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ABSTRACT To study the spatial and temporal dynamics of bacterial colonization
under field conditions, we planted and sampled Arabidopsis thaliana during 2 years
at two Michigan sites and surveyed colonists by sequencing 16S rRNA gene ampli-
cons. Mosaic and dynamic assemblages revealed the plant as a patchwork of tissue hab-
itats that differentiated with age. Although assemblages primarily varied between roots
and shoots, amplicon sequence variants (ASVs) also differentiated phyllosphere tissues.
Increasing assemblage diversity indicated that variants dispersed more widely over time,
decreasing the importance of stochastic variation in early colonization relative to tissue
differences. As tissues underwent developmental transitions, the root and phyllosphere
assemblages became more distinct. This pattern was driven by common variants rather
than those restricted to a particular tissue or transiently present at one developmental
stage. Patterns also depended critically on fine phylogenetic resolution: when ASVs
were grouped at coarse taxonomic levels, their associations with host tissue and age
weakened. Thus, the observed spatial and temporal variation in colonization depended
upon bacterial traits that were not broadly shared at the family level. Some colonists
were consistently more successful at entering specific tissues, as evidenced by their
repeatable spatial prevalence distributions across sites and years. However, these var-
iants did not overtake plant assemblages, which instead became more even over time.
Together, these results suggested that the increasing effect of tissue type was related to
colonization bottlenecks for specific ASVs rather than to their ability to dominate other
colonists once established.

IMPORTANCE Developing synthetic microbial communities that can increase plant
yield or deter pathogens requires basic research on several fronts, including the effi-
ciency with which microbes colonize plant tissues, how plant genes shape the micro-
biome, and the microbe-microbe interactions involved in community assembly.
Findings on each of these fronts depend upon the spatial and temporal scales at
which plant microbiomes are surveyed. In our study, phyllosphere tissues housed
increasingly distinct microbial assemblages as plants aged, indicating that plants can
be considered collections of tissue habitats in which microbial colonists—natural or
synthetic—are established with differing success. Relationships between host genes
and community diversity might vary depending on when samples are collected,
given that assemblages grew more diverse as plants aged. Both spatial and temporal
trends weakened when colonists were grouped by family, suggesting that functional
rather than taxonomic profiling will be necessary to understand the basis for differ-
ences in colonization success.
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As plant tissues emerge and grow, new habitats are created for microbial colonists (1,
2). While they represent only a fraction of colonist diversity (3, 4), bacterial endophytes

are important to host plant fitness because of their potential to affect nutrient uptake
(5–7), stress responses (8), and defenses against pathogens (9, 10). Given these activities,
natural and engineered bacterial communities have been proposed as tools for sustainably
enhancing plant growth and stress resistance (11). When lineages in these communities
are pathogenic or beneficial to the host, the efficiency with which they enter plant tissue
is of particular interest (12–14). Despite stochasticity in colonization (15–17), there is evi-
dence that plants selectively filter the bacteria colonizing the intercellular space in their tis-
sues. Characterizing spatial and temporal variation in this filtering is key to understanding
how natural and cultivated communities assemble in the endosphere.

The idea that plant tissue filters bacterial colonists is supported by the observation
that endophytic communities display only a fraction of the diversity found in soil. For
example, the diversity of taxa found in the root endosphere is lower than in rhizo-
sphere soil (18). Furthermore, a subset of bacterial families is found at higher relative
abundance in roots than in soil (19). Filtering is likely due in part to differences
between soil and root cell walls as substrates for colonization, as indicated by similar-
ities between communities in live roots and wood slivers exposed to the same field-
collected soil inocula (20). Filtering by living tissue may also involve selection for or
against specific bacterial lineages, as indicated by community members enriched over
soil levels in roots but not in wood sliver samples and vice versa (20).

Although plant tissue appears to filter bacterial colonists, we do not yet fully under-
stand how spatial and temporal variation influences this process in natural environments.
Variation in abiotic factors and the pool of soil colonists at planting sites can influence the
efficiency with which bacterial lineages enter plants, leading to associations between geo-
graphic location and the composition of bacterial assemblages in plant tissues (21–23).
Recent evidence suggests that within plants, communities in different tissues are com-
posed of a common pool of systemic colonists (24, 25). However, individual lineages can
display differences in colonization efficiency between roots and stems (26), and several
studies have reported variation between the bacterial assemblages found in different tis-
sues (27–29), supporting the idea that some bacteria are more successful than others in
colonizing a given habitat within the plant. Variation in assemblage composition is also
observed when plant tissues are sampled at different developmental stages (22, 30, 31).
These temporal trends could be related to the time available for bacterial colonization of
plant tissues before sampling, changes in how hosts filter colonists with age, or interac-
tions arising as more bacteria cooperate or compete within the host. Since bacteria alter
plant tissues upon arrival, the host response to established colonizers could also change
the efficacy of colonization later in development (32, 33).

