosidase from Streptococcus pneumoniae in complex with LacNAc (PDB entry 4CUC, cyan). The two enzymes share 49%
sequence identity. R602 in 4CUC (corresponding to R484 in 4YPJ) interacts with the LacNAc (yellow carbon atoms) in the +1 subsite; hydrogen
bond interactions are shown as red dashed lines. Residues of 4YPJ are labeled in black, and the residues of 4CUC are labeled in gray.
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by sequencing. Then the plasmid pET-15b-LIC containing the
BgaD-D gene was used as the template for site-directed
mutagenesis. Mutations at R484 were introduced by various
primers (Supporting Information Table 1) using the

QuikChange site-directed mutagenesis kit (Stratagene). The
PCR product was digested by FastDigest DpnI (Thermo
Fisher) and cleaned up with a PCR purification kit. The cleaned
PCR product was transformed into E. coli BL21 (DE3)
(Invitrogen). After growth on LB agar (containing 100 μg/mL
ampicillin), 20 colonies were randomly selected and inoculated
into 10 mL of LB medium containing 100 μg/mL ampicillin for
overnight growth at 37 °C. Plasmid DNA of the overnight
cultures was isolated using a miniprep kit (Sigma-Aldrich) for
nucleotide sequencing.
Enzyme Production and Purification. The wild-type

BgaD-D enzyme and mutant proteins were heterologously
produced and purified. Briefly, the plasmids containing the
wild-type and mutant genes were transferred into E. coli BL21
(DE3) competent cells. After growth on LB agar plates
(containing 100 μg/mL ampicillin), colonies were inoculated
for overnight cultivation. Then 1% overnight culture was
inoculated into fresh LB medium (containing 100 μg/mL
ampicillin) and incubated at 37 °C. When the cell density
reached about 0.6 at 600 nm, expression of the recombinant
proteins was induced with 1 mM isopropyl-β-D-thiogalactopy-
ranoside. Subsequently, the cells were cultured overnight at 30
°C and harvested by centrifugation. Cell pellets were washed
with 20 mM Tris-HCl buffer (pH 8.0) and lysed with B-PER
lysis solution (Thermo Scientific) for 1 h at room temperature.
The cell debris was removed by centrifugation. The supernatant
was mixed with HIS-Select Nickel Affinity Gel and incubated at
4 °C overnight. Unbound proteins were washed away with 20
mM Tris-HCl (pH 8.0), 50 mM NaCl (buffer A); the
recombinant proteins were eluted with buffer A containing
100 mM imidazole. Then imidazole was removed by ultra-
centrifugation with a cutoff of 30 kDa (Merck).
Enzyme Activity Assays. Activity assays were performed

with 0.5 mg/mL enzymes with 10% (w/w) lactose in 100 mM
sodium phosphate buffer, pH 6.0, at 40 °C. Samples of 100 μL
incubation mixture were withdrawn every minute for 5 min and
inactivated with 50 μL of 1.5 M NaOH. After 10 min the
samples were neutralized with 50 μL of 1.5 M HCl. The
released glucose was measured using a D-glucose assay kit
(GOPOD Format). One unit of total enzyme activity was
defined as the release of 1 μmol of glucose per min. The kinetic
parameters (Km and kcat) were determined with 10 different
lactose concentrations ranging from 10 to 500 mM. The kinetic
parameters were determined with OriginPro 9.0 software
(OriginLab).

Enzymatic Production of GOS. For the production of
GOS, wild-type BgaD-D and R484 mutant enzymes (3.75
units/mL) were incubated with 50% (w/w) lactose in 100 mM
sodium phosphate buffer, pH 6.0, for 20 h at 60 °C to reach the
highest GOS yield. The enzymes were inactivated by incubation
at 100 °C for 10 min.

