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Optimizing High-Efficiency 
Quantum Memory with Quantum 
Machine Learning for Near-Term 
Quantum Devices
Laszlo Gyongyosi1,2,3* & Sandor Imre2

Quantum memories are a fundamental of any global-scale quantum Internet, high-performance 
quantum networking and near-term quantum computers. A main problem of quantum memories is the 
low retrieval efficiency of the quantum systems from the quantum registers of the quantum memory. 
Here, we define a novel quantum memory called high-retrieval-efficiency (HRE) quantum memory for 
near-term quantum devices. An HRE quantum memory unit integrates local unitary operations on its 
hardware level for the optimization of the readout procedure and utilizes the advanced techniques of 
quantum machine learning. We define the integrated unitary operations of an HRE quantum memory, 
prove the learning procedure, and evaluate the achievable output signal-to-noise ratio values. We prove 
that the local unitaries of an HRE quantum memory achieve the optimization of the readout procedure 
in an unsupervised manner without the use of any labeled data or training sequences. We show that 
the readout procedure of an HRE quantum memory is realized in a completely blind manner without 
any information about the input quantum system or about the unknown quantum operation of the 
quantum register. We evaluate the retrieval efficiency of an HRE quantum memory and the output SNR 
(signal-to-noise ratio). The results are particularly convenient for gate-model quantum computers and 
the near-term quantum devices of the quantum Internet.

Quantum memories are a fundamental of any global-scale quantum Internet1–6. However, while quantum repeat-
ers can be realized without the necessity of quantum memories1,3, these units, in fact, are required for guar-
anteeing an optimal performance in any high-performance quantum networking scenario3,4,7–32. Therefore, the 
utilization of quantum memories still represents a fundamental problem in the quantum Internet33–42, since the 
near-term quantum devices (such as quantum repeaters5,6,8,32,43–47) and gate-model quantum computers48–59 have 
to store the quantum states in their local quantum memories43–47,60–84. The main problem here is the efficient read-
out of the stored quantum systems and the low retrieval efficiency of these systems from the quantum registers 
of the quantum memory. Currently, no general solution to this problem is available, since the quantum register 
evolves the stored quantum systems via an unknown operation, and the input quantum system is also unknown, 
in a general scenario4,5,7–9,11,12. The optimization of the readout procedure is therefore a hard and complex prob-
lem. Several physical implementations have been developed in the last few years85–105. However, these experimen-
tal realizations have several drawbacks, in general because the output signal-to-noise ratio (SNR) values are still 
not satisfactory for the construction of a powerful, global-scale quantum communication network. As another 
important application field in quantum communication, the methods of quantum secure direct communica-
tion106–109 also require quantum memory.

Here, we define a novel quantum memory called high-retrieval-efficiency (HRE) quantum memory for 
near-term quantum devices. An HRE quantum memory unit integrates local unitary operations on its hardware 
level for the optimization of the readout procedure. An HRE quantum memory unit utilizes the advanced tech-
niques of quantum machine learning to achieve a significant improvement in the retrieval efficiency110–112. We 
define the integrated unitary operations of an HRE quantum memory, prove the learning procedure, and evaluate 
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the achievable output SNR values. The local unitaries of an HRE quantum memory achieve the optimization of 
the readout procedure in an unsupervised manner without the use of any labeled data or any training sequences. 
The readout procedure of an HRE quantum memory is realized in a completely blind manner. It requires no 
information about the input quantum system or about the quantum operation of the quantum register. (It is 
motivated by the fact that this information is not accessible in any practical setting).

The proposed model assumes that the main challenge is the recovery the stored quantum systems from the 
quantum register of the quantum memory unit, such that both the input quantum system and the transforma-
tion of the quantum memory are unknown. The optimization problem of the readout process also integrates the 
efficiency of the write-in procedure. In the proposed model, the noise and uncertainty added by the write-in 
procedure are included in the unknown transformation of the QR quantum register of the quantum memory that 
results in a σQR mixed quantum system in QR.

The novel contributions of our manuscript are as follows:

	 1.	 We define a novel quantum memory called high-retrieval-efficiency (HRE) quantum memory.
	 2.	 An HRE quantum memory unit integrates local unitary operations on its hardware level for the optimiza-

tion of the readout procedure and utilizes the advanced techniques of quantum machine learning.
	 3.	 We define the integrated unitary operations of an HRE quantum memory, prove the learning procedure, 

and evaluate the achievable output signal-to-noise ratio values. We prove that local unitaries of an HRE 
quantum memory achieve the optimization of the readout procedure in an unsupervised manner without 
the use of any labeled data or training sequences.

	 4.	 We evaluate the retrieval efficiency of an HRE quantum memory and the output SNR.
	 5.	 The proposed results are convenient for gate-model quantum computers and near-term quantum devices.

This paper is organized as follows. Section 2 defines the system model and the problem statement. 
Section 3 evaluates the integrated local unitary operations of an HRE quantum memory. Section 4 proposes 
the retrieval efficiency in terms of the achievable output SNR values. Finally, Section 5 concludes the results. 
Supplemental material is included in the Appendix.

System Model and Problem Statement
System model.  Let ρin be an unknown input quantum system formulated by n unknown density matrices,
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The input system is received and stored in the QR quantum register of the HRE quantum memory unit. The 

quantum systems are d-dimensional systems ( =d 2 for a qubit system). For simplicity, we focus on =d 2 dimen-
sional quantum systems throughout the derivations.

