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Abstract

The auditory system relies on binaural differences and spectral pinna cues to localize sounds in azimuth and
elevation. However, the acoustic input can be unreliable, due to uncertainty about the environment, and neural
noise. A possible strategy to reduce sound-location uncertainty is to integrate the sensory observations with
sensorimotor information from previous experience, to infer where sounds are more likely to occur. We investi-
gated whether and how human sound localization performance is affected by the spatial distribution of target
sounds, and changes thereof. We tested three different open-loop paradigms, in which we varied the spatial
range of sounds in different ways. For the narrowest ranges, target-response gains were highly idiosyncratic and
deviated from an optimal gain predicted by error-minimization; in the horizontal plane the deviation typically
consisted of a response overshoot. Moreover, participants adjusted their behavior by rapidly adapting their gain
to the target range, both in elevation and in azimuth, yielding behavior closer to optimal for larger target ranges.
Notably, gain changes occurred without any exogenous feedback about performance. We discuss how the
findings can be explained by a sub-optimal model in which the motor-control system reduces its response error
across trials to within an acceptable range, rather than strictly minimizing the error.
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Sensory observations can be noisy, leading to uncertainty in perceptual inferences and variable estimation
errors. Theoretically, to reduce uncertainty, sensory information could be integrated with knowledge from
prior experience, and with feedback about one’s own response behavior. Here we show, that for a basic and
accurate sensorimotor task such as sound localization, humans indeed rely on perceived experience in the
absence of exogenous feedback, as they rapidly changed their response sensitivity to experimental
variations in the spatial distribution of targets. We argue that the auditory system reduces its estimated
localization error close to its expected minimum across trials, allowing for idiosyncratic sub-optimal target

Kresponse gains. /

Introduction

ignificance Statement

pinnae provide spectral-shape cues by diffracting and

To localize sounds, the auditory system relies on inter-
aural time and level differences, which vary systematically
in the horizontal plane (azimuth; Blauert, 1997), while the
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reflecting sound waves for directions in the median plane
(elevation; Middlebrooks and Green, 1991; Kulkarni and
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Figure 1. Model simulations showing that error minimization leads to an optimal target-response gain <1. A, Mean absolute error (Eq.
2) as a function of the response gain for three different target ranges [AT=50° (yellow), AT=30° (red), and AT=15° (blue)], with additive,
p(e) = N(0,0,) Gaussian noise. Simulations were obtained by uniformly randomly picking 200 target locations from each target range
and generating responses according to Equation 1 for 141 gains g ranging from 0 to 1.4 with a fixed additive noise standard deviation
of 10.0°. The mean absolute error is determined for every simulation according to Equation 2. The simulation was repeated 1000 times
for each gain, to obtain the average (indicated by bold colored curves) mean absolute error and its standard deviation (indicated by
the colored patches). The minimum average mean absolute error is obtained for gains <1. The optimal gains systematically vary with
target range (vertical lines). The highest optimal gain (g = 0.89) is found for the largest target range, for which the absolute error varies
strongest with gain. B, Single simulations of stimulus-response relations (Eq. 1) for three target ranges at their respective optimal

response gains.

Colburn, 1998; Hofman et al., 1998; Bremen et al., 2010).
Under simple free-field laboratory conditions, the acoustic
cues enable humans to accurately localize sounds in all
directions (Middlebrooks and Green, 1991; Wightman and
Kistler, 1989).

However, natural environments typically contain an un-
known number of sound sources, and the neural process-
ing may be endowed with internal noise and uncertainty,
rendering the auditory system prone to localization errors
(Hofman and Van Opstal, 1998; Langendijk and Bronk-
horst, 2002). To minimize such errors, the nervous system
should not only rely on immediate sensory evidence, but
also acquire information about the environment. Such
strategies have been demonstrated for perceived visual
motion (Stocker and Simoncelli, 2006), visuomotor inte-
gration (Kérding and Wolpert, 2004), movement planning
(Hudson et al., 2007), audiovisual integration (Alais and
Burr, 2004), and multisensory cue combination (Kérding
et al., 2007).

What follows is a brief explanation of what error mini-
mization actually entails when generating a response R
toward a perceived sound presented at target location T.
The response R will be guided by the target T, but is also
affected by internal additive noise (g), due to a noisy
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sensory observation of the target and/or a noisy motor
response. This can be well-described with a linear equa-
tion (Goossens and Van Opstal, 1999; Van Wanrooij and
Van Opstal, 2005; Van Grootel et al., 2011; Van Barneveld
and Van Wanrooij, 2013; Ege et al., 2018):

R=g+ & (1)

with g the response gain (slope). In the absence of noise,
the optimal behavior is described by R = T, with a gain of
1. Over N trials, the mean absolute localization error is
determined by:

>,
n=1

|Rn_
N
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N

@

From this follows that the mean absolute error depends
on localization accuracy which is highest if the gain is one
[as captured by the systematic error term (g — 1)-T,, being
reduced to 0°]; and on localization precision, which is
highest if the gain is zero (minimizing the random error
term g-g,). To minimize its errors, the audiomotor system
should therefore optimize accuracy-precision trade off
(see also Ege et al., 2018). This would typically be ob-
tained for a gain g < 1; with the exact value also depend-
ing on the extent of the spatial target range (Fig. 1).
Essentially, gain optimization requires knowledge about
the amount of one’s own response variability and about
the likely source locations of targets.

But how does the auditory system access such infor-
mation without independent feedback (e.g., visual)? We
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hypothesize that the system could employ two sources of
information under open-loop localization tasks: the
acoustic cues to estimate perceived sound-source loca-
tions, and internal neural feedback about orienting move-
ments that provide information about its responses.
Sensorimotor integration could thus provide a neural es-
timate of the system’s overall performance, which could
lead to potential adjustments in the response gain, even in
the absence of exogenous feedback. Thus, if the per-
ceived distribution of sounds differs from the system’s
priors, it could adjust the response gain to minimize its
internal estimate of sound localization errors.