Since most surveys of plant colonists have either focused on a single tissue or taken
only a snapshot of community composition in time, it is difficult to compare the extent
and interaction of geographic, tissue-level, and temporal effects on plant endophyte
filtering. Adding to the body of work exploring host plant control of colonization, we
compared the relative influence of plant tissue type, age, harvest site, and year on the
bacteria that naturally colonized a common haplotype of an annual plant, Arabidopsis
thaliana. To understand the distribution of the bacterial traits driving these patterns,
we examined whether relationships between variables and assemblage composition
depended on the taxonomic level at which the surveyed colonists were grouped. To
ascertain the consistency of spatial and temporal colonization patterns, we compared
the tissues and ages at which bacterial lineages reached maximum prevalence or
abundance between sites and years. In addition, we characterized how the diversity
and evenness of colonists changed across plant tissues throughout development.

RESULTS

We planted surface-sterilized seeds of A. thaliana accessions from a single North
American haplotype (see Table S1 in the supplemental material) at two southwest
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Michigan sites in two consecutive years. These accessions germinate in the fall, over-
winter as small rosettes, flower in the spring, and senesce in the early summer. We har-
vested roots and rosette leaves throughout vegetative growth and also stems, cauline
leaves, flowers, and siliques as they became available during flowering and senescence
(Table S2). To enrich for endophytes, bacteria were washed from the surfaces of plant
tissues by repeated vortexing in surfactant buffer (Text S1). Topsoil was also collected
from field sites at each time point during the second year of study. Bacterial lineages in
the soil and plant tissue samples were quantified by amplification and sequencing of
the V5, V6, and V7 regions of the 16S rRNA gene (16S) (29). The 16S sequences were
grouped into amplicon sequence variants (ASVs) with DADA2 (34) in QIIME2 (35). After
singleton 16S variants and those from plant organelles had been filtered out, 10,803
ASVs were tallied for 1,272 samples (Table 1). A phylogenetic tree for the variants was
inferred with FastTree using MAFFT-aligned 16S sequences (36, 37). The ASVs were
classified at seven taxonomic ranks based on the SILVA 16S database (38).

Bacterial assemblage composition was associated with plant tissue type and
developmental stage. Plants shaped the bacterial assemblages they hosted, making
them distinct from those in the surrounding soil (Text S2). Rather than a single host
environment, the plant appeared to be a collection of microbe habitats defined by tis-
sue type and age. Samples from the same tissue or stage clearly shared a higher pro-
portion of members than randomly compared samples (Fig. 1). When samples from
multiple tissues of the same individual plant were available, comparisons showed that
they did not share a significantly higher proportion of members than randomly paired
samples. Bacterial assemblages therefore appeared to be more similar between sam-
ples of the same tissue type from different plants than between samples from different
tissue habitats in the same plant. Common environments also influenced assemblages,
as evidenced by increased membership overlap in samples from the same site or year
compared to random samples. Despite these patterns, the low proportion of members
shared within groups conditioned on any study variable (,15%) underscored the high
variability of colonization.

The influences of host and environment on assemblage composition were further
supported by analysis of variance. After random subsampling to 1,000 counts, compo-
sition variation between samples was quantified with respect to ASV presence by
Raup-Crick dissimilarity (39), with respect to ASV abundance by Bray-Curtis dissimilarity
(40), and with respect to ASV presence and phylogenetic relatedness by the
unweighted UniFrac distance (41). Analysis of variance with permutation was per-
formed on each dissimilarity matrix for each study variable (a = 0.001) (Table S3).
Variance between ecotypes was not greater than the variance within them, which is
unsurprising given the genetic similarity of the haplogroup to which they belonged
(42). Variance among plant individuals was significant only when compared by Bray-
Curtis dissimilarity. Sample preparation plates and sequencing runs differed signifi-
cantly in composition only when compared by Bray-Curtis dissimilarity and UniFrac

TABLE 1 Samples in the study after quality control

Stage of growth

No. of samples (site ME, site WW)

Soil Roots Rosettes Stems Cauline leaves Flowers Siliques Total
No plant 15, 19 34
Two-leaf plant 6, 4 3, 4 8, 10 35
Four-leaf plant 29, 8 27, 29 93
Six-leaf plant 8, 4 32, 18 45, 26 133
Eight-leaf plant 37, 24 41, 35 137
Flowering plant 4, 3 61, 38 64, 49 41, 38 24, 22 42, 28 14, 25 453
Senescent plant 6, 8 60, 64 54, 75 49, 71 387

Total 77 378 334 208 46 70 159 1,272
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distance. Tissues, developmental stages, planting sites, and years differed significantly
in composition regardless of the dissimilarity or distance used to quantify differences.

