
A Conditional Zebrafish MITF Mutation Reveals
MITF Levels Are Critical for Melanoma Promotion vs.
Regression In Vivo
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The microphthalmia-associated transcription factor (MITF) is the ‘‘master melanocyte transcription factor’’ with a
complex role in melanoma. MITF protein levels vary between and within clinical specimens, and amplifications
and gain- and loss-of-function mutations have been identified in melanoma. How MITF functions in melanoma
development and the effects of targeting MITF in vivo are unknown because MITF levels have not been directly
tested in a genetic animal model. Here, we use a temperature-sensitive mitf zebrafish mutant to conditionally
control endogenous MITF activity. We show that low levels of endogenous MITF activity are oncogenic with
BRAFV600E to promote melanoma that reflects the pathology of the human disease. Remarkably, abrogating MITF
activity in BRAFV600Emitf melanoma leads to dramatic tumor regression marked by melanophage infiltration and
increased apoptosis. These studies are significant because they show that targeting MITF activity is a potent
antitumor mechanism, but also show that caution is required because low levels of wild-type MITF activity are
oncogenic.
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INTRODUCTION
Driver genes that stimulate proliferation and survival are
important drug targets in cancer. The discovery of BRAFV600E

mutations in nevi and melanoma has directly led to the
development of small-molecule inhibitors with clear clinical
benefit (Flaherty et al., 2012). Despite these dramatic impro-
vements, drug resistance remains a critical problem, and most
patients with metastatic melanoma eventually succumb to
the disease within a year. It is therefore necessary to identify
additional therapeutic targets in melanoma that can be used in
combination with available treatments (Tsao et al., 2012).

One of the important genes in melanocyte development and
melanoma is the highly conserved ‘‘master melanocyte tran-
scription factor’’ microphthalmia-associated transcription
factor (MITF) (Levy et al., 2006). MITF responds to multiple

signaling cascades to orchestrate genes involved in
melanocyte growth, differentiation, and survival (Cheli et al.,
2010). Although MITF mutations in development lead to
similar phenotypes across species, the function of MITF in
melanoma is complex and not fully understood. MITF is
expressed in most melanomas, although MITF protein levels
vary between melanoma specimens, with some subsets of
melanoma showing high levels and others showing low levels
of MITF (Flaherty et al., 2012). MITF activity can also vary
within an individual melanoma, such that low levels of MITF
promote invasion and stem-cell like phenotypes and moderate
levels of MITF activity promote cell cycle progression (Goodall
et al., 2008; Hoek and Goding, 2010; Cheli et al., 2011; Strub
et al., 2011; Cheli et al., 2012). The ability of MITF to activate
cancer hallmark genes makes it an important mediator of
oncogenic signaling in cancer. This is underscored by
evidence that MITF is at least partially responsible for the
oncogenic potential of BRAF in cells (Wellbrock and Marais,
2005; Wellbrock et al., 2008). Studies from melanoma cells
indicate that a key function of BRAFV600E seems to be to
maintain MITF activity at a critical threshold where it promotes
proliferation, invasion, and survival, without promoting
differentiation (at higher levels) or apoptosis or senescence
(at lower levels) (Giuliano et al., 2010; Hoek and Goding,
2010; Cheli et al., 2011; Strub et al., 2011; Cheli et al., 2012)

However, MITF may have additional cooperating functions
in melanoma. MITF is amplified in some melanomas, and
expression of ectopic MITF can cooperate with BRAFV600E to
transform primary human melanocytes and neural crest cells
(Garraway et al., 2005; Kumar et al., 2013). In addition, MITF
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mutations have been identified in BRAFV600E melanomas
including somatic mutations with either hypomorphic or
increased activity (Cronin et al., 2009), and a germline
SUMOylation E318K mutation that is a melanoma risk factor
and confers differential gene expression of MITF target genes
(Bertolotto et al., 2011; Yokoyama et al., 2011). Thus, MITF is
important in melanoma because it is an effector of oncogenic
signaling, and also because it may have additional activity that
contributes to melanomagenesis.