HPAEC-PAD Analysis and Quantification of GOS. The
GOS produced by the wild-type BagD-D and mutant enzymes
were diluted 1000 times with Milli-Q water, and analyzed and
quantified by high performance anion exchange chromatog-
raphy (HPAEC) on a Dionex ICS-3000 workstation, equipped
with an ICS3000 pulsed amperometric detector (PAD). GOS
were separated on a CarboPac PA1 analytical column (2 × 250
mm) by using an adapted gradient based on previously
described separation conditions for (4 × 250 mm) columns
(Supporting Information, Figure S1).36 A calibration curve of
lactose, galactose, and glucose ranging from 10 to 1000 μM was
used for the quantification of GOS yield (GOS yield (g) =
initial lactose (g) − [remaining lactose (g) + galactose (g) +
glucose (g)] after 20 h). A calibration curve ranging from 4 to
200 μg/mL was used for the quantification of β-D-Galp-(1 →
3)-β-D-Galp-(1 → 4)-D-Glcp (Sigma). Because of a lack of
calibration references for β-D-Galp-(1→ 3)-β-D-Glcp, β-D-Galp-
(1→ 2)-β-D-Glcp, β-D-Galp-(1 → 4)-β-D-Galp-(1 → 4)-D-Glcp,
β-D-Galp-(1 → 4)-β-D-Galp-(1 → 3)-D-Glcp and β-D-Galp-(1
→ 4)-β-D-Galp-(1 → 2)-D-Glcp, the yield of these compounds
were estimated by comparing the peak intensities in HPAEC-
PAD profiles.

Separation and Identification of GOS Fractions. GOS
produced by the R484S mutant enzyme were loaded onto
Extract Clean Carbograph Columns (Grace Davison Discovery
Sciences) to remove salt and monosaccharides. The GOS
mixtures were fractionated using a CarboPac PA1 Semi-
Preparative column (9 × 250 mm) on a Dionex ICS-5000
workstation (separation conditions, see Supporting Informa-
tion, Figure S1). The separated GOS fractions were manually
collected, exchanged, and lyophilized twice with 99.9%atom D2O
(Cambridge Isotope Laboratories). Samples were dissolved in
650 μL of 99.9%atom D2O, containing 25 ppm acetone (δ1H
2.225, δ13C 31.08) as an internal standard. All spectra were
recorded with a 1H spectral width of 4800 Hz, and where
applicable 10 000 Hz for 13C spectra. 1D 600-MHz 1H NMR
spectra were recorded with 16k complex data points, using a
WET1D pulse for HOD signal suppression. 2D COSY spectra
were recorded in 200 increments of 4000 complex points. 2D
TOCSY spectra were recorded in 200 increments of 2000
complex data points, using MLEV17 pulse of 50 and 150 ms
spin-lock times. 2D 13C−1H HSQC spectra were recorded
using 2000 complex data points with 128 increments. 2D
ROESY spectra with 300 ms mixing time were recorded in 200
increments of 2000 complex data points. All spectra were
processed using MestReNova 5.3 (Mestrelabs Research SL,
Santiago de Compostela, Spain), using Whittacker Smoother
baseline correction and manual phase correction. The DP of
the samples was verified by MALDI-TOF-MS analysis. The
samples (1 μL) after NMR measurement were mixed with 1 μL
of 2,5-dihydroxybenzoic acid (10 mg/mL) in 40% (v/v)
acetonitrile to allow crystallization. The experiments were
performed on an Axima performance mass spectrometer
(Shimadzu Kratos Inc.) equipped with a nitrogen laser (337
nm, 3 ns pulse width). Masses were calibrated using an external
calibration ladder of DP 1 to 8 malto-oligosaccharides. Peak

Table 1. Kinetic Properties of B. circulans β-Galactosidase
Wild-Type BgaD-D and Mutants Derived

enzymea Km mM kcat s
−1 kcat/Km s−1 M−1

WT 112.9 ± 12.7 199.8 ± 5.3 1770
R484S 95.4 ± 7.7 119.1 ± 5.1 1250
R484H 151.3 ± 9.4 148.8 ± 4.3 980
R484G 161.3 ± 3.5 179.8 ± 2.5 1110
R484N 133.3 ± 6.7 153.9 ± 2.9 1150
R484C 130.2 ± 3.6 107.7 ± 0.9 830

aKinetic parameters were determined with 10 different lactose
concentrations ranging from 10 to 500 mM.
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positions were confirmed by reinjection on an analytical (2 ×
250 mm) CarboPac PA1 column as described above.