Assemblages were primarily influenced by the type of host tissue sampled and its
age. Study variables were nested according to the experimental design to create a
multivariate model for permutational analysis of variance (PERMANOVA) (43). When
PERMANOVA was performed with this model, tissue type and host developmental
stage consistently explained the most sample variation regardless of the dissimilarity
metric employed (Table 2). Tissue type was assigned between 13% and 38% of the
total variance, and developmental stage was assigned between 6% and 30% of var-
iance. Since the residual sum of squares was markedly lowest in PERMANOVA on the
Raup-Crick matrix, we focused on presence-absence variation in community composi-
tion when identifying the ASVs associated with specific tissues and developmental
stages. An additional advantage of focusing on presence-absence variation is that 16S
copy number varies among bacterial lineages.

Assemblages in phyllosphere tissues became more distinguishable from those
in roots as plants matured. Assemblages varied more between root and shoot tissues
than within the phyllosphere. In principal-coordinate analysis (PCoA) based on their
dissimilarities (Fig. 2A to C), samples from the stem and siliques clustered separately

FIG 1 Bacterial assemblage composition was driven by the tissue sampled and the plant's
developmental stage at harvest. The frequency distribution for the proportion of ASVs shared by
plant samples selected randomly (solid gray line; median, 0.096) differed from those for plant
samples selected with respect to tissue type, developmental stage, site, or year (patterned black lines).
The proportion of shared members was significantly higher when sample selection was conditioned on
each variable, but the strongest shifts were observed for tissue type and developmental stage (same-
tissue median, 0.133 [P, 2� 10216]; same-stage median, 0.117 [P=4� 10211]; same-site median, 0.106
[P=8� 1025]; same-year median, 0.100 [P=9� 1024]). The frequency distribution for the proportion of
ASVs shared with any samples taken from different tissues of the same individual plant is also shown
(dotted gray line; P=0.038).

TABLE 2 PERMANOVA results for rarefied data dissimilarity matrixa

Variable DOF

Raup-Crick index Bray-Curtis dissimilarity UniFrac distance

F R2 Pr (>F) F R2 Pr (>F) F R2 Pr (>F)
Tissue 17 256.795 0.376 ,0.001 7.330 0.127 ,0.001 7.949 0.144 ,0.001
Stage 7 492.776 0.297 ,0.001 12.233 0.087 ,0.001 8.048 0.060 ,0.001
Site 1 2275.626 0.196 ,0.001 46.162 0.047 ,0.001 26.216 0.028 ,0.001
Year 1 1348.268 0.116 ,0.001 28.543 0.029 ,0.001 15.496 0.016 ,0.001
Sample plate 20 0 0 1 1.346 0.027 ,0.001 1.389 0.030 ,0.001
MiSeq run 3 0 0 1 3.18 0.01 ,0.001 5.59 0.018 ,0.001
Residuals 0.015 0.673 0.704
aModel used for PERMANOVA: Year/Stage/Tissue1MiSeq run/Sample Plate1 Site. DOF, degrees of freedom. Pr
(.F), probability of F statistic.
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from rosette leaf samples and from root samples. This finding was robust to differences
in rarefaction depth, filtering, and normalization of the count data (44) (Fig. S1).
However, segregation along the first two principal coordinates was not clear when
phyllosphere samples from flowering plants were examined alone, suggesting that
most of the association with tissue type was driven by differences between root and
shoot (Fig. 2D to F). Supporting this interpretation, PERMANOVA on Raup-Crick dissimi-
larities of phyllosphere samples at flowering yielded a P value below the significance
threshold (a = 0.001) (Table S4).

To disentangle the roles of tissue and age in defining habitats within the plant, we
compared root and shoot tissues with respect to the ASVs present both before and af-
ter developmental transitions. Roots and rosettes were compared between late vegeta-
tive and flowering stages, while roots and stems were compared between flowering
and senescence. Tissue assemblages grew more distinguishable later in development,
with the proportion of variance explained by tissue relative to other host variables
increasing at later stages (Table 3). The differentiation of tissue habitats over time was
further examined by quantifying their b diversity at each stage. Pairwise dissimilarities
of samples within and between tissue types were calculated and the distributions of
these distances were compared for both rosette leaves and roots (Fig. 3). As develop-
ment progressed, leaf assemblages simultaneously became more similar to each other
and more distinct from those in the roots, perhaps due to unique selective pressures
or a more restricted pool of potential colonists in the phyllosphere.

Assemblage associations with tissue and stage depended on subgenus
variation in bacteria. In the study of microbiome assembly, patterns can depend
upon the taxonomic resolution with which bacteria are surveyed. ASVs represent the
finest resolution of bacterial lineages possible with 16S data. If the effect of host tissue
type was driven by differential filtering of closely related variants rather than larger

FIG 2 Roots and phyllosphere tissues housed distinct assemblages, while tissues within the phyllosphere
segregated between but not within stages. Plant samples segregated by tissue type in principal-coordinate
analysis (PCoA) based on their dissimilarities. The percentage of sample variance captured by the first two
principal coordinates are listed on the x and y axes. (A and D) Raup-Crick dissimilarities are based on presence-
absence differences between samples. (B and E) Bray-Curtis dissimilarities are based on quantitative differences
in ASV counts between samples. (C and F) UniFrac distances incorporate phylogenetic relatedness of the ASVs
present in samples based on the 16S gene tree. (A to C) For all dissimilarities, samples from roots (orange),
rosette leaves (blue), and stems and siliques (green and red) clustered along the first coordinate. (D to F) In
phyllosphere samples taken at flowering, rosette leaves (blue) overlapped with other phyllosphere tissues.
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bacterial clades, then it should weaken as taxonomic resolution decreases. To deter-
mine the dependence of the observed associations on taxonomic grouping,
PERMANOVA was repeated with a Raup-Crick dissimilarity matrix produced with tables
of ASV counts aggregated at the level of genus, family, order, class, and phylum
(Table 4).