The UQR unknown evolution operator of the QR quantum register defines a mixed state σQR as
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Let us allow to rewrite (2) for a particular time t, = …t T1, , , where T is a total evolution time, via a mixed 
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t( ), as
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where UQR
t( ) is an unknown evolution matrix of the QR quantum register at a given t, with a dimension

= ×( )U d ddim , (4)QR
t n n( )

with λ≤ ≤0 1i
t( ) , λ∑ = 1i i

t( ) , while ∈Xi
t( )  is an unknown complex quantity, defined as
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Then, let us rewrite σQR
t( ) from (3) as

σ ρ ζ= + , (7)QR
t

in QR
t( ) ( )

where ρin is as in (1), and ζQR
t( ) is an unknown residual density matrix at a given t.

Therefore, (7) can be expressed as a sum of M source quantum systems,
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where ρm is the m-th source quantum system and = …m M1, , , where
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In terms of the M subsystems, (3) can be rewritten as
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where Xi
m t( , ) is a complex quantity associated with an m-th source system,
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The aim is to find the VQG inverse matrix of the unknown evolution matrix UQR in (2), as

= −V U , (15)QG QG
1

that yields the separated readout quantum system of the HRE quantum memory unit for = …t T1, , , such that 
for a given t,
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For a total evolution time T, the target σout density matrix is yielded at the output of the HRE quantum mem-
ory unit, as
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with a sufficiently high SNR value,
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σ ≥ xSNR( ) , (19)out

where x is an SNR value that depends on the actual physical layer attributes of the experimental implementation.
The problem is therefore that both the input quantum system (1) and the transformation matrix UQR in (2) of 

the quantum register are unknown. As we prove, by integrating local unitaries to the HRE quantum memory unit, 
the unknown evolution matrix of the quantum register can be inverted, which allows us to retrieve the quantum 
systems of the quantum register. The retrieval efficiency will be also defined in a rigorous manner.

Problem statement.  The problem statement is as follows.
Let M be the number of source systems in the QR quantum register such that the sum of the M source systems 

identifies the mixed state of the quantum register. Let m be the index of the source system, = …m M1, , , such 
that =m 1 identifies the unknown input quantum system stored in the quantum register (target source system), 
while = …m M2, ,  are some unknown residual quantum systems. The input quantum system, the residual sys-
tems, and the transformation operation of the quantum register are unknown. The aim is then to define local 
unitary operations to be integrated on the HRE quantum memory unit for an HRE readout procedure in an 
unsupervised manner with unlabeled data.

The problems to be solved are summarized in Problems 1–4.

Problem 1. Find an unsupervised quantum machine learning method, UML, for the factorization of the unknown 
mixed quantum system of the quantum register via a blind separation of the unlabeled quantum register. Decompose 
the unknown mixed system state into a basis unitary and a residual quantum system.

Problem 2. Define a unitary operation for partitioning the bases with respect to the source systems of the quantum 
register.

Problem 3. Define a unitary operation for the recovery of the target source system.

Problem 4. Evaluate the retrieval efficiency of the HRE quantum memory in terms of the achievable SNR.
The resolutions of the problems are proposed in Theorems 1–4.
The schematic model of an HRE quantum memory unit is depicted in Fig. 1.
The procedures realized by the integrated unitary operations of the HRE quantum memory are depicted in 

Fig. 2.

Experimental implementation.  An experimental implementation of an HRE quantum memory in 
a near-term quantum device52 can integrate standard photonics devices, optical cavities and other funda-
mental physical devices. The quantum operations can be realized via the framework of gate-model quantum 

Figure 1.  The schematic model of a high-retrieval-efficiency (HRE) quantum memory unit. The HRE quantum 
memory unit contains a QR quantum register and integrated local unitary operations. The n input quantum 
systems, ρ ρ… n1 , are received and stored in the quantum register. The state of the QR quantum register defines a 
mixed state, σ λ ρ= ∑QR i i i, where λ∑ = 1i i . The stored density matrices of the QR quantum register are first 
transformed by a UML, a quantum machine learning unitary (depicted by the orange-shaded box) that 
implements an unsupervised learning for a blind separation of the unlabeled input, and decomposable as 

= †U U U U UML F CQT P CQT, where UF is a factorization unitary, UCQT is the quantum constant Q transform with a 
windowing function fW for the localization of the wave functions of the quantum register, UP is a basis 
partitioning unitary, while †UCQT is the inverse of UCQT. The result of UML is processed further by the ∼

†
UDSTFT 

unitary (depicted by the green-shaded box) that realizes the inverse quantum discrete short-time Fourier 
transform (DSTFT) operation (depicted by the yellow-shaded box), and by the UDFT (quantum discrete Fourier 
transform) unitary to yield the desired output ρ ρ′ … ′n1 .
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computations of near-term quantum devices52–56, such as superconducting units53. The application of a HRE 
quantum memory in a quantum Internet setting1,2,4–6 can be implemented via noisy quantum links between the 
quantum repeaters8,32,43–47 (e.g., optical fibers7,62,113, wireless quantum channels27,28, free-space optical channels114) 
and fundamental quantum transmission protocols24,115–117.

Integrated Local Unitaries
This section defines the local unitary operations integrated on an HRE quantum memory unit.

Quantum machine learning unitary.  The UML quantum machine learning unitary implements an unsu-
pervised learning for a blind separation of the unlabeled quantum register. The UML unitary is defined as

= †U U U U U , (20)ML F CQT P CQT

where UF is a factorization unitary, UCQT is the quantum constant Q transform, UP is a partitioning unitary, while 
†UCQT is the inverse of UCQT.