How MITF activity contributes to melanoma development
and survival in an animal is unknown. Animal models are
fundamental in establishing how genetic mutations contribute
to cancer in vivo. Although many Mitf mutant mouse lines
exist (Hou and Pavan, 2008), they do not permit conditional
control of MITF activity in melanoma development or survival.
Here, we address the importance of MITF activity in
melanoma in vivo using a conditional mitfa temperature-
sensitive zebrafish mutant (mitfavc7) in which endogenous
MITF activity can be altered by changing the temperature of
the water (Johnson et al., 2011; Taylor et al., 2011). In
zebrafish, there are two mitf genes (mitfa and mitfb), and
mitfa is essential for the development of neural crest–derived
melanocytes (Lister et al., 1999). Thus, by using a mitfa mutant
we specifically control endogenous MITF activity in skin
melanocytes, and avoid the potential complication of MITF
activity in other tissues, such as those described in mouse
mutants (Hou and Pavan, 2008). We show that low levels
of wild-type MITF activity are oncogenic with BRAFV600E

to promote melanoma in vivo, and that abrogating MITF
activity in melanoma leads to rapid tumor regression. These
results reveal that critical thresholds of MITF lead to
dramatically different melanoma outcomes, and indicate
that although targeting MITF activity is a potent antitumor
approach, simply reducing MITF activity is sufficient to drive
melanoma in BRAFV600E melanocytes.

RESULTS
Hypomorphic MITF is oncogenic with BRAFV600E in
melanomagenesis

We sought to test whether hypomorphic levels of MITF activity
could contribute to melanoma development in vivo using
a zebrafish mitf temperature-sensitive mutant, mitfavc7

(Figure 1a–d; Johnson et al., 2011; originally characterized
as fh53) and a transgenic line expressing BRAFV600E in
melanocytes that we have previously developed and has
been effective in the identification of cooperating driver
genes (Figure 1e) (Patton et al., 2005; Ceol et al., 2011). The
mitfavc7allele is a splice site mutation at the intron 6 splice
donor site that leads to a reduction in melanocytes when
zebrafish are reared at o26 1C, and an almost complete loss of
melanocytes at 428 1C (Figure 1b–d) (Johnson et al., 2011).
We performed two generations of genetic crosses with the
BRAFV600E transgenic fish to the mitfavc7 mutant zebrafish
to generate BRAFV600E/V600Emitfavc7/vc7 (BRAFV600Emitf) zebra-
fish. As expected, BRAFV600Emitf zebrafish did not develop
melanocytes at the restrictive temperature (28.5 1C) because
there is not sufficient MITF activity to generate melanocytes
(Figure 1f). Importantly, at o26 1C, BRAFV600Emitf zebrafish

developed nevi (Figure 1g), some of which progressed to
melanoma (n¼ 18/67; Figure 1h–j). The mitfavc7 allele is a
splice site mutation, and we confirmed that the BRAFV600Emitf
melanomas expressed the mis-spliced þ intron6 variant with
hypomorphic levels of correctly spliced mitfa (Figure 1k). As
controls, neither BRAFV600E transgenic fish carrying wild-type
mitfa alleles nor mitfa mutants lacking the BRAFV600E trans-
gene developed melanoma at any temperature (Patton et al.,
2005; Johnson et al., 2011; data not shown). We compared
the incidence of melanoma in BRAFV600Emitf compared with
BRAFV600E/V600Ep53M214K/M214K (BRAFV600Ep53) zebrafish, and
found that the incidence was similar between the two
genotypes (n¼48/177; Figure 1j). These results show that
hypomorphic levels of MITF activity interact genetically with
BRAFV600E to promote melanoma in vivo.

BRAFV600Emitf melanomas display characteristic
histopathological features

We wanted to know whether the mitf and p53 cooperating
mutations contributed to melanoma pathology. We found that
most BRAFV600Emitf melanomas displayed a superficial
spreading growth pattern with some invasion into the under-
lying muscle (Figure 2a; n¼ 22/26). This pattern was reminis-
cent of superficial spreading melanoma, the most common
subtype of human melanoma. A striking characteristic feature
of BRAFV600Emitf melanomas was the presence of large,
heavily pigmented cells throughout the tumor (n¼26/26),
and often found in the kidney (the site of the hematopoietic
compartment in zebrafish). Macrophages laden with melanin
(melanophages) are often a feature of human malignant
melanoma, and express CD68. We found these large cells
to correspond to CD68-positive cells in the BRAFV600Emitf
melanomas and characterized them as melanophages
(Supplementary Figure S1 online). BRAFV600Emitf melanomas
were composed of spindle- and epithelioid-shaped tumor
cells, marked by few mitoses and showing only mild nuclear
pleomorphism. These histological features were characteristic
of BRAFV600Emitf melanomas, and allowed reliable identifica-
tion of these tumors on blind assessment by a clinical skin
pathologist (MEM; n¼ 26/26; Figure 2a). By comparison, most
BRAFV600Ep53 melanomas progressed rapidly, displaying a
nodular and a highly invasive growth pattern into multiple
organs (n¼19/21; Figure 2b). No melanophages were
observed in BRAFV600Ep53 melanomas, and the tumors were
composed primarily of epithelioid cells, with features indica-
tive of aggressive cancers including numerous mitoses and
moderate-to-severe nuclear pleomorphism.