Associations between assemblage composition and host tissue and age weakened
with coarser taxonomic groupings of ASVs from genera to phylum. The weakening
associations with coarser grouping suggested that the distribution of colonists within
the host was not driven by widely shared bacterial traits but rather by variation within
genera, whether acquired by horizontal transfer or evolved in vertically inherited traits.
As a consequence, differences in the colonization patterns across tissues and stages
are erased upon averaging the prevalence patterns of recently diverged lineages
across taxonomic groups.

TABLE 3 PERMANOVA results for tissue comparisons at different stages

Stages No. of samples Tissue R2 Tissue Pr (>F)
Vegetative roots and rosettes 69 0.187 0.013
Flowering roots and rosettes 163 0.621 ,0.001
Flowering roots and stem 94 0.391 ,0.001
Senescent roots and stem 216 0.881 ,0.001

FIG 3 Phyllosphere assemblages became more distinguishable from those in roots as plants matured. The
data set was pruned to samples with at least 100 counts and 20 ASVs to calculate sample dissimilarities.
The distribution of dissimilarities between rosette leaf samples (shaded distribution) was compared to the
distribution of dissimilarities between rosette leaf and root samples (unshaded distributions). This procedure
was repeated for (A) Raup-Crick dissimilarities, (B) Bray-Curtis dissimilarities, and (C) UniFrac distances. As plants
matured (left to right across each panel), phyllosphere samples were increasingly similar to each other and
distinguishable from the root samples.
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Assemblage associations with tissue and stage were largely driven by the same
ASVs, which were neither tissue specific nor transient. By sampling different tissues
at multiple time points, we were able to compare the bacterial lineages that distin-
guished assemblages across space and time. Spatial and temporal trends in the data
were largely driven by the same colonists. To find ASVs significantly associated with
specific tissues and developmental stages (a = 0.01), we compared the indicator value
index of each ASV to a distribution generated by randomly permuting its presence-ab-
sence table (45). We found 460 ASVs that were significantly associated with specific tis-
sue types; 70% of these were associated with roots, and the remainder were associated
with different phyllosphere tissues. Of the 268 stage-discriminating ASVs, 76% were
also among the 460 that distinguished tissue types.

Assemblage differences between tissues were not driven by specialists, and assem-
blage differences over time were not driven by transient community members. The
ASVs associated with a specific tissue generally appeared in multiple plant tissues
taken from a site in a given year rather than being restricted to a single habitat within
the plant (93%). The ASVs associated with a specific stage generally recurred in a tissue
throughout development rather than appearing at a single harvest stage (91%). Thus,
assemblage differences did not result from the exclusive presence of ASVs in specific
tissues or at specific stages in development, but rather from quantitative differences in
prevalence over space and time.

About a fifth of ASVs had consistent prevalence patterns across field sites and
years, while the rest had inconsistent spatial and temporal distributions. If tissue-
specific host traits created environments favorable to particular colonists, then the spa-
tial distributions of those colonists within the plant should be repeated across the sites
and years in which they were observed. To assess whether ASV spatial distributions
were repeated, the tissues in which ASVs reached maximum prevalence, when present,
were compared between sites and years. Based on these comparisons, 21% (98/460) of
the ASVs distinguishing tissues displayed consistent spatial trends, always peaking in
prevalence in the same tissues (shown for Proteobacteria in Fig. 4). For this fraction of
ASVs, colonization patterns might be linked to tissue-specific host traits that differen-
tially filter bacterial colonists. Of these consistently distributed ASVs, 79% were always
most prevalent within roots, 11% in rosettes, 5% in stems, and 5% in siliques. Notably,
the genus Massilia includes two distinct sets of ASVs that consistently peaked in differ-
ent tissues; one set consistently peaked in roots, while the second consistently peaked
in siliques, emphasizing that subgenus variation between bacterial lineages influenced
their distributions within plants. For the remaining ASVs, including those in notable
pathogen genera (Fig. 5), spatial prevalence patterns were inconsistent between sites
and years.