Factorization unitary.  Theorem 1. (Factorization of the unknown mixed quantum system of the quantum regis-
ter). The UF unitary factorizes the unknown σQR mixed quantum system of the QR quantum register into a unitary 

= τ−u emk
iH /mk , with a Hamiltonian Hmk and application time τ , and into a system wkt, where = …t T1, , , 

= …m M1, , , and = …k K1, , , and where T is the evolution time, M is the number of source systems of σQR, and 
K is the number of bases.

Proof. The aim of the UF factorization unitary is to factorize the mixed quantum register (2) into a basis matrix 
UB and a quantum system ρ→W, as
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F QR F F QR in QR F
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where UB is a complex basis matrix, defined as

= ∈ ×U u{ } , (22)B mk
M K

and ρ→ ∈ ×
W

K T is a complex matrix, defined as

ρ ρ→ = ={ } , (23)W W
t

t
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1

Figure 2.  Detailed procedures of an HRE quantum memory. The unknown input quantum system is stored in 
the QR quantum register that realizes an unknown transformation. The density matrix of the quantum register 
is the sum of =M 2 source systems, where source system =m 1 identifies the valuable unknown input 
quantum system stored in the quantum register, while =m 2 identifies an unknown undesired residual 
quantum system. The UF unitary evaluates K  bases for the source system and defines a W  auxiliary quantum 
system. The UCQT unitary is a preliminary operation for the partitioning of the K  bases onto M clusters via 
unitary UP. The UP unitary regroups the bases with respect to the =M 2 source systems. The results are then 
processed by the ∼

†
UDSTFT and UDFT unitaries to extract the source system =m 1 on the output of the memory 

unit.

https://doi.org/10.1038/s41598-019-56689-0


6Scientific Reports |          (2020) 10:135  | https://doi.org/10.1038/s41598-019-56689-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

where

∑

∑

∑

ρ ϕ ϕ

ϕ ϕ

=

=

=

=

=

=

†

v

v v

W W( ) ,
(24)

W
t

k

K

k
t

k k

k

K

k
t

k k
t

k

k

K

k
t

k
t

( )

1

( )

1

( ) ( )

1

( ) ( )

where ≤ ≤v0 1k
t( ) , and ∑ == v 1k

K
k

t
1

( ) , while K  is the total number of bases of UB, while ∈Wk
t( )  is a complex 

quantity, as

ϕ= .W v (25)k
t

k
t

k
( ) ( )

The first part of the problem is therefore to find (22), where umk is a unitary that sets a computational basis for 
Wk

t( ) in (25), defined as

= τ−u e , (26)mk
iH /mk 

where Hmk is a Hamiltonian, as
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where Km is the number of bases associated with the m-th source system,
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In our setting =M 2, and our aim is to get the system state =m 1 on the output of the HRE quantum mem-
ory, thus a Φ⁎  target output system state is defined as
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where K1 is the number of bases for source system =m 1, = …k K1, ,1 1.
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be the density matrix associated with (36).
The aim of the estimation is to minimize the ⋅ ⋅D( ) quantum relative entropy function taken between ρ→

X  and 
ρ ∼X , thus an f U( )F  objective function for UF is defined via (37) and (38) as

ρ ρ

ρ ρ ρ ρ

=

= − .

→

→ → →

∼ ∼

∼ ∼

f U D( ) min ( )

minTr( log( )) Tr( log( ))
(41)

F
X X X

X X X X X

To achieve the objective function f U( )F  in (41), a factorization method is defined for UF that is based on the 
fundamentals of Bayesian nonnegative matrix factorization118–127 (Footnote: The UF factorization unitary applied 
on the mixed state of the quantum register is analogous to a Poisson-Exponential Bayesian nonnegative matrix 
factorization118–121 process). The method adopts the Poisson distribution as ⋅L( ) likelihood function and the 
exponential distribution for the control parameters118–121 αmk and βkt defined for the controlling of umk and wkt.

Let umk and wkt from (29) be defined via the control parameters αmk and βkt as exponential distributions

α α−
u e , (42)mk mk

umk mk

with mean α −
mk

1, and

β β−
w e , (43)kt kt

wkt kt

with mean β −
kt

1.
Using (41), (42) and (43), a ⋅L( ) log likelihood function

− | = − |L x y z x y z( , ) logPr( , ) (44)

can be defined as
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thus the objective function f U( )F  can be rewritten via as (45)
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The problem is therefore can be reduced to determine the model parameters

ζ = U W{ , } (47)B

that are treated as latent variables for the estimation of the control parameters118–121,125–127
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A maximum likelihood estimation ζ of (47) is as
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However, since the exact solution does not exists118–121, since it would require the factorization of 
κ ζ→ |
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D U W X( , , , )B , such that ζ U W, ,B  are unknown.

This problem can be solved by a variational Bayesian inference procedure118–121,125–127, via the maximization of 
the lower bound of a likelihood function LDv
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→ → |
→∬L D

D D

D
D

D
U W dU dW

X U W H U W

( , , ) log

(log ( , , , )) ( ( , , )), (57)

v B
X U W

U W B

B v B

( , , , )
( , , )v

B

v B

where Dv  is a variational distribution, while κ→DH U W( ( , , ))v B  is the entropy of variational distribution 
κ→D U W( , , )v B ,
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∑ ∑ ∑ ∑ ∑∑κ κ→ = + +
= = = = = =

DH U W H H u H w( ( , , )) ( ) ( ) ( ),
(58)v B

m

M

t

T
m t

m

M

k

K

mk
k

K

t

T

kt
1 1

( , )

1 1 1 1

and where κ→D U W( , , )v B  is a joint variational distribution, as

∏ ∏ ∏
κ κ

κ

→ = →

=

D D D D

D D D

U W U W
u w

( , , ) ( ) ( ) ( )
( ) ( ) ( ),

(59)

v B v v B v

m t k
v mkt v mk v kt

from which distribution κ ζ→ |
→

D U W X( , , , )B  can be approximated as118–121

∏ ∏ ∏κ ζ κ→ |
→

≈ .D D D DU W X u w( , , , ) ( ) ( ) ( )
(60)B

m t k
v mkt v mk v kt

The function LDv
 in (57) is related to (50) as

ζ
→

| ≥ .L LDX( ) (61)v

The result in (59) therefore also determines the number K  of bases selected for the factorization unitary UF. 
The Dv variational distributions κD ( )v mkt , D u( )v k  and D w( )v kt  are determined for the unitary UF as follows.