We analyzed the activation state of the MAPK cascade in
the BRAFV600Emitf and BRAFV600Ep53 mutant melanoma by
performing immunohistochemical analysis with anti-phospho-
extracellular signal–regulated kinase (ERK; Figure 2c). As
expected, phospho-ERK signal was detected in the majority
of melanoma cells in both BRAFV600Emitf and BRAFV600Ep53
melanoma, and BRAFV600Ep53 had increased levels of p53
mutant protein (Figure 2d). Both melanomas stained positively
for Melan-A, a MITF target gene and marker for melanoma
and melanocytes in human specimens (Du et al., 2003)
(Figure 2e). Increased mitotic activity in BRAFV600Ep53
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melanomas compared with BRAFV600Emitf melanoma cells
was confirmed by immunostaining for phospho-histone H3, a
marker of late-G2/M phase (Figure 2f and g). These results
show that there is a strong genotype–phenotype correlation for
cooperating mutations that can directly affect growth features
and cellular histology.

Differential MITF target gene expression between melanoma
genotypes

We wanted to understand how hypomorphic MITF activity
contributed to melanoma, and hypothesized that MITF target
genes may be differentially expressed between the melanoma
genotypes. We performed quantitative real-time PCR on MITF
target genes involved in proliferation (cdk2), cell cycle arrest
(p16, p21), differentiation (tyr, dct), and survival (bcl-2, hif1a,
c-met) (Figure 3). Despite the differences in phospho-histone
H3 staining between the genotypes, the differences in cdk2,
p16, and p21 cycle threshold (Ct) values between melanoma
genotypes were not statistically significant (Figure 3a–c).
Neither was there a significant difference in the cycle thres-
hold values for expression of p53, bcl-2, or hif1a between
melanoma genotypes (Figure 3f–h). These results indicate that
despite the reduced levels of MITF activity in BRAFV600Emitf
melanomas, there is sufficient MITF activity to control MITF
target genes involved in cell proliferation and survival. Strik-
ingly, BRAFV600Emitf melanomas expressed lower levels of
differentiation genes (tyr and dct), as indicated by higher cycle
threshold values (Figure 3d and e). Unexpectedly, we
found that BRAFV600Emitf melanomas expressed significantly
higher levels of c-met compared with BRAFV600Ep53

melanoma (Figure 3i). c-met is a MITF target gene, but is also
transcriptionally regulated by Pax3 in melanoblasts and mela-
nomas (McGill et al., 2006; Beuret et al., 2007; Mascarenhas
et al., 2010). The tumor-initiating potential of cell types can
vary within a lineage and differing tumor potentials may exist
within the melanocyte lineage (Kumar et al., 2013). Although
the tumors are heterogeneous, the low expression of
differentiation genes (tyr and dct) coupled with high c-met
gene expression pattern suggests that hypomorphic MITF
activity may maintain melanocytes in a less differentiated
state that is more susceptible to BRAFV600E transformation.

Loss of MITF causes melanoma regression

MITF is a lineage survival oncogene in cells, but the effect of
abrogating MITF activity in an animal model of melanoma
in vivo is unknown. To develop an animal system that could
directly validate MITF as a drug target, we tested the effects of
dramatically reducing MITF activity on melanoma survival by
increasing the water temperature to the restrictive conditions
(32 1C); none of the aberrant mitfavc7 splice products are
sufficient for melanocyte development at these restrictive
temperatures (Johnson et al., 2011), and MITF activity is not
required to maintain the activity of the mitfa promoter
fragment driving the BRAFV600E transgene (Supplementary
Figure S2 online; Dooley et al., 2013). BRAFV600Emitfvc7