Temporal distributions, like spatial ones, were highly variable. Of the ASVs driving
associations with stage, only 23% (62/268) reached peak prevalence at a consistent
plant developmental stage across sites and years. Temporal distributions were also de-
pendent on fine taxonomic variation, because ASVs within each genus displayed a vari-
ety of dynamics (Fig. 6A). Among the Proteobacteria ASVs driving associations with
age, the ones demonstrating the biggest changes in prevalence were found in both
roots and rosettes across sites and years (Fig. 6B). Temporally dynamic Massilia ASVs

TABLE 4 PERMANOVA results for different taxonomic groupings

Taxonomic rank % of ASVs unassigned

Tissue Stage

R2 Pr (>F) R2 Pr (>F)
ASV 0 0.803 ,0.001 0.461 ,0.001
Genus 43.94 0.769 ,0.001 0.209 0.002
Family 17.71 0.682 ,0.001 0.146 0.132
Order 8.17 0.202 0.003 0.155 0.004
Class 2.97 0.172 ,0.001 0.081 0.065
Phylum 0.57 0.248 ,0.001 0.153 0.001
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peaked during vegetative growth or flowering and then declined. Temporally dynamic
Methylobacterium ASVs consistently increased during plant growth and peaked at
senescence.

Assemblages became more phylogenetically diverse and even over time.
Temporal changes in assemblage a diversity can help explain the increased differentia-
tion between assemblages inhabiting different tissues. The phylogenetic diversity of
colonists was higher later in plant development (Fig. 7A). Phylogenetic diversity was
quantified by taking the tree of 16S variants present in each assemblage, weighting
the branch lengths by variant abundance, and summing the branch lengths (46). This
diversity trend was observed in each type of plant tissue sampled (Fig. S2) but not in
samples of the surrounding soil, indicating that it was related to the colonization of
plant tissue and not purely driven by the abiotic environment during sample collec-
tion. The increasing phylogenetic diversity suggested that bacteria from across the
tree had dispersed more widely among plant assemblages later in development. With

FIG 4 A fraction of ASVs behaved consistently across tissues at each site and in each year of the study. The ASVs distinguishing
tissues, selected by indicator value indices, were filtered for those that reached maximum prevalence in the same tissue at each
site and in each year when they were present. Proteobacteria ASVs with a total prevalence above 5% in all site and year
combinations were selected for the plot. Panels on the y axis separate sites and years, and ASVs are grouped on the x axis by
genus. Dot sizes represent the maximum prevalence for each ASV in each tissue. Despite the significant association detected
between assemblage composition and tissue type, only 21% of tissue-discriminating ASVs consistently reached peak prevalence
in the same tissue. Of the ASVs that behaved consistently, 79% always reached peak prevalence in roots.
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more opportunities to encounter plants over time, subtle differences in the ASV coloni-
zation success between tissues were more likely to be exposed.

Temporal trends in assemblage evenness suggested that tissue type was related to
the size of the colonization bottleneck for specific ASVs rather than to their ability to
dominate other colonists once established in the endosphere. Variants that reached
high prevalence in a tissue did not overtake assemblages in terms of relative abundance.
The average Shannon-Wiener index (47) of assemblages increased (Fig. 7B) and the dis-
tribution of ASV relative abundances decreased (Fig. 7C) during the life of the plant.
Together, these trends showed that instead of domination by a small number of success-
ful variants, mature tissues on average housed a more evenly represented set of ASVs.

DISCUSSION

We surveyed bacterial assemblages inside roots and phyllosphere tissues through-
out the life cycle of the model annual plant A. thaliana. Consistent with previous
results, we found that assemblage composition differed between tissues (29) and dur-
ing the course of development (20, 30). Because we examined multiple tissues and de-
velopmental stages in the same study, we were able to find three connections
between these spatial and temporal trends in natural colonization that have not previ-
ously been identified.

FIG 5 Most ASVs, including those in genera with pathogenic potential, do not have consistent spatial
distributions across sites and years. The majority of ASVs distinguishing tissues did not reach maximum
prevalence in the same tissue at each site and in each year when they were present. This pattern is
exemplified by ASVs in the genera Pseudomonas, Xanthomonas, and Pantoea, which are notable for their
pathogenic potential. Panels on the y axis separate sites and years, and ASVs are grouped on the x axis by
genus. Dot sizes represent the maximum prevalence for each ASV in each tissue.
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First, the associations of host tissue type and developmental stage with assemblage
composition were largely driven by the same colonists. These bacterial variants did not
constitute omnipresent cores of tissue-specific inhabitants: those most strongly associ-
ated with tissue type typically did not reach even 50 percent prevalence within sam-
ples from a tissue type at a given time, underscoring the variability of community com-
position. Nor were these variants exclusive to specific habitat patch within the plant:
most were observed at multiple sampling times and in multiple tissues. Instead,

FIG 6 ASVs in the same genus have distinct temporal trends; a small number consistently reach high prevalence across sites and
years despite variation in temporal trends. Plots feature Proteobacteria genera (Massilia in red and Methylobacterium in black)
containing ASVs that distinguished developmental stages, based on indicator value indices, and reached over 70% prevalence in
multiple sites and years. Horizontal panels separate the trends for roots and rosettes, and vertical panels separate the trends for each
site and year. (A) Bold trend lines show the temporal trends for counts grouped by genus, while transparent lines show the trends
for individual ASVs in each genus. Genus-level trend lines subsume distinct ASV patterns. (B) Temporal colonization patterns were
highly inconsistent despite the significant association between composition and stage, with only 23% of stage-discriminating ASVs
consistently peaking at the same stage. Despite this variation, specific Massilia and Methylobacterium ASVs were among the most
prevalent at both sites and in both years of study.
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differential filtering over space and time quantitatively affected the prevalence of com-
mon endophytes, in agreement with a recent report of consistent organ occupancy in
the plant microbiome (24).