In three experiments, we investigated how listeners
incorporate the perceived target-distribution range in their
localization responses. The first experiment tested
whether the target range influenced the response gain, by
presenting fixed spatial ranges that varied between sub-
sequent blocks of trials. We found that this is indeed the
case, irrespective of the order of the blocks. The second
experiment tested the adaptive capacity of the response
gain, by presenting a long block of trials with a step-
change (either upward, or downward) in the target range
halfway the block. We observed a rapid gain change that
differed for upward versus downward step changes, as
well as slow gain changes before and after the step. In the
third experiment, we studied how the gain responds to a
continuous change in the target range at different speeds.
We discuss our results within the context of models for
sensorimotor integration.

Materials and Methods

Participants

We collected data from twelve participants (seven male)
who took part in three experimental paradigms (experi-
ment 1: eight participants; experiment 2: 10 participants;
experiment 3: seven participants; see below, Paradigms).
Six subjects (S1-S6) participated in all three paradigms.
All participants had normal or corrected-to-normal vision,
and no reported hearing dysfunctions, aged 21-31 (mean,
26.6 years). One participant (S1) is author of this paper;
the other eleven participants were naive about the pur-
pose of this study. Experiments were conducted after
obtaining informed consent from the participant.

The experiments fully adhered to the protocols regard-
ing observational experiments on healthy human adults
and were approved by the local institutional ethical com-
mittee of the Faculty of Social Sciences at the Radboud
University (ECSW 2016-2208-41). All participants signed
an informed consent form, before the start of the experi-
mental sessions.

Apparatus

During the experiment, the subject sat comfortably in a
chair in a completely dark, sound attenuated room (L X W
X H = 3.5 X 3.0 X 3.0 m). The floor, ceiling and walls
were covered with sound-attenuating black foam (50 mm
thick with 30-mm pyramids; AX2250, Uxem BV), effec-
tively eliminating echoes for frequencies exceeding 500
Hz. The room had an ambient background noise level of
~30 dBA (measured with an SLM 1352P, ISO-TECH
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sound-level meter). The chair was positioned at the center
of a spherical frame (radius 1.5 m) on which 125 small
broad-range loudspeakers (SC5.9; Visaton GmbH) were
mounted. These speakers were organized in a grid by
separating them from the nearest speakers by an angle of
~15° in both azimuth and elevation according to the
double-pole coordinate system (Knudsen and Konishi,
1979). On the cardinal axes (elevation zero, and azimuth
zero) speakers were placed more densely; these were
separated by 5°. No speakers were placed at elevations
below -45°. Head movements were recorded with the
magnetic search-coil technique (Robinson, 1963). To this
end, the participant wore a lightweight spectacle frame
with a small coil attached to its nose bridge. Three or-
thogonal pairs of square coils (6-mm? wires, 3 X 3 m)
were attached to the room’s edges to generate the hori-
zontal (80 kHz), vertical (60 kHz), and frontal (48 kHz)
magnetic fields, respectively. Horizontal and vertical
head-coil signals were amplified and demodulated (EM7;
Remmel Labs), low-pass-filtered at 150 Hz (custom built,
fourth-order Butterworth), digitized by a Tucker Davis
Technologies (TDT, RRID:SCR_006495) System 3 Me-
dusa head stage and base station (RA16GA and RA16,
respectively), and stored on hard disk at 6 kHz/channel.
Custom-written MATLAB (RRID: SCR_001622) software,
running on a PC (HP EliteDesk) controlled data recording,
stimulus generation, and online data visualization.

Stimuli

Acoustic stimuli were digitally generated using TDT
hardware, consisting of two real-time 1/0O data acquisition
processors (RP2.1, at a 48,828.125-Hz sampling rate),
two stereo amplifiers (SA-1), four programmable attenua-
tors (PA-5), and eight multiplexers (PM-2). Each of the 100
available acoustic stimuli consisted of 50 dB (A-
weighted), 50-ms duration, pre-generated fresh Gaussian
white noise (0.5- to 20-kHz bandwidth), with 5-ms sine-
squared onset and cosine-squared offset ramps.

Visual stimuli consisted of green LEDs (wavelength 565
nm) mounted at the center of each speaker (luminance 1.4
cd/m?), which served as independent visual fixation stim-
uli during the calibration experiment, or as a central fixa-
tion stimulus at straight-ahead during the localization
experiments.

Calibration experiment

To establish the off-line mapping of the coil signals onto
known target locations subjects pointed a laser, attached
to the spectacle frame, toward 24 known LED locations in
the frontal hemifield (separated by ~30° in both azimuth
and elevation).

Paradigms

In all paradigms, participants were instructed to first
fixate the central LED by aligning the head-fixed laser
pointer. The fixation light was extinguished 300-800 ms
after a button press of the participant and 200 ms later the
target sound was presented. Participants were instructed
to “point the head-fixed laser as fast and as accurately as
possible toward the perceived location of the sound
source”. Data acquisition ended automatically 1500 ms
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Figure 2. Experimental paradigms. A, C, D, Colored dots indicate stimulus positions, for azimuth (red) and elevation (blue), as a
function of trial number. A, Experiment 1: five target blocks, shown in descending order of target-range. B, Distribution of all speakers
in the experimental room in double-pole azimuth-elevation coordinates. C, Experiment 2: after 250 trials, the stimulus range acutely
changed from a large (+=55°) to a small (=25°) range (as shown), or vice versa. D, Experiment 3: the stimulus range changed in a
sinusoidal way throughout the experiment (400 trials) from large (£60°) to small (£15°), or vice versa. The panel shows a repetition

period p = 100 trials, and phase ¢ = 0.

after sound onset, after which a new trial was initiated.
Inter trial intervals arising from processing time to end a
trial (e.g., data storage on disk) and initiate a new trial
(e.g., loading new sound in TDT) lasted on average 2 s.
Onset of one trial to onset of the next trial took on average
4 s.