zebrafish were reared at o26 1C to promote melanoma
development, and then the temperature of the water was
raised to 32 1C to turn off MITF activity. Within 2 weeks, 8/12
melanomas had dramatically regressed (Figure 4a; fish 1
and 2). Melanoma regression was the result of the mitfavc7
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mutation and not just the water temperature because BRAF-
V600Ep53 zebrafish upshifted to 32 1C for 2 weeks showed no
tumor regression and even continued growth (n¼6/6;
Figure 4b). By 2 months, 12/15 very large tumors showed
regression, and 6 of these fish showed complete regression
and even healing at the tumor site (Figure 4c; fish 3 and 4).
Interestingly, despite the striking levels of melanoma regres-
sion, melanomas recurred following a temperature shift to
o26 1C, indicating that a subpopulation of melanoma cells

with very low MITF activity survive and are capable of
repopulating the tumor site (Supplementary Figure S3 online).

To understand the process of melanoma regression, we
shifted BRAFV600Emitf zebrafish to the restrictive temperature
(32 1C) for 7 days to analyze melanoma regression in progress.
Histological analysis of the regressing melanomas showed
evidence of tumor regression, characterized by marked loss of
tumor cell density and accumulation of heavily pigmented
melanophages (n¼ 7/7; Figure 5a and b). To address whether
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apoptosis contributed to regression, we stained sections of the
regressing BRAFV600Emitf melanomas with antibodies to detect
active (cleaved) Caspase-3. We found high levels of active
Caspase-3 in the regressing tumors compared with BRAFV600E-

mitf melanomas at o26 1C (n¼5 in each group; Figure 5c).
We conclude that there is a genetic dependency on MITF
activity in BRAFV600Emitf melanoma.

DISCUSSION
Identifying BRAFV600E cooperating mutations that drive mela-
noma progression is critical for developing new therapeutic
approaches and tackling drug resistance. Accumulating evi-
dence indicates that MITF activity is a key contributing factor
in melanoma (Tsao et al., 2012). We now show in an animal
that a low level of wild-type MITF activity is oncogenic with
BRAFV600E and that abrogating MITF activity in melanoma
leads to tumor regression.

The BRAFV600Emitf model is relevant to human melanoma,
because for some patients, low expression of MITF is asso-
ciated with disease progression and poor prognosis (Salti
et al., 2000; Levy et al., 2006). In these contexts, exoge-
nous expression of MITF leads to inhibition of proliferation
(Selzer et al., 2002; Wellbrock and Marais, 2005). This is in
apparent contrast to evidence that MITF amplification is also
an indicator of poor prognosis, and that MITF cooperates with
BRAFV600E to transform melanocytes (Garraway et al., 2005).

These differences in MITF activity may reflect distinct
subtypes of melanoma; however, another possibility is that
MITF amplification indicates the need for melanoma cells to
maintain sufficient MITF activity for survival in the context of
high BRAFV600E signaling (Garraway et al., 2005; Wellbrock
et al., 2008). Thus, a common feature of melanoma may
involve maintaining sufficient MITF activity for survival
and proliferation while at the same time restricting higher
levels of MITF activity that promote cell cycle arrest and
differentiation or lower levels that lead to cell cycle arrest
and apoptosis (Gray-Schopfer et al., 2007; Hoek and
Goding, 2010). Here, the temperature-sensitive nature of
the zebrafish mitfavc7 mutant allele enables MITF activity to
be varied within an individual animal by altering
the water temperature, thereby revealing the role of MITF
activity levels in melanomagenesis and survival in vivo,
although we cannot exclude the possibility that the mitfavc7

mutant has additional functions that contribute to
melanoma.

Histopathological characteristics of melanoma are deter-
mined by a number of factors, and at least some are genetically
determined (Whiteman et al., 2011). This is illustrated by
the clinical classification of BRAFV600E melanomas as a
subgroup based on histomorphological features (Viros et al.,
2008). We show here that cooperating mutations also have
an important role in determining the pathological features
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of melanoma. We find that low, oncogenic levels of MITF
activity contribute to melanoma pathology, possibly by
maintaining melanoma cells in a progenitor-like state.
Notably, macrophages laden with melanin (melanophages)
were a diagnostic feature of the BRAFV600Emitf melanomas.
Melanophages are found in human melanomas, are indicative
of an immune response, and predict an improved prognosis
for patients, possibly because of tumor regression through
macrophage engulfment of melanoma cells (Handerson et al.,
2007). Thus, BRAFV600E cooperating mutations can directly
influence tumor morphology, as well as tumor–immune cell
interactions.