Let ΦD ( )v  refer to the variational distribution of a given Φ,

κΦ ∈ → .U W{ , , } (62)B

Since only the joint (posterior) distribution κ ζ
→ → |D X U W( , , , )B  is obtainable, the variational distributions 

have to be evaluated as

 κ ζ
→ → | = Φ≠Φ D DD X U W(log ( , , , )) log ( ), (63)i B v( )v

where  ⋅≠ΦD ( )i( )v
 is the expectation function of the D i( )v  variational distribution of i, such that ≠ Φi , where Φ is 

as in (62), with

  + = +f a g a f a g a( ( ) ( )) ( ( )) ( ( )), (64)a a a

for some functions f a( ) and g a( ), and

 =bf a b f a( ( )) ( ( )) (65)a a

for some constant b, (note: for simplicity, we use  ⋅( ) for the expectation function), while

∑ ∑ ∑ ∑ ∑∑

∑ ∑

∑∑

κ ζ

κ κ

κ α α

β β

→ →

=





−





+

− − + + −

+ −

δ
= = = = = =

Γ
= =

= =

D X U W

f X u w

u w f u

w

log ( , , , )

log ( log( )

log ( 1)) (log )

(log ),
(66)

B

m

M

t

T
m t

k

K

mkt
m

M

k

K

t

T

mkt mk kt

mk kt mkt
m

M

k

K

mk mk mk

k

K

t

T

kt kt kt

1 1

( , )

1 1 1 1

1 1

1 1

where ⋅δf ( ) is the Dirac delta function, while ⋅Γf ( ) is the Gamma function,

∫= .Γ

∞ − −f x t e dt( ) (67)
x t

0

1

By utilizing a variational Poisson–Exponential Bayesian learning118–121, these variational distributions can be 
evaluated as follows.

The κD ( )v mkt  variational distribution is as

κ κ η= |D M( ) ( ) (68)v mkt mkt mkt

where M is a multinomial distribution, while ηmkt is a multinomial parameter

 

 η =
∑

+

+
e

e
,

(69)
mkt

u w

j
u w

(log ) (log )

(log ) (log )

mk kt

mj jt

while the κD ( )v
m t( , )  variational distribution is as
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∑ ∏

κ η

κ

|

=



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−



δ

η

κ
=

κ

M X

f X X

( , )

! ,
(70)

m t m t
k

m t

m t

k

K

mkt
m t

k

( , ) ( , ) ( , )

( , )

1

( , ) ( )

!
mkt

mkt

mkt

where ηk
m t( , ) is a multinomial parameter vector

η η η= …= =( , , ) , (71)k
m t

k
m t

k K
m t T( , )

1
( , ) ( , )

such that

∑ η = .
=

1
(72)k

K

k
m t

1

( , )

The D u( )v mk  variational distribution is as

u

e
u A B

( )

( ( ), ( )), (73)

v mk

u w u

mk mk mk

( ) log ( )
t

T

mkt mk
t

T

kt mk mk
1 1

α α
=
= |

∑ ∑κ α





−






+









= =
 

 

D

G

where ⋅G( ) is a Gamma distribution,

= − − − −ΓG x a b e( ; , ) , (74)a x x
b

f a a b( 1) log log ( ) log

where a is a shape parameter, while b is a scale parameter, ⋅Γf ( ) is the Gamma function (67). The entropy of (74) 
is as

= − − ∂ + + + ΓG GH x a b a a b a f a( ( ; , )) ( 1) ( ) log log ( ), (75)log

where ∂ ⋅G ( )
log

 is the derivative of the log gamma function (digamma function),

∂ = Γ
G x

d f x
dx

( )
log ( )

, (76)log

while  κ( )mkt  is evaluated as

 κ η= X( ) , (77)mkt
m t

mkt
( , )

while α


A( )mk  and α


B( )mk  are control parameters for UB, defined as

∑α κ= +
=


A( ) 1 ( ),

(78)mk
t

T

mkt
1

while α


B( )mk  is defined as


α

α
=

∑ +
.

=


B
w

( ) 1
( ) (79)

mk
t
T

kt mk1

The D w( )v kt  variational distribution is as

 β β
=
= |

∑ ∑κ β





−






+









= =
 

w

e
w A B

( )

( ( ), ( )), (80)

v kt

w u w

kt kt kt

( ) log ( )
m

M

mkt kn
m

M

mk kt kt
1 1

D

G

where β A( )kt  and β B( )kt  are control parameters for W, defined as

∑β κ= +
=

 A( ) 1 ( ),
(81)kt

m

M

mkt
1

and


β

β
=

∑ +
.