■ RESULTS
Cloning, Production, and Purification of Wild-type

BgaD-D and R484 Mutants. Site saturation mutagenesis was
performed on residue R484 of BgaD-D to elucidate its role in
determining the enzyme product specificity. Mutations in B.
circulans β-galactosidase were introduced by PCR using the
random primers described in the Experimental Section. Six
mutant genes of R484 (R484A, R484P, R484Q, R484S, R484L,
R484C) were identified in the first round of sequencing. Then
the specific primers for the other 13 mutations (Supporting
Information, Table S1) were used for a second round to
achieve site saturation mutagenesis at this position. Wild-type
BgaD-D and all R484 mutant proteins were produced in E. coli
BL21 (DE3) and purified. Compared with BgaD-D, no
significant differences in expression levels of the mutant
proteins were observed (Supporting Information, Figure S2).
Effects of Mutations on Kinetic Properties of

Enzymes. The wild-type BgaD-D and mutant enzymes
displayed Michaelis−Menten kinetics in the reaction with
lactose. The kinetic parameters (Km and kcat) were determined
for the wild-type BgaD-D enzyme and for selected R484
mutants (Table 1). Compared to the wild-type enzyme, R484S
showed a 15.5% decrease in the Km value for lactose, while the
R484G, R484H, R484N, R484C mutants showed an increase of
16−43% in their Km values (Table 1). Mutant R484G showed
only a 10% decrease in kcat value, whereas the kcat values of
R484S, R484H, R484N, and R484C were reduced to 53.9−
77.0% of the wild-type enzyme kcat (Table 1). Thus, the
catalytic efficiencies (Km /kcat) of the mutants were reduced to
46.9−70.6% (Table 1). The reduced catalytic efficiencies led to
a lower enzyme activity for the mutants compared to the wild-
type enzyme (Table 2).
Effects of Mutations on Transgalactosylation and

Linkage Specificity of GOS. HPAEC-PAD analysis showed
different product profiles for mutant R484S and the BgaD-D
wild-type enzyme (Figure 3A). The products were fractionated
on a semipreparative CarboPac PA1 column (9 × 250 mm).
Fractions were analyzed by NMR spectroscopy and MALDI-
TOF-MS, in order to identify the structures produced. In
previous structural studies of GOS, NMR structural-reporter
signals have been identified.25−27 Peaks 1−13, 18, 21−31, and
38 could be assigned based on 1D 1H NMR spectra, matching
those of known structures.25−27 On the basis of previous data,
1H and 13C chemical shift patterns can be recognized for each
type of residue.27 The newly isolated structures 39−46 were
studied by MALDI-TOF-MS, 1D and 2D 1H and 13C NMR
spectroscopy, and reinjected on analytical HPAEC-PAD to
verify peak positions. All structures identified are presented in
Figure 3B.
A detailed description of the NMR analysis is provided in

Supporting Information. The new structures identified showed
that the R484S mutant had a novel activity, allowing (β1 → 3)
elongation on galactose residues, whereas the wild-type enzyme
only performed (β1 → 3) substitution on the reducing glucose
residue, and has a preference of (β1 → 4) elongation of Gal. A
total of 29 structures were confirmed, including 15 structures
found in the wild-type GOS compounds. Besides, 14 structures
were identified in the R484S product profile that were absent in
the wild-type product profile. Of these compounds, 4 were
identified previously in other commercial GOS samples,27 and