Second, endophytic assemblages filtered by root and shoot tissues became more
distinguishable later in development. Specifically, leaf assemblages grew more differ-
entiated from root assemblages on average. ASVs with consistently higher prevalence
in specific tissues suggested the existence of subtle differences between variants in
the probability of colonizing different tissue niches. Increasing phylogenetic diversity
indicated that bacterial lineages became more widely dispersed during plant develop-
ment. As variants had more opportunities to colonize plant tissue, differences in the
probability of colonizing particular tissues became more important in determining
assemblage composition than the stochasticity of early colonization. Supporting this
idea of the host plant gaining influence during assembly, a recent study of rice (Oryza
sativa) roots found that microbiome composition was dynamic during vegetative
growth and stabilized later in plant life (48).

A third major pattern in our data is the variability of spatiotemporal distributions
among lineages within the same bacterial family or even genus. Most ASVs associated
with tissue type (70%) were significantly enriched or depleted in the roots. Indeed,

FIG 7 Assemblages within plants became more phylogenetically diverse and even over time. (A and B) Plots
show means and standard errors for diversity measures of the plant (black) and soil (gray) samples at each
developmental stage in the second year of study. Significance is shown for pairwise Wilcoxon tests between
stages as follows: ns, not significant; *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001. (A) Phylogenetic
distance was measured as the branch length on the 16S phylogenetic tree between ASVs in the sample,
weighted by ASV abundances. It increased on average with developmental stage. (C) Shannon-Wiener (H9)
indices from rarefied samples depended upon both the richness and evenness of samples and increased on
average with developmental stage. (C) ASV relative abundances decrease during development as assemblages
become more even. For plant samples with at least 100 counts, the relative abundance of each ASV present
was calculated. The frequency distributions of these relative abundances are plotted for each developmental
stage (shade), with relative abundance scaled by log10.
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many of these ASVs belonged to genera that were consistently detected as root endo-
phytes in a study of 17 European sites over 3 years (49). These included members of
Massilia, Burkholderia, and Bradyrhizobium. However, Massilia also contained ASVs that
reached peak prevalence in rosette leaves or siliques. An important factor in detecting
associations between host and colonists is the resolution with which bacterial lineages are
grouped in count tables. When microbes derived from natural sources, including plant
leaves, are passaged outside the host in minimal medium, they produce communities that
are similar at the family level despite being highly variable at the level of sequence variants
(50). In our study, grouping variants by family weakened associations with tissue type and
erased the observed associations with harvest stage. Unlike the carbon metabolism traits
that determined community structure ex situ (50), the functions selected by different tissue
habitats may therefore not be shared broadly by lineages in a family.

In contrast to the roots, the phyllosphere presents microbes with a variety of chal-
lenges related to desiccation, toxins from other colonists, and motility (51). Adaptations
known to mitigate these challenges, such as chemosensory and antimicrobial resistance
genes, have occurred recently and vary at the subgenus level in the lineages of known
phyllosphere colonists (52, 53). Traits like these could lead to greater success in colonizing
the leaf niche, creating phyllosphere assemblages that are more similar to each other and
distant from root assemblages. As a result, closely related strains of known pathogenic,
plant-beneficial, or biocontrol taxa might not be established in the same way throughout
their plant hosts. Functional profiling of the bacterial assemblages may therefore be more
valuable than taxonomic profiling in understanding their spatial and temporal trends
within plants.

Our experimental design, including replicate sites and study years, allowed us to
characterize consistency in distributions over space and time for the variants associ-
ated with host plant features. Biotic factors that can differ between roots and the phyl-
losphere, like salicylic acid, have been manipulated and shown to influence community
assembly in both lab and field conditions (54, 55). If such deterministic factors drove
the observed variation in composition, then we might expect to see bacterial endo-
phytes with the same across-tissue spatial distributions in repeated surveys. However,
only about 20% of variants distinguishing tissues were consistently more prevalent in a
specific tissue. The inconsistent behavior of most variants is perhaps not surprising given
that samples typically did not share more than 15% of their colonists. This variability in the
detection of endosphere colonists suggests that in nature, as in more controlled environ-
ments (17), stochastic factors drive much of community assembly. Even if individual line-
ages interact consistently with host plants, chance entry of functionally redundant strains
from a large pool of soil colonists may give rise to mosaic assemblages.