=

 B
u

( ) 1
( ) (82)

kt
m
M

mk kt1
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Given the variational parameters α


A( )mk , α


B( )mk , β A( )kt  and β B( )kt  in (78), (79), (81) and (82), the estimates of 
UB and W  are realized by the determination of the Gamma means  u( )mk  and  w( )kt

118–121. It can be verified that 
the mean  w( )kt  in (73), (79) and (80) can be evaluated via (81) and (82) as a mean of a Gamma distribution

 β β=  w A B( ) ( ) ( ), (83)kt kt kt

while  w(log )kt  is as

 β β= ∂ + 

Gw A B(log ) ( ( )) log ( ), (84)kt kt ktlog

where ∂ ⋅G ( )
log

 digamma function (76).
The mean  u( )mk  in (80) and (82) can be evaluated via (78) and (79), as a mean of a Gamma distribution

 α α=
 

u A B( ) ( ) ( ), (85)mk mk mk

and  u(log )mk  is yielded as

 α α= ∂ + .
 Gu A B(log ) ( ( )) log ( ) (86)mk mk mklog

As the κD ( )v mkt , D u( )v mk  and D w( )v kt  variational distributions are determined via (68), (73) and (80) the eval-
uation of (59) is straightforward.

Using the defined terms, the term  κ ζ
→ → |D X U W(log ( , , , ))B  from (57) can be evaluated as





 

   




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∑ ∑ ∑
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
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(log ( ))

(log ( )),
(87)

B

m

M

t

T
m t

k

K

mkt

m

M

k

K

mk
t

T

mkt

k

K

t

T

kt
m

M

mkt
m

M

k

K

t

T

mk kt

m

M

k

K

t

T

mkt

m

M

k

K

mk mk mk

k

K

t

T

kt kt kt

1 1

( , )

1

1 1 1

1 1 1 1 1 1

1 1 1

1 1

1 1

while the κ→DH U W( ( , , ))v B  entropy of the variational distribution from (58) can be evaluated as







∑ ∑ ∑

∑ ∑∑
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Thus, from (87) and (88), the lower bound LDv
in (57) is as
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The next problem is the 

τk

t( ) estimation of the control parameters α β,mk kt in (48) as

=

τ E F{ , }, (90)mk

t
mk kt

( )

such that Emk is a basis estimation

α≈E (91)mk mk

and Fkt is a system estimation

β≈F , (92)kt kt

such that the variational lower bound LDv
 in (89) is maximized118–121. It is achieved for the unitary UF as follows. 

The maximization problem can be formalized via the ∂ LD( )v
 derivative of LDv
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which is solvable via118,120
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After some calculations, Emk and Fkt from (90) are as
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respectively.
From (97) and (98), the 


τmk

t( ) estimation in (90) is therefore straightforwardly yielded. Therefore, using the 
parameters α α β β

 

 B A A B( ), ( ), ( ), ( )mk mk kt kt  and ηmkt, the optimal variational distributions κD ( )v mkt , D u( )v mk  and 
D w( )v kt  can be substituted to estimate 


τmk

t( ).
Using (97) and (98), the estimation of terms uk (42), wkt (43) and κkt (55) are yielded as

= −


u E e , (99)mk mk
E umk mk

=∼ − ∼
w F e , (100)kt kt

F wkt kt

and

κ = .− − ∼


E e F e (101)mkt mk
E u

kt
F wmk mk kt kt

The evaluation of (97) and (98) therefore is yielded in an iterative manner through the α


B( )mk , α


A( )mk , β A( )kt , 
β B( )kt  and ηmkt, and the K* optimal number of bases, K, is determined with respect to (89) such that

=⁎ LDK Kargmax ( ), (102)K v

where LD K( )
v

 refers to LDv
 from (89) at a particular base number K .

The proof is concluded here. ■
The schematic representation of unitary UF is depicted in Fig. 3.

Quantum constant Q transform.  As the u{ }mk  basis estimations (99) are determined via E{ }mk  (97), the next prob-
lem is the partitioning of the K  bases with respect to M, see (8). To achieve the partitioning, first the bases of UB 
are transformed by the UCQT is the quantum constant Q transform128. The UCQT operation is similar to the discrete 
QFT (quantum Fourier transform) transform117, and defined in the following manner.

The UCQT transform is defined as

Figure 3.  Representation of the UF unitary over a total evolution time t, with K  factored bases and M source 
systems ( =M 2 in our setting). The factorization is represented by the solid-line arrows. At a given t, 

= …t T1, , , the input system of UF subject of factorization is λ φ=X m t
i

m t
i

m t( , ) ( , ) ( , ) , = …m M1, , . Term 
κmkt is expressed as κ = u wmkt mk kt, where = τ−u emk

iH /mk   is a unitary, ∈umk , = …k K1, , , which sets a 
computational basis for wkt, ϕ= =w W vkt k

t
k

t
k

( ) ( ) . The basis matrix is = ∈ ×U u{ }B mk
M K with K  bases, 

=H G k kmk mk m m  is a Hamiltonian, and = = ∈ ×W W w{ }k
t

kt
K T( ) , ∈wkt . The factorization decomposes 

X m t( , ) into =
→

X U W[ ]m t
B mt

( , ) , and for the total evolution 
→

=
→

X U WB , where 
→

= … =X X X{ , , }t M t
t
T(1, ) ( , )

1, while κkt 
is as κ = u wmkt mk kt. Terms αmk and βkt are control parameters for umk and wkt (controlling is depicted by the 
dashed-line arrows) to evaluate the parameters as α α−

u emk mk
umk mk and β β−

w ekt kt
wkt kt, estimated by Emk and 

Fkt as = −


u E emk mk
E umk mk and =∼ − ∼

w F ekt kt
F wkt kt.
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N
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j

N

W
ijQ m

k
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1
2 /

where k  is a quantum state of the computational basis B, and in the current setting