Subjects participated in three experimental paradigms
with varying ranges for the target sound locations, as
detailed below (Fig. 2). Sound locations were pseudo-
randomly selected from a discrete uniform distribution
over all speakers within the experimental range (Fig. 2B).
The actual realization of locations and presentation order
was fixed before the start of the study and was the same
for all participants. Participants received no information
about the stimulus distribution ranges, and they were not
told about the potential changes in the target distribution.
Experiments were performed under open-loop hearing
conditions, as participants did not receive any feedback
about their performance during, or after the experiment.
Note that the stimuli within the smallest range in each of
the experiments were the same for all experimental
blocks, although their relative occurrence decreased with
increasing target range.

Experiment 1

In the first experiment (Fig. 2A), the range of stimulus
locations was kept constant within a block of trials but
varied across blocks. We presented five different ranges
as blocks of trials to eight participants (four male; aged
27-31, mean: 28.3 years; S1-S8):

March/April 2019, 6(2) e0111-18.2019

(1) AT = 30° (x=15° in azimuth and elevation), 16 loca-
tions, each presented four times, yielding a total of
N = 64 stimuli (Fig. 2A, far right),

(2) AT = 60°, 40 locations, N = 80 stimuli (Fig. 2A, 2nd
panel from right),

(8) AT = 90°, 72 locations, N = 144 stimuli, in two parts
(Fig. 2A, 3rd panel from right),

(4) AT = 120°, 87 locations, N = 174 stimuli, in two parts
(Fig. 2A, 2nd panel from left),

(5) AT = 180°, 99 locations, N = 198 stimuli, in two parts
(Fig. 2A, far left).

The five blocks were presented within one experimental
session, with short intermittent breaks (~2 min), during
which the lights were turned on. In three sessions, stim-
ulus blocks within a session were sorted either by increas-
ing order in target range, from AT = 30-180°, by
decreasing order in target range, from AT = 180-30° (as
in Fig. 2A), or pseudo-randomly. Completion of a session
of 660 trials took ~50 min.

Experiment 2

In the second paradigm, the distribution range of target
locations switched after the first half of the experiment
from AT = 110° (£55°, N = 250 trials) to AT = 50° (=25°,
N = 250 trials; broad-to-narrow; Fig. 2C) in one session,
and vice versa (narrow-to-broad) in a second session. Ten
listeners (five male, aged 21-29, mean: 26 years; S1-S6,
S9-S12) participated in both sessions, with a different
order of range switching. These sessions were held on

eNeuro.org
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Figure 3. Example stimulus-response plots for experiment 1. Stimulus response plots in elevation for participant S1 (A, B) and S4 (C,
D), for the (A, C) 60° and (B, D) 180° target-range blocks presented in decreasing order. Filled circles denote individual localization
responses, the black solid line represents the best-fit regression line (Eqg. 4), with g the response gain of the fit; the dashed lines
indicate the perfect stimulus-response relation (x = y). The insert text depicts the fitted gain, g, including its 95% confidence interval,
the r? between data and fit, and the F and p values for the linear fit, including the degrees of freedom.

two separate days. There were no interleaved breaks
within a session. One session of 500 trials took ~35 min.

Experiment 3

In the third paradigm (Fig. 2D), the range of stimulus
locations varied dynamically following a sinusoidal enve-
lope with one of four periods, P (in number of trials),
centered around straight ahead, according to:

AT, = 75-(1 + 0.6-cos (217,% + qb)) @)

with trial number n = [0:399], and period p = [50, 100,
200, 400] trials. A session could either start at the maxi-
mum range of AT, ., = 120° (Fig. 2D shows p = 100, ¢ =
0) or at the minimum range of AT,,, = 30° (¢ = m). The
seven subjects (three male; aged 27-29, mean: 28 years;
S1-S6, S8), who participated in this experiment, completed
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all eight conditions (four frequencies X two phases, divided
over eight sessions of 400 trials each). There were no inter-
leaved breaks. One session took ~26 min.

Analysis

The head-position signals (in Volts) were first digitally
low-pass filtered (cutoff frequency 75 Hz, filter order 50)
and calibrated (to degrees of head rotation from center). A
custom-written MATLAB program detected head-
movement onsets, whenever the velocity first exceeded
20°/s, and offsets when they first fell below 20°/s after a
detected onset. We took the end position of the first
movement after stimulus onset as a measure for localiza-
tion performance and excluded potential secondary cor-
rective movements. Each movement-detection marking
was visually checked by the experimenter, and adjusted
when deemed necessary, without having information
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about the stimulus. Data analysis and visualization were
performed in MATLAB.

Statistics

The optimal linear regression line of the stimulus-
response relation was determined by minimizing the sum-
squared deviation of:

Rn =b+ gexp'Tn (4)

The dimensionless slope, gex, (with experiment = 1, 2,
or 3), or gain, of Equation 4 quantifies the sensitivity
(resolution) of the responses to changes in target position;
the offset, b (in degrees), is a measure for the listener’s
response bias. A perfect localization response would have
a gain of 1.0° and a bias of 0.0° irrespective of the
experimental conditions. Given the rationale of this study
(see Introduction), we took the response gain as the rel-
evant parameter that could potentially change with the
imposed changes in the experimental target range. The
response bias b was always negligible (close to 0°), and is
not further studied here.

Experiment 1

For the first paradigm (Fig. 2A), the experimental vari-
able of main interest was the target range, AT, which was
kept fixed within a block, but differed between blocks. In
first approximation, we describe how the gain depends on
the target range through a linear relation, with two free
parameters:

9 = By + B ®)

(normalized with respect to the maximum target range
of AT = 180°). Thus, Equation 4 becomes:

AT,
Ro=b+ B+ Brpg [ Ts ©®)

Here, we denoted parameter B, as the gain intercept,
which can be interpreted as the subject’s default (prior)
gain in the absence of any target information, and B, as
the gain slope, which measures how the response gain
changes as a function of the target range.