Despite the growing strength of tissue effects during development, assemblages
did not collapse to a few successful inhabitants of each tissue. In contrast, assemblage
evenness increased in all plant tissues, agreeing with previous reports that community
diversity increases as host plant tissues age (30, 31). While host tissues appear to create
different colonization bottlenecks for bacterial lineages, they did not appear to favor
the dominance of these ASVs over others within assemblages.

These findings have consequences for the study of another key determinant of
plant microbial communities: host genotype. Host genotype effects on colonization ef-
ficiency and microbiome composition are found both among angiosperm species that
diverged hundreds of millions of years ago and among crop accessions that diverged
through domestication within 10,000 years (19, 26, 56–59). Compositional differences
in the field can even be related to polymorphisms within a plant species (4, 60). Since
the variants associated with host variables are typically present throughout the plant
and recurrent during development, filtering complex natural assemblages with these
criteria can increase signal in the search for host polymorphisms linked to colonization
success. Since tissue-associated assemblages become more distinct later in develop-
ment, the host polymorphisms linked to variant prevalence or abundance might
depend on which part of the plant is sampled, and when.
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The effects of plant tissue type and developmental stage on assemblage composi-
tion were large compared to that of geographic site. Our results add to a growing
body of evidence that the tissue sampled from a plant can explain more variation in
microbial communities than geography. Studies of A. thaliana and Boechera stricta
have found that geographic sites and soil inocula play a substantial role in filtering plant
microbial communities (20, 23). However, studies of cultivated Agave have found that tis-
sue explains more variation in community composition than species and site (27). Tissue
type also explains more variation in epiphytic community composition than sample site in
the species Scaevola taccada (28). Together, these results suggest that plants are best con-
sidered as collections of distinct habitat patches for bacterial colonization.

MATERIALS ANDMETHODS
Planting. Field experiments were replicated over 2 years (2012 to 2014) at two locations: Michigan

State Southwest Michigan Research and Extension Center (ME) and University of Chicago Warren Woods
Ecological Field Station (WW). Prior to planting in October, fields were tilled and grids were created with
bottomless plastic pots (6 to 12 cm across) placed 2 to 5 cm into the ground and 10 to 30 cm apart.
Within each grid, seeds for seven midwestern A. thaliana ecotypes were sown randomly and a fraction
of pots were left empty for soil sampling. Seeds were surface sterilized with ethanol, and seedlings were
thinned after germination with sterilized tweezers.

Sample collection. Plant sampling order was randomized and all tools were flame sterilized with
ethanol between samples. Root and above-ground tissues were separated into sterile plastic tubes. For
soil samples, sterile tubes were pushed 2 to 5 cm into the ground. Tubes were stored at 280°C until
processing. To remove loosely associated microbes, each plant sample was washed twice by vortexing
with surfactant buffer (22). Plant samples were then transferred to Matrix tubes (Thermo Scientific,
Waltham, MA, USA). Aboveground tissue was first separated into compartments with a scalpel and
tweezers. For large tissues, only enough material was added to allow bead homogenization. For soil,
samples were put through a 2-mm sieve and ;100mg was transferred to a Matrix tube. The tubes were
randomized in 96-well racks with respect to sampling site, year, and time point. To dry the material,
tubes were frozen to 280°C and lyophilized overnight. To powder the tissue, sterile silica beads were
sealed into each tube with a SepraSeal cap (Thermo Scientific) and tubes were shaken on a 2010
Genogrinder homogenizer (SPEX, Metuchen, NJ, USA) (1,750 rpm, 2min). Dry mass was recorded, and
up to 36mg of material was retained per tube. All tubes were then randomized in Nunc 96-well
DeepWell plates (Thermo Scientific) for DNA extraction.

DNA extraction. Ground material was resuspended in TES (10mM Tris-Cl, 1mM EDTA, 100mM
NaCl) to a concentration of 0.04mg/ml. Material was homogenized with a Genogrinder (1,750 rpm), and
homogenates (240ml) were incubated (30min) in new plates with lysozyme solution (Epicentre,
Madison, WI, USA) at a final concentration of 50 U/ml. Proteinase K (EMD Millipore, Billerica, MA, USA)
and SDS were added to final concentrations of 0.5mg/ml and 1%, respectively. Plates were incubated at
55°C for 4 h. An equal volume of 24:1 chloroform-isoamyl alcohol was mixed by pipette in each well.
Plates were centrifuged at 6,600� g with the Beckman Coulter Avanti J-25 centrifuge (Beckman
Instruments, Munich, Germany) for 15min at 4°C. The top aqueous layer (350ml) was removed and
added to new plates with 500ml 100% isopropanol. Plates were inverted to mix and incubated 1 h at
220°C. After centrifugation for 15min at 4°C, isopropanol was removed and DNA pellets were washed
with 500ml 70% ethanol. Pellets were dried in a chemical hood and resuspended in TE (100ml; 10mM
Tris-Cl, 1mM EDTA) by shaking. After incubation on ice for 5min, plates were centrifuged for 12min at
4°C, and supernatants diluted 10� in TE were added to new 0.5-ml plates for PCR amplification.