10 other compounds were completely novel structures (Figure
3B).
Mutations of residue R484 greatly altered the enzyme activity

and GOS linkage specificity. The activity of all mutants
decreased compared to the wild-type BgaD-D enzyme (Table
2). The largest decrease was caused by the substitution of
arginine to tryptophan; this mutant enzyme retained only
17.9% activity compared to the wild-type enzyme. Mutants
R484S, R484H, R484G, R584N, R484Q retained about half of
their activity. The GOS yields of the mutant enzymes were
comparable to that of the wild-type enzyme (Table 2). The
wild-type BgaD-D and R484 mutant enzymes respectively
produced 63.5 g and 57.9−66.4 g of GOS from 100 g of initial
lactose when incubated at 60 °C for 20 h (Table 2).
In the product mixture of the wild-type enzyme, only a trace

amount of the trisaccharide β-D-Galp-(1 → 3)-β-D-Galp-(1 →
4)-D-Glcp (Structure 12) is present, i.e., 0.2 g from 100 g of
lactose (Table 2). In contrast, all mutants showed significantly
increased yields of this compound. The highest yield (more
than 50 times) was achieved with R484S (10.5 g), followed by
R484H (10.2 g), R484G (8.7 g), and R484N (8.5 g). In fact,
structure 12 became one of the most abundant compounds in
the GOS mixture produced by these mutants after 20 h of

Table 2. Effects of Mutations of Residue R484 on Enzyme
Activity, Transgalactosylation GOS Yield and GOS Linkage
Specificitya

enzymes
relative
activityb

structure 12
yieldc GOS yieldd

structure 12 (%) in
total GOSe

WT 100 0.2 ± 0.05 63.5 ± 0.8 0.3
R484S 50.5 10.5 ± 1.4 65.0 ± 0.8 16.2
R484H 47.7 10.2 ± 0.5 60.6 ± 0.5 16.9
R484G 66.0 8.7 ± 0.2 59.7 ± 1.5 14.6
R484N 48.3 8.5 ± 0.5 60.8 ± 1.0 13.9
R484C 42.4 7.6 ± 0.3 63.5 ± 1.5 11.9
R484T 39.7 7.2 ± 0.4 65.2 ± 0.7 11.1
R484V 34.7 6.3 ± 0.3 63.2 ± 2.2 9.9
R484A 45.1 6.2 ± 0.1 63.8 ± 0.1 9.8
R484P 24.0 6.2 ± 0.4 59.3 ± 1.7 10.4
R484D 36.5 4.2 ± 0.3 60.1 ± 1.2 7.0
R484I 48.8 3.8 ± 0.1 62.5 ± 0.4 6.1
R484F 28.4 3.2 ± 0.1 61.5 ± 0.9 5.2
R484Q 54.4 2.7 ± 0.7 63.0 ± 0.9 4.2
R484W 17.9 2.7 ± 0.1 57.9 ± 2.0 4.6
R484M 27.3 2.6 ± 0.4 62.9 ± 2.2 4.2
R484E 33.5 2.2 ± 0.2 61.9 ± 0.8 3.6
R484L 38.2 2.2 ± 0.7 59.7 ± 0.1 3.6
R484 K 35.0 1.8 ± 0.1 66.4 ± 0.6 2.7
R484Y 41.2 1.6 ± 0.2 63.1 ± 0.9 2.5
aValues presented are an average of three replicates. bTotal activity.
Activities of all mutant enzymes relative to that of the wild-type
enzyme (100%; 103.4 umol/min/mg). Enzyme activity was measured
in triplicate experiments with 10% (w/w) lactose at 40 °C. cWild-type
and mutant enzymes (3.75U of each) were incubated with 50% (w/w)
lactose, at 60 °C for 20 h. Yields are expressed as grams of product
obtained from 100 g initial lactose. A calibration curve of structure 12
(β-D-Galp-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp) ranging from 4 to 200
μg/mL was used for its quantification. dYields are expressed as grams
of GOS produced from 100 g initial lactose. Calibration curves for
lactose, galactose and glucose, ranging from 10 to 1000 μM, were used
for quantification. eThis is the percentage (%) of structure 12 in total
GOS.
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incubation; e.g., it represents 16.9% of the GOS mixture
produced by mutant R484H (Table 2).
Figure 4 shows the relative yields of main GOS structures