Experiment 2

In the second experiment, the experimental variable of
main interest was trial number. We again took a first-order
approximation to describe how the gain might depend on
trial number. To that end, the data from the two long
half-blocks in the experiment were fitted separately: be-
fore (trials n = 1-250) and after (trials n = 251-500) the
step-change in the target range, with a gain according to:

n
gy = Bo + B1(ﬁ - k) @)
Now, f3, is called the “initial gain,” measured at the start
of each sub-block (either at the beginning of the session,
or immediately after the switch), and 3, is the gain-slope,

as above (with k = 0 for the first half-block, or k = 1 for the
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second half-block). Thus, for the analysis of this experi-
ment, we reformulated Equation 4 as:

T

According to these definitions, the “narrow-range gain
at the switch” and the “gain change at the switch” are
determined by B,, B+, and by the switch direction (small to
large vs large to small target range; see Fig. 6B).

Experiment 3

For the third experiment, the experimental variable of
main interest was the trial period. Here, we assumed that
the instantaneous gain would vary in a sinusoidal way with
the instantaneous trial number, normalized for the period:

. n
9 = Bo + Bysin (217,3 + 21'r<p) 9)

Thus, in this case, the regression analysis of Equation 4
becomes:

n

R,=b + (BO + B4-sin (pr

+ 2mp))-T,, (10)

with n trial number (where n = 0 is defined as the first trial
from the largest target distribution, and n = P/2 as the first
trial from the narrowest distribution). In Equation 10,
Bo — B, corresponds to the response gain for the narrow
target range, while 2B, is the total gain change in the
experiment.

All fits to the models of Equations 6, 8, 10 were ob-
tained by least-square-error procedures with robust bis-
quared weighing options in MATLAB. We determined
Pearson’s linear correlation coefficient, r, between model
prediction and response, and 2, which is the coefficient of
determination (a measure for the goodness of fit of the
applied model, or the explained variance of the data). As
these values were typically high (mean r? was 0.92, and
each r? was highly significant, all p << 0.001), we asserted
that these models provided an adequate description of
the data.

For each parameter obtained, we also determined the
95% confidence interval.

The results suggested that both gain parameters (3,, 8+)
in Equations 6, 8, 10 were correlated. To test that, simple
linear regression was performed, and the slope,
goodness-of-fit r?, F statistic and corresponding p value
were obtained.

Windowing

For illustrative purposes, we also performed regres-
sions on non-overlapping windowed sections of the data
(Figs. 4, 6, 8, light-gray lines). In experiment 1, the re-
sponse gain was supposed to vary with target range. The
windows thus constituted the different blocks, which were
analyzed separately with the linear regression analysis of
Equation 6 (data from the 120° and 180° target ranges
were pooled).

In experiment 2, the response gain was supposed to
depend on trial number. The 500 trials were divided into

eNeuro.org
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Figure 4. Gain dependence on target range in Experiment 1. Localization gains for all subjects (gray dotted lines) for elevation (A) and
azimuth (B) components determined for each target range. Connected colored open circles denote the localization gains for three
representative subjects; error bars indicate the 95% confidence interval. Bold colored lines denote the best fit regression lines of
Equation 6 through the data of these subjects. Color-filled circles on the ordinate indicate the gain intercepts (B,; Eq. 6).

ten windows of 50 ftrials, on which separate regression
analyses were performed.

In experiment 3, the response gain was supposed to
depend on instantaneous trial number. After normalizing
for the period (and aligning the data from blocks starting
with a large, or a small range), the oscillation period P was
divided into 11 windows of equal size, on which separate
regressions were performed. Note that the first and last
window of a period contained the same data.

Results

Localization gain changes

In the first experiment, subjects oriented to sounds
drawn from five different spatial target distributions, pre-
sented in separate blocks (Fig. 2A). The rationale of this
design was (Fig. 1), that if humans were to integrate
information about the perceived spatial target range with
their sensory-motor observation of a current target, the
measured response gains toward the same stimulus
might vary for the different target ranges.

Figure 3 shows four examples of the stimulus-response
behavior of the elevation components of goal-directed
head-movements for two participants (S1 and S4), each
confronted with two different target ranges, AT = 60 (Fig.
3A,C) and AT = 180° (Fig. 3B,D), respectively, and pre-
sented in the decreasing range order. Note that the re-
sponse variability (i.e., variance of the residuals; the inverse
of precision) across conditions and subjects was quite com-
parable, as evidenced by r# values around 0.9. However,
both subjects display different response patterns regarding
their accuracy: whereas the head movements of S1 had
considerable target undershoots for the 60° target range, as
measured by the relatively low response gain (g = 0.63),
subject S4 tended to generate overshoots for these same
targets (9 = 1.30). For the 180° target range, however, both
subjects had adjusted their response gains to values that
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were closer to the ideal value of g = 1.0. Indeed, the change
in response gains for the 180° target range with respect to
the 60° target range was considerable: Ag = +32% for S1,
and Ag = -24% for S4.

The linear-regression results of Figure 3 are exemplary
for the response behavior across all eight subjects, irre-
spective of the order in which the stimulus ranges were
presented (see Materials and Methods). To illustrate this
important aspect of the data, we plotted the response
gains obtained from the regression analyses for the five
different target ranges, the three different range orders,
for all subjects in Figure 4 as a function of the target
range. It is immediately clear that the intersubject variabil-
ity in response gains across subjects for the small target
ranges was much larger than for the largest target range,
for both response components. In other words, subjects
with large overshoots to targets in the small range sys-
tematically decreased their response gain with increasing
target range (like S4 in Fig. 3). In contrast, subjects with
large undershoots to targets in the small range increased
their gain with target range (like S1 in Fig. 3). Interestingly,
this behavior appeared to be independent of the order in
which the ranges were presented.