=N K, (104)

and

=k E , (105)mk

thus B is as

… −B K: { 0 , , 1 }, (106)

while h is selected such that

≤ − ≤ − = −j h N K0 ( ) 1 1 (107)

holds, and Q is defined via the following relation

π π
=

k
K

Q
h

2 2 , (108)

from which Q is yielded at a given h, k and K , as

=Q hk
K

, (109)

while ⋅f ( )W  is a windowing function129 that localizes the wavefunctions of the quantum register, defined via 
parameter h as

π
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
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−




−
−








.f j h h m

K
( ) 1

2
1 cos 2 ( )

1 (110)W

(Footnote: The function in (110) is the so-called Hanning window129).
The φk  output states of UCQT therefore identify a set φS  of states, as

φ = … −φS k K: { : 0, , 1} (111)k

that formulates an orthonormal basis.
The †UCQT inverse of UCQT will be processed as the UP partitioning is completed, with the same ⋅f ( )W  windowing 

function, defined as

∑= − .π

=

−
−†U k h

K
f j h e j( , ) 1 ( )

(112)
CQT

j

K

W
ijQ h

0

1
2 /

Applying (103) on the K  estimated bases E{ }mk  yields the CB transformed bases, as



=

= ∈ ×

C U U

C

( )

{ } , (113)

B CQT B

mk
M K

where Cmk is as,

= .C U E( ) (114)mk CQT mk

After the application of (113), the resulting system is therefore as

=C W U U W( ) , (115)B CQT B

where ∈ ×C WB
M T.

Basis partitioning unitary.  Theorem 2. (Partitioning the bases of source systems). The Q transformed bases can be 
partitioned to M partitions via the UP partitioning unitary operation.

Proof. As the UCQT transforms of the E{ }mk  basis estimations (99) are determined via CB (113), the Q trans-
formed bases are partitioned to M partitions via the UP unitary operation, as follows.

Let the system state from (115) be denoted by

=S C W (116)B

and let S  be the estimation of S130, defined as
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= RE HS , (117)

where

∈T R E H{ , , } (118)

is a tensor (multidimensional array)131,132 with dimension Tdim( ), and size

∏=
=

T T
T

s d( ) ( ) ,
(119)i

i
1

dim( )

where Td ( )i  is the size of the i-th dimension Td ( )i .
Let

= R A B (120)

be a translation tensor of size

∏

∏ ∏

=

= ×

=

= =

R R

A B

R

A B

s d

d d

( ) ( )

( ) ( ) ,
(121)

i
i

i
i

i
i

1

dim( )

1

dim( )

1

dim( )

with

=Rdim( ) 3, (122)

as

=Rd M( ) , (123)1

=Rd ( ) 1, (124)2

and

=Rd M( ) (125)3

and let

= E A C (126)

be a tensor of size

∏

∏ ∏

=

= ×

=

= =

E E

A C

E

A C

s d

d d

( ) ( )

( ) ( ) ,
(127)

i
i

i
i

i
i

1

dim( )

1

dim( )

1

dim( )

with

=Edim( ) 2 (128)

as

=Ed M( ) , (129)1

=Ed K( ) , (130)2

and with

=Hdim( ) 3, (131)

as

=Rd ( ) 1, (132)1

=Rd K( ) (133)2

and

https://doi.org/10.1038/s41598-019-56689-0


1 6Scientific Reports |          (2020) 10:135  | https://doi.org/10.1038/s41598-019-56689-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

=Rd T( ) , (134)3

thus

=A Mdim( ) (135)

and

=B Mdim( ) (136)

while

= .C Kdim( ) (137)

The term RE  is evaluated as

∑ ∑

… …

= … …

× … …

= =


RE

R

E

A A B C

A A

A B

A C

A

A

( )
( )

( )

j j k k

i i j j

i i k k

, , , , ,

, , , , ,

, , , , , , (138)

i

d

i

d

{1:dim( ),1:dim( )} 1 dim( ) 1 dim( )

1

( )

1

( )

1 dim( ) 1 dim( )

1 dim( ) 1 dim( )

1

1

dim( )

dim( )

where R i j( , ) is the indexing for the elements of the tensor.
Let ∀E m k( , ) refer to the j-th column of E, and let ∀H k t(1, , ) refer to the j-th lateral slice of H. Then, let be 

a UP unitary operation that achieves the decomposition of (117) with respect to a given k, = …k K1, , , as

= ∀ ∀RE HS m k k t[ ] ( , ) (1, , ) (139)k

with a particular cost function f U( )P  of the UP unitary defined via the quantum relative entropy function, as

ρ

ρ ρ ρ

=

= −

 

 





†

†

f U D SS

SS

( ) min ( )

minTr( log( )) Tr( log( )), (140)

P
S S

S S S S

where ρS is the density matrix associated with S is as in (116),

∑ ∑ρ =






→ 



→ 








= =

†

U U U X X ,
(141)

S P CQT F
m

M

t

T m t m t

1 1

( , ) ( , )

while S  is given in (117).
Using (139), the Q-transformed bases are partitioned into M classes, the partition Ω outputted by UP is evalu-

ated as

Ω = argmax([Q] ), (142)k
k

where Q is a × K1  size matrix, such that

∑= ∀ ∀ ∀ ∀ .
=

R E Hk k[Q] ( , 1, ) ( , ) (1, , )
(143)k

m

M

1

Since =M 2 in our setting, the partition (142) can be rewritten as

Ω = Ω + Ω , (144)Q Q
(1) (2)

where ΩQ
m( ) identifies a cluster of Km Q-transformed bases for m-th system state,

Ω = Ω
=

{ } ,
(145)Q

m
Q
m k

k

K( ) ( , )

1
m

m

m

of

Ω = K (146)Q
m

m
( )

bases formulated via the base estimations (99) for the m-th system state in (8), such that

∑ = .
=

K K
(147)m

M

m
1
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Since the partitioning is made over the Q transformed bases, the output of UP is then transformed by the †UCQT 
inverse transformation (112). ■

Inverse quantum constant Q transform.  Applying the †UCQT inverse transformation (112) on the partitions (143) 
of the Q transformed bases yields the decomposition of the bases of UB onto M classes, as

∑θ γΩ = =
=

†U ( ) ,
(148)CQT

m

M
m

1

( )

and since =M 2

θ γ γ= + , (149)(1) (2)

where γ m( ) identifies a cluster of Km bases for m-th system state.
Therefore, the resulting system state is as

χ
=

= .