produced by BgaD-D mutants, with respect to that of the wild-
type enzyme. According to the peak intensity shown in Figure
3, peak 8 (β-D-Galp-(1 → 3)-β-D-Glcp and β-D-Galp-(1 → 2)-
β-D-Glcp), peak 11 (β-D-Galp-(1 → 4)-β-D-Galp-(1 → 4)-D-
Glcp), and peak 13 (β-D-Galp-(1 → 4)-β-D-Galp-(1 → 3)-D-
Glcp and β-D-Galp-(1 → 4)-β-D-Galp-(1 → 2)-D-Glcp) are the
major structures in the GOS produced by the wild-type
enzyme. For each mutant, the relative yield of these structures
decreased (Figure 4). For example, mutant R484W only
produced 60.0% of disaccharide 8 (Figure 4A). The relative
yield of trisaccharide 11 decreased to 58.5% for mutant R484S
(Figure 4B). Mutant R484W had a relative yield of only 30.1%
for trisaccharides 13a and 13b (Figure 4C). Notably, mutants
producing high amounts of 12 (R484S, R484H, R484G,
R484N) (Table 2) decreased significantly in the yield of these
structures (Figure 4).

■ DISCUSSION

The structural and linkage variability of GOS is far lower than
that of hMOS,28 while this structural diversity is considered as
the basis for their multiple biological functions.29 More detailed
studies of GOS structure and functionality revealed that GOS
with different linkages have different prebiotic effects and
selectivity toward colonic bacteria.39−41 Synthesis of GOS with
new structures thus has the potential to enhance the
functionality of GOS mixtures.
Enzyme engineering has been used as an approach to

optimize properties of the β-galactosidase enzyme42 and to
modulate the production of GOS with respect to trans-
glycosylation efficiency and product size. For example, deletion
mutagenesis showed that removal of 580 amino acids from the
C-terminus of β-galactosidase from Bif idobacterium bif idum
greatly improved its transgalactosylation ability.43 The native
enzyme only has transgalactosylation activity at high lactose
concentration, while the truncated enzyme has a relatively high
yield of GOS (39%) even at only 10% initial lactose.43 A single
mutation (F426Y) in β-glucosidase from Pyrococcus furiosus
increased the transglycosylation and hydrolysis ratio, increasing
the GOS yield from 40% to 45%. A double mutant (F426Y/

Figure 3. (A) HPAEC-PAD analysis of the galacto-oligosaccharides synthesized by the wild-type BgaD-D and R484S mutant using 50% (w/w)
lactose as substrate (B) GOS structures37,38 identified in the R484S mutant product mixture, corresponding to the peak numbers in (A). The
numbers of the novel structures are shown underlined.
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M424 K) improved GOS synthesis at 10% lactose from 18% to
40%.44 A mutagenesis approach was also applied to β-
galactosidase from Geobacillus stearothermophilus; mutation
R109W increased the yield of trisaccharide β-D-Galp-(1 →
3)-β-D-Galp-(1 → 4)-D-Glcp from 2% to 23% at a lactose
concentration of 18%.45 Double mutants of F571L/N574S and
F571L/N574A of Thermotoga maritima β-Galactosidase in-
creased yield of the major GOS compound β-D-Galp-(1 → 3)-
β-D-Galp-(1 → 4)-D-Glcp 2-fold.46 In another mutagenesis
study of β-galactosidase from Sulfolobus solfataricus, the GOS
yield was enhanced by 11% by mutating phenylalanine to
tyrosine (F441Y).47

Finally, a recent study showed that the use of monobodies,
synthetic binding peptides which can modulate the catalytic
properties of enzymes, altered the enzyme specificity of BgaD-
D such that it barely produced any GOS higher than DP5,48

although no changes in linkage types and no new structures
were observed.
Thus, although enzyme engineering of β-galactosidases

successfully enhanced the transgalactosylation activity or

limited product diversity, none of these studies focused on
changing the enzyme product linkage specificity.
In our study, mutagenesis of R484 in BgaD-D altered the