To quantify these trends, we determined how the
target-response gain depended on target range by fitting
Equation 6 through the data for each of the eight subjects,
each of the three block sequences and for both dimen-
sions (elevation vs azimuth). Three regression lines are
highlighted, for subjects S6 (high-gain intercept, red), S1
(low-gain intercept, blue), and S5 (intermediate-gain inter-
cept, yellow) for the elevation data. For the elevation
response components, S6 had a gain intercept (3, in Eq.
6; Fig. 4, filled circles on ordinate) of approximately B, =
1.6, which decreased to a gain of g,5, = 1.1 for the large
target range due to a negative gain slope (8,= -0.5; 9,50
= Bg—B4)- In contrast, S1 had a low initial gain of only B, =
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Figure 5. Gain change and narrow-range gain relationships in experiment 1. A, Gain slope, ,, as a function of the gain intercept, B,
(Eqg. 6), for both dimensions (azimuth and elevation, denoted in color), all three orderings (narrow-to-broad, broad-to-narrow, random),
and all eight participants (N = 48). B, Same analysis as in A, performed for a selected target range of 30°, shared across all blocks
(=15, +15]° for azimuth and elevation). Results are qualitatively similar as in A. C, Gain intercepts for azimuth as a function of gain
intercept for elevation. The various colors denote individual subjects. Colored symbols denote best-fit parameters, error bars indicate
95% confidence interval. Bold black lines denote the best fit simple linear regression line through the data. Dotted line in A and B
indicates where data would lie if the broad-range gain equals 1. In C, the dotted line indicates the x = y unity line.

0.5, which increased to g,50 = 0.8 (8; = +0.3). Finally,
subject S5 adjusted the response gain from B, = 1.0 to
J1go = 1.1 (i.e., By = +0.2). For the azimuth components,
we highlighted three different subjects: S3 with a high-
gain intercept, S7 with a low-gain intercept, and S8 with
an intermediate response-gain intercept. The same trends
in the gain changes toward the largest target range can be
observed as for the elevation data: when the gain inter-
cept was high, the gain tended to decrease across the
larger target ranges; when the gain intercept was low,
the gain increased as the target range expanded, whereas the
response gain remained roughly constant for intermediate-gain
intercepts near B, = 1.0. On average, the narrow-range gain in
azimuth is higher than 1, indicating a typical response over-
shoot.

Thus, there was a large intersubject variability in gains
for the lowest target range. The intersubject variability
decreased strongly for the largest target range, for which
the gains attained values that were clustered near 1.0.

Figure 5 quantifies this qualitative observation for all
conditions, response components, and participants, by
comparing the change in response gain over the 180°
range (gain slope 3 in Eq. 6) with the gain intercept (B, in
Eq. 6). The very tight linear relationship, with # = 0.89 (o
<< 0.001), and a negative slope of —0.68, demonstrates
that all subjects systematically adjusted their response
gain, whenever they perceived a different target range.
Importantly, the effect did not depend on the order in
which the target ranges were presented. Instead, the gain
adjustments depended on the idiosyncratic gain inter-
cept, and was such that for the largest target range
applied, the response gain approached a near-optimal
value of g = 1.0. When the gain intercept was close to 3,
= 1.0, the gain changed only little across the different
target ranges (B8, =~ 0). Although results are more variable,
if we determine the gain slopes and intercepts for those
locations which were presented in all blocks (i.e., for
targets within the narrowest range), the same conclusions
hold (Fig. 5B).
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The gain intercepts for the azimuth and elevation re-
sponse components were weakly correlated (© = 0.19, N
= 24, p = 0.03; Fig. 5B) and gain intercepts for the various
block sequences (indicated by colors) tended to cluster.
Thus, subjects with a high/low initial gain for one condi-
tion, also tended to have a high/low initial gain for other
conditions.

Sudden and steady adaptation

We next tested whether the system would detect, and
respond to, a sudden change in the target distribution,
occurring within an experimental block of trials. In the
second experiment, we therefore introduced an abrupt
change from a narrow (50° range) to a broad (110° range)
stimulus distribution, and vice versa, halfway the experi-
mental run (after 250 trials). To follow the subjects’ re-
sponse behaviors over time, we calculated the ongoing
response gain in non-overlapping windows of 50 trials,
throughout the experimental run of 500 trials (gray dotted
lines for each of the 10 participants; Fig. 6; see Materials
and Methods).

For both runs [broad-to-narrow (Fig. 6, left), and
narrow-to-broad (Fig. 6, right)], the response gains across
subjects had the smallest variability when subjects were
confronted with the broad target range, whereas for the
narrow target distribution the variability in response gains
was much larger. This was true for both the elevation (Fig.
6, top) and azimuth (Fig. 6, bottom) components. Also, for
the azimuth components alone, the narrow-range gains
were often higher than 1 (Fig. 6C,D, narrow range), which
is a clear violation of a strict interpretation of the error-
minimization model described by Equation 2 (compare
Fig. 1).

As in experiment 1, we show the highest-gain (blue),
mid-gain (yellow), and lowest-gain (red) responder for the
narrow target range to exemplify that this was predictive
for the change in response gain after the switch in target
range. The results suggest that when all gains were to be
plotted from narrow to broad range (as in Fig. 4), by
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Figure 6. Gain dependence on target range and trial number in experiment 2. Ongoing response gains (top: elevation; bottom:
azimuth) over the course of trials in experiment 2, in which the distribution switched from broad to narrow (A, C), and from narrow to
broad (B, D) at trial 250 (vertical dashed lines and target-response distributions at the bottom). The horizontal dashed line indicates
gain = 1. Note that the gains for the narrow target range are more variable across subjects than for the broad range. In addition, the
variability in elevation gain for the broad range is slightly larger than for azimuth. Also, broad-range elevation gains are smaller than
azimuth gains. Thin gray lines: windowed regression results (Materials and Methods). Connected colored open circles denote the
localization gains for three representative subjects; error bars indicate the 95% confidence interval. Bold colored lines denote the best
fit regression lines of Equation 8 through the data of these subjects.

mirroring the data in the left-hand column with respect to
trial 250, the curves would overlap to a large extent,
except around the target-range switch, where the dynam-
ics of the response changes become visible. The initial
change in response gain to the switch was quite fast:
within ~50 trials subjects had adapted their gains to the
new target range.