The dramatic recurrence of melanomas in patients follow-
ing treatment with the BRAFV600E inhibitor, vemurafenib,
indicates that combination therapies that target multiple
pathways in melanoma may be necessary to improve patient
outcome. MITF activity has been implicated as an important
drug target (Flaherty et al., 2012; Tsao et al., 2012), and we
now show that shutting off endogenous MITF activity in vivo
leads to dramatic and rapid melanoma regression,
characterized by melanophage infiltration and apoptosis.
The melanomas recur at the same location following
reactivation of MITF activity (Supplementary Figure S3 online),
although at this stage we cannot distinguish whether this
reflects incomplete tumor regression or a cancer-initiating

population that can survive with low-to-no MITF activity.
Notably, although melanophages are presumably participat-
ing in melanoma regression and/or clearance (Figure 5), we
do not know their function in melanoma growth (Figure 2a):
macrophages can lead to both melanoma regression
(Nakashima et al., 2012) and promotion (Zaidi et al.,
2011), or form melanoma–macrophage hybrids (Pawelek,
2007).

In conclusion, our zebrafish model provides in vivo genetic
evidence that targeting MITF activity—either directly or
through regulators of MITF—may be an effective approach
to melanoma therapy. Critically, our studies show that
although targeting MITF activity is a potent antitumor mechan-
ism, it must be done with caution because partial or
ineffective targeting of MITF is oncogenic.

MATERIALS AND METHODS
All zebrafish work was done in accordance with the United Kingdom

Home Office Animals (Scientific Procedures) Act (1986) and

approved by the University of Edinburgh Ethical Review Committee,

and in the United States in compliance with protocol AM10415,

approved by the Institutional Animal Care and Use Committee of

Virginia Commonwealth University. The temperature-sensitive mit-

favc7 mutant is described in Johnson et al. (2011), and the mitfavc7

phenotypes were first inadvertantly ascribed to the mitfafh53mutant.
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Histopathology

Adult zebrafish were prepared for histopathology as described

previously (Patton et al., 2011). Antibodies and antigen retrieval

methods were as follows: anti-phospho-extracellular signal–regulated

kinase 1/2, 1:1,000, EDTA buffer (Cell Signaling Technology,

Danvers, MA); p53 5.1, 1:500, citrate buffer; phospho-histone H3,

1:1,000, citrate buffer (Cell Signaling Technology); Melan-A, 1:75,

citrate buffer (DAKO, Cambridge, UK). For the proliferation analysis,

the total melanoma cell population in each of the six images was

counted (between 1,000 and 3,000 cells) and the percentage of

phospho-histone H3–stained cells calculated.

PCR analysis

Total RNA was isolated using TRIzol reagent (Invitrogen, Paisley, UK).

First-strand complementary DNA was synthesized from 1mg of total

RNA in a 10ml reaction using SuperScript III Reverse Transcriptase

(Invitrogen). Complementary DNA was then amplified by PCR using

primers covering the alternative splicing region in the mitfavc7 gene.

Quantitative real-time PCR was performed using SYBR Green

Jumpstart Taq Readymix for high-throughput real-time PCR (Sigma,

St Louis, MO). Reactions were run in an ABI PRISM 7900 HT

Sequence Detection System (Applied Biosystems, Paisley, UK) using

the SYBR Green protocol. The zebrafish b-actin gene was used

as reference. Primers sequences are presented in Supplementary

Table S1 online.
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Figure 5. Melanoma regression is associated with melanophage and apoptotic activity. (a) Hematoxylin and eosin (H&E) staining of a regressing BRAFV600Emitf

melanoma showing almost total regression with prominent melanophages (scale bar¼ 200mm). Boxed region is enlarged in right panel (scale bar¼ 100mm).

(b) A regressing tumor, showing subtotal regression with melanoma cells present (scale bar¼100mm). Boxed region is enlarged in right panel (scale bar¼ 50mm).

(c) Images of nonregressing (o26 1C) and regressing (32 1C) BRAFV600Emitf melanomas (as shown in b), stained with an antibody to detect cleaved-Caspase-3

(scale bar¼50mm).
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