enzyme product linkage specificity, resulting in clearly different
GOS product compositions. A detailed structural analysis
revealed that entirely new GOS compounds were synthesized,
greatly enriching the product diversity. In contrast to the wild-
type BgaD-D, which has a clear preference for (β1 → 4)
linkages, the R484 mutants prefer synthesis of both (β1 → 3)
and (β1 → 4) linkages. In addition, this dual preference results
in the synthesis of new GOS structures containing alternating
(β1 → 3) and (β1 → 4) linkages. The possible formation
routes for all observed product structures are summarized in
Figure S3. This reveals that the new mutant R484S activity
allows (β1 → 3) elongation to occur irrespective of the
previous bond, except for (β1 → 6). Structures 39a and 40 are
(β1 → 3) elongations of 6a and 10a, respectively. In both cases
the β-D-Galp-(1 → 4)- residue is elongated, but not the β-D-
Galp-(1 → 6)- residue. Structures 11 and 12 were found
elongated by (β1 → 3), as seen in 41 and 31, respectively. Also
(β1 → 4) elongation was observed for structures 11 and 12,
seen in 17 and 42, respectively. Structures 43−46 are the
results of further elongations by (β1 → 3) and (β1 → 4) of
structures 17, 31, 41, 42. Structure 39b results from a novel
activity, resulting in a 3,4-disubstituted galactose residue.
Whether this is the result of a (β1 → 3)-branching of 11, or
a (β1 → 4)-branching of 12, or the result of both routes,
cannot be determined from the available data. A total of 14 new
GOS structures were produced by the R484S mutant compared
to the wild-type enzyme. Among these, 4 structures are also
present in other commercial GOS products,27 but 10 structures
have not been reported before. These new compounds further
enrich the composition and variety of available GOS structures.
Interestingly, while mutation of R484 affected the GOS

composition and variety, it hardly affected the total amount of
GOS produced. As a consequence, the increased yield of
trisaccharide 12, as well as the formation of new structures,
occurs at the expense of other structures. For example, for
mutant R484S, the yield of 12 increased more than 50 times
(from 0.2 to 10.5 g). At the same time, however, the yield of 8
decreased about 30%. The yield of 11 decreased about 42%,
and the yield of 13 decreased 58%, as a consequence of
formation of 29 and 30. This may also be the cause that of the
43 structures found for the wild-type enzyme, only 19 were still
found in detectable levels, whereas the enzyme activity still
allows for the synthesis of all 43 structures.
The effect of mutation of residue R484 on transgalactosy-

lation linkage specificity can be explained by the fact that this
residue is located near acceptor subsite +1 of the catalytic site
(Figure 2). Given the (β1 → 4) linkage specificity of wild-type
BgaD-D, acceptor molecules such as lactose preferentially bind
in a way that the 4-OH group of the sugar moiety in subsite +1
is positioned to attack the C1 atom of the covalent galactosyl-
enzyme intermediate. Mutation of R484 to serine or histidine
likely affects the binding mode of lactose (and of other
acceptors) such that both the 3-OH and 4-OH of the sugar
moiety in subsite +1 can be in a favorable position for the
transglycosylation reaction. Apparently, the mutations also
affected the catalytic efficiency (Table 1) and led to a lower
activity. However, the GOS yields of the mutations were
comparable to that of the wild-type enzyme (Table 2).

Figure 4. Effects of mutations in residue R484 on the yield of (A)
structures 8a and 8b, (B) structure 11, (C) structures 13a and 13b,
relative to wild-type (WT, 100%).
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■ CONCLUSIONS AND PERSPECTIVES
Our study shows that mutation of residue R484 significantly
alters the product linkage specificity of the B. circulans β-
galactosidase BgaD-D, resulting in a new GOS mixture
composition. In particular, the mutant enzymes synthesized a
large amount of GOS with (β1 → 3) and (β1 → 4) linkages, of
which many are different from all known commercial GOS
products.27 To our knowledge, this is the first paper showing
that β-galactosidase enzyme engineering results in a clear
change in linkage specificity, yielding an enhanced structural
diversity of the GOS produced. The mutant enzymes may find
industrial application, depending on the functionality of the
GOS produced, which remains to be determined in future
work.
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