Notably, the gain seemed to change slowly during the
250-trial epochs in which the target range was kept con-
stant, especially during the narrow-range epoch. To quan-
tify the fast and slow adaptive effects in this experiment,
we estimated the initial gain at the first trial of a fixed
target-range epoch (gain intercept, ) and the change in
gain during the epoch (gain slope, ;) through the regres-
sion analysis of Equation 8. This was applied separately to
the two target-range epochs and both sequences (see
bold colored lines for representative examples). From
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these parameters, we determined the narrow-range gain
and the gain change at the switch (Fig. 6B, arrows). These
show a high correlation (? = 0.89, N = 40, p << 0.001;
Fig. 7A), indicating again (similar to the results in experi-
ment 1; Fig. 5A) that the large variability in narrow-range
gains is reduced in the broad-range epochs to an optimal
value near 1. Also, if we repeat the analysis only for those
locations presented in both blocks (i.e., for targets within
the narrowest range), the same approximate results hold
(slope = -0.38 + 0.15,7 = 0.42, F;_zg = 27, p << 0.001).

As noted above (and observed in Fig. 6), the change in
gain during an epoch in which the target range was fixed
varied between the narrow and the broad epochs (Fig.
7B). The gain slopes varied around 0 in the broad range
(i.e., no overall gain change during this epoch; t test, p >
0.05; Fig. 7B, pink) while there was more variation in
narrow-range gain slopes as indicated by a broader dis-
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at the switch (Fig. 6B). Note the high negative correlation between these quantities (compare Fig. 5A). Bold black line denotes the best
fit linear relationship. Data are from ten participants, conditions, and response components (N = 40). Colors and symbols denote
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the gain did not change as a function of trial number. This was true, on average, for responses in the broad range. For the narrow
range, however, the gains tended to increase. C, Distributions of the gain intercepts, 3, (Eq. 8). Note the much wider distribution for

the narrow target range.

tribution, that also peaked at a value near 0.2 (t test, p <
0.001; Fig. 7B, purple). This indicates a steady increase in
gain over trials for the narrow-range epoch. In line with
this, the gain intercepts for the narrow target range are
much more broadly distributed than the broad-range ini-
tial gains (Fig. 7C).

Adaptation to dynamic changes

The results from the first two experiments demonstrate
that listeners rapidly adjust their response gain to the
perceived target range. In these experiments, the target
ranges were kept fixed during a block of trials. We won-
dered whether these gain adjustments would also occur
when the target range constantly changed, trial-by-trial. In
the third experiment, stimulus locations were drawn from
dynamically changing spatial distributions, in a harmonic
way between a AT = 30° and AT = 120° range in azimuth
and elevation, at one of four different repetition periods (P
= 50, 100, 200, or 400 trials, respectively; see Materials
and Methods; Eq. 3). The block started either with a broad
(¢ = 0), or with a narrow (¢ = ) target distribution.

To analyze the data, we wrapped all responses onto a
single full period of the trial distribution for ¢ = 0 (broad-
narrow-broad) and phase-shifted the responses from the
¢ =  condition by —7 radians. We then performed win-
dowed analyses over 40-trial epochs, and the dynamic
linear regression analysis of Equation 10 (see Materials
and Methods). Figure 8 shows the results of these anal-
yses for the dynamic response gains of this experiment
during a full period. The target and response distributions
are shown below each panel (same format as in Fig. 6). In
each panel we highlighted three subjects, according to
their narrow range gain (from Eq. 10, this amounts to 3, —
B+): low, medium, and high narrow range gain. In line with
the previous two experiments, the response gains across
subjects varied much more for the narrow target range of
30°, when compared to the broad range of 120°. For the
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latter range, the gains scattered around the value of 1.0,
both for the elevation components (top row), and for the
azimuth components (bottom row). For the narrow range,
azimuth and elevation gains (Fig. 8E-H) were often higher
than 1. During the dynamic change toward the narrow
target range (around the center of each panel) the eleva-
tion gains systematically increased (upper black lines),
stayed approximately constant (middle black lines), or
decreased (lower black lines), to return to their initial
broad-range values at the end of the period. These pat-
terns remained quite similar for the four different periods
(50, 100, 200, and 400 trials, respectively), and across
subjects. For the azimuth response components, we ob-
tained a similar behavior, albeit that the variation in gain
for the narrow range was smaller than for elevation, and
that the absolute gains attained higher values. As a result,
the azimuth gains always decreased from the narrow
range to the broad range.

Figure 9 quantifies the relationship between the narrow-
range gain and the change in gain across the target-range
period (given by Ag = 23,; see Materials and Methods). In
line with the observations in Figure 8, when the narrow-
range gain was high (>1), the response gain decreased
(Ag < 0), and when it was low (<1) it tended to increase
(Ag > 0) with a high correlation ( = 0.71 and p << 0.001).
In addition, the slope of this relationship (slope = —0.62) is
of similar magnitude for experiments 1 (slope = -0.68;
Fig. 5A) and 2 (slope = —0.73; Fig. 7A), also if targets are
selected within the narrowest range only (slope = -0.53 =
0.19, P = 0.35, F4_s, = 30, p << 0.001).

Discussion

Summary

We studied human sound-localization to targets drawn
from different spatial distributions. Head-orienting re-
sponses were made under open-loop conditions, as sub-
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jects never received feedback about their performance.  of trial history and spatial target distribution. In con-
We reasoned that if subjects rely only on immediate trast, if the system collects non-acoustic evidence from
acoustic cues, the response gain should be independent  previous trials to optimize its response strategy, the
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(Bo—B4) for the results of experiment 3 (Eqg. 10). Colored symbols denote data from seven participants, four periods, and two response
components (N = 56) as indicated by the inset. Bold black line denote the best fit simple linear regression line through the data. Dotted
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spatial target distribution could potentially influence
response behavior.