†

†

U U C W

U U U U W
W

( ( ))

( )

(150)

CQT P B

CQT P CQT B

The next problem is therefore the evaluation of the estimations of the =M 2 source systems ρin and ζQR
t( ), as 

given in (7) from χW . Using the system state (150), the system separation is produced by the †UDSTFT unitary that 
realizes the inverse quantum DSTFT (discrete short-time Fourier transform)129.

Inverse quantum DSTFT and quantum DFT.  The result of unitary UML is evaluated further by the †UDSTFT 
unitary.

Theorem 3. (Target source system recovery). Source system =m 1 can be extracted by the †UDSTFT and UDFT discrete 
quantum Fourier transform on the output of an HRE quantum memory.

Proof. The †UDSTFT inverse quantum DSTFT transformation applied to a state k  of the computational basis

… −B K: { 0 , , 1 }, (151)

is defined as

∑ ψ= − =π

=

−
−†U k h

K
f j h e j( , ) 1 ( ) ,

(152)j

K

W
ijk K

kDSTFT
0

1
2 /

where h is selected such that

≤ − ≤ −j h K0 ( ) 1 (153)

holds, set

ψ = … −ψS k K: { : 0, , 1} (154)k

formulates an new orthonormal basis, while ⋅f ( )W  is a windowing function129.

Using system state χW  in (150), let γ m k( , ) be a k-th basis of cluster γ m( ), and let χW( ) m t( , ) be defined as

∑χ χ γ= =
=

W W W( ) [ ]
(155)

m t
mk

k

K
m k

k
m t( , )

1

( , ) ( , )

and let system χW  identify (33) as

∑ ∑χ α=
= =

W k ,
(156)m

M

k

K

m
1 1m

m

where km  is the eigenvector of the Hamiltonian of γ m k( , )m , Km is the cardinality of cluster γ m( ), while 
α∑ ∑ == = 1m

M
k
K

1 1m
m .

Since the k1  values are some parameters of UML, we can redefine (156) as

∑ ∑χ α= +
= =

W k x ,
(157)m

M

k

K

m k
1 1

1 ,
m

m

m
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where

=





=x m0, if 1
!0, otherwise

,
(158)m k, m

and

α = .
K
1

(159)

In our setting, using =km 1 as input parameter available from the UML block, we redefine the formula of (152) via a 
unitary ∼

†
UDSTFT, as

∑ ψ= − =
∼ π

=

−
−†

U k h
K

f j h e j( , ) 1 ( ) ,
(160)

m
j

K

W
ijk K

kDSTFT
0

1
2 /

m
1

where we set −f j h( )W  to unity,

− = .f j h( ) 1 (161)W

Thus, applying (160) on (157) yields

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

α

α

α






+







=
























=
























∼

π π

π π

= =

=

−

=

−

=

−
− −

=

−
−

=

−

=

−
−

†
U k x

e e j

e e j ,
(162)

m

M

k

K

m k

K
j

K

m

M

k

K
ijk K ijx K

K
j

K
ijx K

m

M

k

K
ijk K

DSTFT
1 1

1 ,

1

0

1

0

1

0

1
2 / 2 /

1

0

1
2 /

0

1

0

1
2 /

m

m

m

m

m
m km

m km

m

m

1 ,

, 1

where

=j K
k

,
(163)m

and ∑ =π
=
− −e 1j

K ijx K
0
1 2 /m km, , thus (162) can be rewritten as

∑ ∑

∑ ∑

α

α






+







=











.

∼

π

= =

=

−

=

−
−

†

( )

U k x

e
(164)

m

M

k

K

m k

K
m

M

k

K
i k K K

k

DSTFT
1 1

1 ,

1

0

1

0

1
2 /

m

m

m

m

m K
km

m

1

As follows, if

=j K
k

,
(165)1

then, the resulting jPr( ) probability is

∑

∑

α

α

α

=

=

=

=

π

π

=

−
−

=

−
−

j e

e

K

K

Pr( )

, (166)

K
k

K
ijk K

K
k

K
i k K

K

K

1

0

1
2 /

2

1

0

1
2 /

2

1 2
1
2

1
1
2

K
k

1
1

1
1 1

2

while for the remaining j-s, the probabilities are vanished out, thus

=jPr( ) 0, (167)
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if

≠ .j K
k (168)1

Therefore, applying the UDFT discrete quantum Fourier transform on the resulting system state (164), defined in 
our setting as

∑= π

=

−

U k
K

e j( ) 1 ,
(169)

DFT
j

K
ijk K

1 0

1
2 /1

1

yields the source system =m 1 in terms of the K1 bases, as

∑ ∑ ∑α





+






=

= Φ

∼

= = =

†

⁎

U U k x k

, (170)

DFT
m

M

k

K

m k K
k

K

DSTFT
1 1

1 ,
1

1
1

m

m

m
m

1

1

that identifies the target system from (35).