16S rRNA gene amplification. The V5, V6, and V7 regions of the 16S rRNA gene were amplified
from each sample using the 799F and 1193R primers with Illumina MiSeq adapters and custom pads,
linkers, and barcode sequences (61). The PCR volume was 25ml: 1ml of 10� diluted DNA template, a 0.2
mM concentration of each primer, 1� 5PRIME HotMasterMix (5PRIME, Gaithersburg, MD, USA), and 0.8�
SBT-PAR additive (5� stock: 750 mM sucrose, 2 mg/mL BSA, 1% Tween-20, 8.5 mM Tris-Cl pH 7.5) (62).
PCR amplification consisted of initial denaturation at 94°C for 2min, followed by 35 cycles of denatura-
tion at 94°C for 30 s, annealing at 54.3°C for 40 s, and elongation at 68°C for 40 s, followed by a final
elongation at 68°C for 7min. Each PCR was completed in triplicate, and products were pooled and puri-
fied with an equal volume of Axygen AxyPrep Mag PCR Clean-Up bead solution (Corning, Tewksbury,
MA, USA). Amplicon concentrations were quantified by fluorimetry (QUANT-iT PicoGreen double-
stranded DNA [dsDNA] assay kit; Life Technologies, Carlsbad, CA, USA) and 30 ng or a maximum of 30ml
per sample was pooled for six plates per sequencing run. Primer dimers and mitochondrial amplicons
were removed by concentrating each amplicon pool 20� (Savant SPD121P SpeedVac concentrator;
Thermo Scientific) and purifying the 300- to 700-bp product with BluePippin (Sage Science, Beverly, MA,
USA).

Sequence data. Amplicon pools were sequenced using the Illumina MiSeq platform and MiSeq V2
reagent kits (Illumina, San Diego, CA, USA) to produce paired-end 250-bp reads (MiSeq Control software
v2.5.0.5). MiSeq Reporter v2.5.1.3 demultiplexed samples and removed reads without an index or match-
ing PhiX. Within QIIME2, cutadapt removed primers from the paired reads and DADA2 identified ASVs.
Primers 799F and 1193R were used to extract reads in silico from the QIIME-SILVA 16S database. These
reads were used to build a classifier using QIIME2’s naive-bayes method, and the sklearn algorithm was
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used to generate taxonomy assignments for the sequence variants. These assignments were used to
filter any remaining mitochondrial and chloroplast sequences. Sequence variants with a frequency lower
than 2 counts, samples with fewer than 10 reads, and samples with notes on irregularities during
collection were also removed. To generate a phylogeny for the sequence variants, QIIME2 was used to
align the sequences with MAFFT and to infer and root a phylogenetic tree. The tree was imported along
with the DADA2-generated ASV count table, the taxonomy, and the metadata into a phyloseq (63) class
in R (version 3.4.4) (64) for analysis. Count table transformations, pruning, and rarefaction were per-
formed with phyloseq, and distance matrix calculation, ordination, and PERMANOVA tests were per-
formed with the vegan package (65). Phylogenetic analysis was performed with ape and picante (66,
67). Figures and supplemental figures were produced with ggplot2 and ggpubr (68, 69).

Statistics. Three dissimilarity metrics were used to capture different aspects of microbiome variation.
Presence-absence variation was represented by the Raup-Crick dissimilarity index, a probability of sam-
ples differing in composition based on ASV frequencies in the data set. Alternatively, the Bray-Curtis dis-
similarity quantified the abundance differences between ASV counts in each sample. The UniFrac dis-
tance incorporated presence-absence variation as well as phylogenetic relatedness between the ASVs
present in samples based on the 16S gene tree.

ASVs associated with specific tissues or developmental stages were identified using the signassoc
function of the indicspecies package (45, 70). This function calculated an indicator value index (IndVal) based
on the product of two probabilities: (i) the probability that a sample belonged to a habitat given ASV pres-
ence and (ii) the probability that an ASV was present if a sample was taken from a habitat. For the habitats
defined by each variable (six tissues, six developmental stages, two sites, and two years), indices were calcu-
lated independently for each ASV. The null hypothesis that no relationship existed between ASVs and condi-
tions was tested by comparing the empirical index with a distribution generated by randomly permuting
the ASV presence-absence count table. A two-tail P value was used to select ASVs that are significantly more
or less frequently observed in sampled belonging to a given condition (a = 0.01).

Data availability. Raw sequencing data are available in the NCBI's Sequence Read Archive,
BioProject ID PRJNA607544. The ASV count table, 16S phylogenetic tree and taxonomy, and sample
metadata are available with the R commands used for analysis at https://github.com/krbeilsmith/
KBMP2020_Microbes.
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