Subjects were indeed sensitive to the spatial range of
sounds. We found highly idiosyncratic stimulus-response
gains for narrow spatial distributions which deviated from
a strict error-minimization model (as described in Eq. 2
and Fig. 1). However, when stimuli were drawn from a
broad spatial range, intersubject variability decreased
substantially, and response gains clustered around an
optimal gain of one (Figs. 4, 6, and 8).

Idiosyncratic behavior

Although response gains for blocks with narrow target
ranges were idiosyncratic, they were quite consistent
within subjects. Note that data within an experiment were
collected on different days, whereas experiments 1-3
were conducted over a period spanning four months.
However, subjects responding with low/high gain for the
narrow target range in experiment 1, also tended to do so
in experiments 2 and 3. Figure 10 summarizes the
subject-specific narrow-range gains for elevation (Fig.
10A) and azimuth (Fig. 10B), ranking subjects according
to the median of their elevation gains. Clearly, within-
subject variability is much smaller than between subject
variability: the ratio within/between was ~0.4 for both
coordinates.

The sound-localization problem

Sound localization results from a neuro-computational
process, which compares binaural inputs (ITDs and ILDs)
to determine azimuth and extracts monaural spectral
pinna cues (HRTFs) to estimate elevation. Still, even a
single broadband sound cannot provide unique spatial
information, as the elevation-dependent spectrum at the
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eardrum, S(f; ¢), results from multiplying source spectrum,
X(f), with the elevation-dependent pinna filter: S(f; &) =
HRTF(f; ¢)-X(f). Since both are a priori unknown to the
auditory system, sound localization is mathematically “ill-
posed” (Middlebrooks and Green, 1991; Hofman and Van
Opstal, 1998): infinitely many combinations of source
spectra and HRTFs could generate the same sensory
spectrum.

Thus, the auditory system needs additional information
to infer the most likely source elevation. We showed
previously that if the system assumes that (1) HRTFs are
unique for each elevation, and (2) source spectra do not
resemble any HRTF, spectral cross-correlation of the sen-
sory spectrum with all stored HRTFs can identify the
veridical source elevation by maximum likelihood estima-
tion (Hofman and Van Opstal, 1998). In this way, sound
localization can be accurate, and relatively robust to the
sound’s spectral shape (Kulkarni and Colburn, 1998).

The HRTFs may be learned through exposure to differ-
ent acoustic environments, combined with sensorimotor
feedback (Goossens and Van Opstal, 1997). For example,
the auditory system adapts to acute HRTF changes (Hof-
man et al., 1998; Van Wanrooij and Van Opstal, 2005), and
to slow changes due to age-related pinna growth (Otte
et al.,, 2013). Presumably, the system acquires spatial
information by interacting with sounds in daily life, using
visuomotor and sensorimotor error feedback (Shinn-
Cunningham et al., 1998; Zwiers et al., 2003; Carlile et al.,
2014). However, because of the inherently ill-posed na-
ture of the problem, the system can never be sure about
the true sound direction. It may hence rely on statistical
inference to estimate the most likely target location at the
lowest cost. The underlying neural mechanisms, however,
have so far not been identified.
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Ecological range

In the natural environment, sounds could originate from
all around. As such, laboratory stimuli with a limited spa-
tial range might appear non-ecological. However, it
should be noted that the major sound-localization cues
(the ITDs and ILDs) in natural recordings scatter around 0
because people tend to face the person they communi-
cate with. Moreover, recordings also show that the ma-
jority of natural sounds originate from a limited range in
elevation, and that the human sound-localization system
may have adapted to these features (Parise et al., 2014).
Moreover, under natural conditions, subjects will typically
use multiple sensory signals (visual, auditory, vestibular,
motor), which all need to be centrally integrated to form
coherent spatial-temporal percepts of objects in the en-
vironment (Stein and Stanford, 2008; Van Wanrooij et al.,
2010; Van Grootel et al., 2011; Van Barneveld and Van
Wanrooij, 2013). For adequate audiovisual integration it
should be noted that the visual range is limited to only a
narrow frontal domain, which again suggests that many
natural sound-localization behaviors will be performed
within this range too.

In our experiments, all sounds had broad-band flat
spectra, and as such were well-localizable, although they
were presented under fully open-loop conditions in total
darkness, without any exogenous feedback. This is fur-
ther evidenced by the very high correlation coefficients
and consistent response behaviors within subjects, and
across tasks, listening conditions, and stimulus ranges.
Because sounds were broadband, they never induced
localization ambiguities, such as front-back confusions
(which would show up as bimodal response distributions).
It is therefore hard to imagine that these highly consistent,
stimulus-related results could reflect a non-relevant re-
sponse behavior, elicited by non-ecological stimuli.

Related work

Many studies have demonstrated response adaptation
to changes in the environment. Most studies used explicit
(visual) feedback to influence response behavior. For ex-
ample, manipulation of the perceived errors of eye-hand
control through noisy visual feedback showed that the
brain derives the underlying error distribution across trials
through Bayesian inference (Kérding and Wolpert, 2004).
The Bayesian formalism also extends to audiovisual inte-
gration (Kording et al., 2007), movement planning (Hud-
son et al.,, 2007), ventriloquism (Alais and Burr, 2004),
visual speed perception (Stocker and Simoncelli, 2006),
and auditory spatial learning (Carlile et al., 2014). Further-
more, it may explain learning of the underlying distribution
of target locations in a visual estimation task (Berniker
et al., 2010). Also, sound-localization behavior adapts to
chronic and acute changes in the acoustics-to-spatial
mapping (Hofman et al., 1998; Shinn-Cunningham et al.,
1998; Zwiers et al., 2003; King et al., 2011; Otte et al.,
2013; Carlile et al., 2014).