The proof is concluded here. ■
The state of the QR quantum register after the ∼

†
UCQT operation and after the ∼

†
UDSTFT operation is depicted in 

Fig. 4.

Retrieval Efficiency
This section evaluates the retrieval efficiency of an HRE quantum memory in terms of the achievable output SNR 
values.

Theorem 4. (Retrieval efficiency of an HRE quantum memory). The SNR of the output quantum system of an HRE 
quantum memory is evolvable from the difference of the wave function energy ratios taken between the input system, 
the quantum register system, and the output quantum system.

Proof. Let ψin  be an arbitrary quantum system fed into the input of an HRE quantum memory unit,

∑ψ = a i ,
(171)in

i
i

and let φ  be the state outputted from the QR quantum register,

φ ψ= U , (172)QR in

where UQG is an unknown transformation.

Figure 4.  (a) The state of the QR quantum register after the ∼
†

UCQT operation. The quantum register contains 
= ∑K Km m states, +k xm k1 , m

, each with probability α = K1/2 , with a unit distance between the states 
(depicted by the red dots). (b) The state of the QR quantum register after the ∼

†
UDSTFT operation. The quantum 

register contains K1 quantum states, K
k1

, = … −k K0, , 11 1 , each with probability α =K K
K K
1 2

1
2 1

1
2

2 , with a 

distance 
−

K
K K1

2
1

 between the states (depicted by the red dots; the vanished-out states of the quantum register are 
depicted by the black dots).
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Let Φ⁎  be the output system of as given in (170), that can be rewritten as

φ ψΦ = =⁎ U U U( ), (173)QR in

where U is the operator of the integrated unitary operations of the HRE quantum memory, defined as

= = .
∼ ∼† † †

U U U U U U U U U U (174)ML DFT F CQT P CQT DFTDSTFT DSTFT

Then, let OOV  be a verification oracle that computes the energy E of a wavefunction ψ ϕ= ∑ ci i i
133 as

∫
∫

∫

∫
ψ

ψ ψ

ψ ψ

ϕ ϕ

ϕ ϕ
=

|
=

∑

∑ |

ˆ ˆ⁎

⁎E
H c c H

c c
( ) ,

(175)

ij i j i j

ij i j i j

where Ĥ is a Hamiltonian.

Then, let evaluate the corresponding energies of wavefunctions ψin , φ  and Φ⁎  via OOV , as

ψ=S E( ), (176)in

φ=X E( ), (177)

and

= Φ .⁎T E( ) (178)

Then, let Δ be the difference of the ratios of wavefunction energies, defined as

Δ = −R S T R S X( , ) ( , ) (179)

where

=R S T S
T

( , ) , (180)

and

= .R S X S
X

( , ) (181)

From the quantities of (176)–(178), let Φ⁎SNR( ) be the SNR of the output system Φ⁎ , defined as

Φ =

= Δ +

⁎ R S T

X

SNR( ) 10log ( , )

log SNR( ), (182)

10

10
1

10

where

=X R S XSNR( ) 10log ( , ), (183)10

while Δ is as given in (179).

Therefore, the SNR of the output system can be evolved from the difference of the ratios of the wavefunction 
energies as

Φ =

= Δ +

= − +

= + .

⁎

( )

R S T
R S X

R S T R S X R S X

R S X

SNR( ) 10log ( , )
10(log log ( , ))
10(log ( ( , ) ( , )) log ( , ))

10 log log ( , ) (184)
R S T
R S X

10

10 10

10 10

10
( , )
( , ) 10

It also can be verified that Δ from (179) can be rewritten as

Δ = Δ10 , (185)/10SNR

where ΔSNR is an SNR difference, defined as
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Δ = Φ − .⁎ XSNR( ) SNR( ) (186)SNR

The high SNR values are reachable at moderate values of wavefunction energy ratio differences (179), therefore 
a high retrieval efficiency (high SNR values) can be produced by the local unitaries of the memory unit (see also 
Fig. 5).

The proof is concluded here. ■
The verification of the retrieval efficiency of the output of an HRE quantum memory unit is depicted in Fig. 5.
The output SNR values in the function of the Δ wave function energy ratio difference are depicted in Fig. 6.

Conclusions
Quantum memories are a cornerstone of the construction of quantum computers and a high-performance 
global-scale quantum Internet. Here, we defined the HRE quantum memory for near-term quantum devices. 
We defined the unitary operations of an HRE quantum memory and proved the learning procedure. We showed 
that the local unitaries of an HRE quantum memory integrates a group of quantum machine learning operations 
for the evaluation of the unknown quantum system, and a group of unitaries for the target system recovery. We 
determined the achievable output SNR values. The HRE quantum memory is a particularly convenient unit for 
gate-model quantum computers and the quantum Internet.

Ethics statement.  This work did not involve any active collection of human data.

Data availability
This work does not have any experimental data.
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Figure 5.  Verification of the retrieval efficiency of an HRE quantum memory unit via an OOV  verification oracle. 
In the verification procedure, an unknown quantum system ψ  is stored in the QR quantum register that is 
evolved by an unknown operation UQR of the QR quantum register. The output of QR is an unknown quantum 
system φ  that is processed further by the U integrated unitary operations of the HRE quantum memory. The 
output system of the HRE quantum memory is Φ⁎  (170). The OOV  oracle evaluates the SNR of the readout 
quantum system Φ⁎ .

Figure 6.  The output SNR values, Φ =⁎ R S TSNR( ) 10log ( , )10 , of an HRE quantum memory in the function 
of Δ = −R S T R S X( , ) ( , ), where =R S T( , ) S

T
, =R S X( , ) S

X
, ψ=S E( )in , φ=X E( ), and = Φ⁎T E( ).
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