Minimizing the MAE, as described in the Introduction
(Eqg. 2), is mathematically equivalent to the optimal Bayes-
ian decision rule on Gaussian distributions that selects the
maximum of the posterior distribution (the maximum-a-
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posteriori, or MAP strategy (Kérding and Wolpert, 2004;
Ege et al., 2018):

POST(e* | e) « L(e|e*)-P(ex) and R = maxarg[ POST
(ex]e)] (11)

with L(elex) the likelihood function of the noisy sensory
input for a target presented at e*, with uncertainty, o;
P(e*) is the prior distribution, or expectation, of potential
target locations, and R is the selected MAP response. For
a fixed prior, the MAP strategy provides an optimal trade-
off between mean absolute localization error (accuracy)
and response variability (precision). For Gaussian distri-
butions, the MAP rule predicts that the stimulus-response
gain depends on the sensory noise, o, and the prior
width, op, by:

R 0p
P 12)

9

Recently, we (Ege et al., 2018) found that for a fixed
target range, the human sound localization system might
indeed rely on such a Bayesian decision rule, as the
results indicated that the localization gain g depended on
the sensory noise, o in a systematic fashion.

In our current experiments, the prior width may have
varied with the expected target range: op = 0p(AT). The
idiosyncratic differences in initial gains, observed in this
study, could thus be partially due to idiosyncratic differ-
ences in initial priors. The present study challenged the
auditory system to update its prior only on the basis of
endogenous signals.

Several studies have shown that the auditory system
rapidly adapts to the statistics of environmental acous-
tics, without overt exogenous feedback. For example,
neurons in inferior colliculus (IC) of anesthetized guinea
pigs shift their sound-level tuning curves according to the
mean and variance of sound levels (Dean et al., 2005).
Interestingly, these rapid adjustments already manifest at
the auditory nerve (Wen et al., 2009). Likewise, ILD tuning
of IC neurons in anesthetized ferrets adjusts to the ILD
statistics of dichotic sounds, while these same stimuli
induce perceptual shifts to ILD sensitivity in humans (Dah-
men et al., 2010). Finally, it has been shown that head-
orienting reaction times to audiovisual stimuli depend
systematically on trial history, and on the probability of
perceived audiovisual spatial alignment, without providing
exogenous feedback (Van Wanrooij et al., 2010).

Potential neural mechanisms

The present study demonstrates that the auditory sys-
tem continuously evaluates its localization performance
on the basis of present and (recent) past trial information,
and of its own responses, even without any exogenous
feedback. We hypothesize that the system may have used
two sources of endogenous information: (1) if kept in
memory, the perceived acoustic cues implicitly inform the
system about the current probability distribution of esti-
mated source locations, and (2) efference copies, to-
gether with proprioceptive information from neck muscles
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and vestibular responses, yield behavioral information
about its goal-directed head-orienting responses, and
hence about the system’s own localization estimates and
errors. Earlier studies have revealed that the auditory
system indeed incorporates static and dynamic eye and
head orientations to estimate sound locations (Goossens
and Van Opstal, 1999; Vliegen et al., 2004).

We conjecture that by combining these information
sources, the brain could estimate the expected mean
localization error (Eq. 2) as its performance cost. To min-
imize this cost, the response gain should depend system-
atically on the perceived target range, which is
qualitatively supported by our data. Quantitatively, how-
ever, the data seem to differ from the predictions. First,
although Equation 2 predicts gains <1.0 (Fig. 1A), we
obtained slightly higher response gains for the largest
target ranges. Second, the large idiosyncratic variability of
narrow-range response gains (see above in the Results
section, e.g. Fig. 5, 7, and 9) seem not in line with mini-
mizing a cost function.

However, both model deviations might actually be ex-
pected for several reasons. First, it should be noted that it
is impossible to assess the actual internal estimates of the
different components underlying the cost of Equation 2.
(1) The actual perceived target range depends on internal
mappings of weighted ITD, ILD and spectral cues onto
source locations. (2) The head-motor response involves a
sensorimotor transformation from cue-derived sensory
percept to motor output with inherent uncertainty. (3)
Internal noise sources of the sensorimotor transforma-
tions are not directly accessible. These different compo-
nents are not independent and combine in a nonlinear
way to the cost. As a result, measured gains of stimulus-
response relations may not exactly correspond to internal
estimates of the system’s own optimal gains, described
by Equation 2.

Further, the actual strategy of the auditory system
might be to keep the cost within certain bounds around
the minimum, as the target range itself is at best an
internal estimate, endowed with uncertainty of its own.
The simulations show that for a small (perceived) target
range, the tolerance could be substantial, as the effect of
gain changes on the mean absolute error is quite modest.
For example, Figure 1A shows that when the gain would
vary between 0.1 and 0.8, the mean error would change
by merely 1.5°, which remains within the spatial resolution
of the human auditory system. Similarly, for gains higher
than 1 the mean error would also increase only slightly for
the narrow target range. In lieu of that, the observation
that the gains for the azimuth components are typically
higher (not lower) than 1 is interesting. This might suggest
that overshooting the targets is a better strategy than
undershooting, although both strategies would yield the
same sub-optimal error. In natural environments, this
would make sense, as an overshooting strategy would
allow for exploratory behavior even when sensory evi-
dence would be poor.

In contrast to the effects for the narrow target range, if
the same gain change occurs for the largest target range,
the mean error would vary by >15°. This strong range-
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dependent effect on the cost could explain the observed
idiosyncratic variability at the small target ranges (Figs. 4,
6, 8, 10), the slow gain changes seen during prolonged
exposure to narrow target ranges (Fig. 6, 7B), as well as
the inverse relationships that pull response gains toward
near-optimal values around 1.0, with limited idiosyncratic
variability, for the wider target ranges (Figs. 5, 7, 9).
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