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Abstract: Metabolic alteration plays a functional role in kidney allograft complications. Metabolomics
is a promising high-throughput approach in nephrology but is still limited by the lack of overlap in
metabolite coverage. We performed an untargeted fecal metabolomic analysis of forty stable kidney
allograft recipients and twenty non-transplant controls. First, we applied the ultra-high performance
liquid chromatography (UHPLC) analysis coupled with the Diod Array detector. The potential
biomarkers were then collected and identified by gas chromatography-mass spectrometry (GCMS).
In order to allow for complete coverage of the fecal polar and non-polar metabolites, the performance
of five organic solvents with increasing polarity was investigated successively. UHPLC analysis
revealed that the fecal metabolite profiles following the five extractions were significantly different
between controls and kidney allografts. GC-MS analysis showed that the best predictors’ metabolites
belonged mainly to long-chain fatty acids, phenolic compounds, and amino acids. Collectively,
our results showed the efficiency of our pioneer method to successfully discriminate stable kidney-
transplant recipients from controls. These findings suggest that distinct metabolic profiles mainly
affect fatty acid biosynthesis and amino acid metabolism. In such a context, the novel insights into
metabolomic investigation may be a valuable tool that could provide useful new relevant biomarkers
for preventing kidney transplant complications.

Keywords: metabolomics; kidney transplantation; metabolites; biomarkers

1. Introduction

It is well known that renal transplantation and monitoring success closely depend
on controlled immunosuppression [1]. Because of long-term immunosuppressive thera-
pies, transplant patients could face several risks: nephrotoxicity, diabetes, hyperlipidemia,
hypertension, and atherosclerosis [2]. Nevertheless, relatively simplistic clinical measure-
ments remain in use for the monitoring of renal transplant patients. Thus, to monitor
patients’ outcomes and to improve the efficacy and safety of immunosuppressive therapy,

Diagnostics 2021, 11, 962. https://doi.org/10.3390/diagnostics11060962 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-3987-8617
https://orcid.org/0000-0002-6128-3185
https://orcid.org/0000-0003-2953-2193
https://orcid.org/0000-0002-8123-4743
https://orcid.org/0000-0001-5642-8805
https://www.mdpi.com/article/10.3390/diagnostics11060962?type=check_update&version=1
https://doi.org/10.3390/diagnostics11060962
https://doi.org/10.3390/diagnostics11060962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11060962
https://www.mdpi.com/journal/diagnostics


Diagnostics 2021, 11, 962 2 of 15

innovative approaches able to reflect the interindividual pharmacodynamic variability
responses are needed.

Recently, the emergence of unbiased metabolomic profiling allowed a deeper compre-
hension of an organism’s physiological state. Therefore, many metabolomic approaches
aim to maximize metabolite coverage to identify candidate biomarkers, reflecting dynamic
phenotype under a specific set of environmental conditions [3,4]. Several studies focused
on exploring fecal metabolic profiling, as it is a noninvasive and information-rich sample
type [5,6]. Reported data gave new insights about host-gut co-metabolites and therefore
host-gut microbiota interactions [7]. To date, however, only a few metabolomic studies
have been applied to studying the modification of the intestinal milieu and the deficit of
gut-metabolite excretion under renal impairment [8]. Additionally, the fecal metabolic
profile of kidney disease patients has rarely been explored.

Furthermore, it remains challenging to simultaneously extract all metabolite classes us-
ing a single method [9,10]. Although significant efforts have been devoted to metabolomic
extraction, there is not a universal solvent recipe for a highly efficient extraction because of
the differences in samples and analysis methods. Therefore, it is necessary to develop a
mixture of extraction solvents for the simultaneous analysis of polar metabolites and lipids
in feces. Biphasic solvents, which separate metabolites into polar and non-polar fractions,
are widely used [11].

Relevant studies have focused on the increased link between gut microbiota and
kidney diseases (the gut-kidney axis) [12,13]. The gut microbiota is now recognized as a
highly metabolically active community of microorganisms and a critical regulator of its
host homeostasis. However, disruption of the normal gut microbiota may lead to dysbiosis,
which could dictate the pathophysiological phenotype of chronic kidney disease (CKD) [14].

Thus, in this study, we enrolled kidney graft recipients undergoing immunosuppressive
therapy and nontransplant controls to investigate the fecal metabolic profile in this population
using untargeted ultra-performance liquid chromatography (UPLC). Several research studies
reported a metabolomic comparison between kidney graft recipients and healthy controls
to assess the shift in certain metabolic pathways induced by renal transplantation using
serum or urine samples [15]. However, little is known about whether fecal metabolites can
predict kidney allograft status. The identification of significantly different metabolites was
performed using gas chromatography–mass spectrometry (GCMS) analysis.

Our purpose was to develop a sample extraction method that maximizes both polar
and non-polar metabolites, and to identify specific biomarkers. To this end, the goal of
this work was to perform, for the first time, a successive five-solvent-based metabolite
extraction protocol. Interestingly, this method allowed for the identification of the ideal
solvent for setting up potential specific biomarkers.

2. Materials and Methods
2.1. Volunteer Recruitment and Sample Collection

Subjects were enrolled from the Military Hospital for a fecal specimen collection and data
study. A total of forty patients with stable kidney allograft (KT group) (12 females, 28 males,
mean age 42 years), and twenty healthy control subjects (control (T) group) (10 females,
10 males, mean age 44 years) were enrolled in this study. The subjects provided the fecal
specimens within one day of production and the samples were frozen at −80 ◦C. Clinical
and demographic data of study groups are further detailed in Supplementary Table S1.

All subjects gave their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Ethics Committee of the Military Hospital of Tunis
(N ◦05032018).

2.2. Fecal Metabolite Extraction

This protocol describes the simultaneous extraction of polar and non-polar metabolites
from fecal samples. Respecting a decreasing gradient of solvent polarity, we performed a
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successive five-solvent-based (Ethanol-Ethyl, Acetate-Diethyl, Ether-Chloroform-Hexane)
metabolite extraction protocol. All fecal samples were aseptically taken. Before analysis,
fecal water was extracted via mixing 3 g of fresh stool with Ethanol (stored at −20 ◦C)
in the ratio 3:20 (g:mL; feces:Ethanol). The mixtures were homogenized for 3 min and
centrifuged at 4000 rpm for 20 min at 4 ◦C. The supernatants were transferred and filtered
through a 0.45 µm Millex-GV Syringe Filter. An amount of 20 mL of Ethyl Acetate was
added to the pellets. The mixtures were well shaken, vortexed for 3 min and centrifuged at
4000 rpm for 20 min at 4 ◦C. The same operation was repeated successively when adding
Diethyl ether, Chloroform, and Hexane. A triplicate extraction was performed for every
sample. All filtered fecal waters were dried to complete dryness of solvents, under reduced
pressure in a speed vacuum at 10 ◦C, to get a pellet of concentrated metabolites. All the
extracted metabolites were stored at −20 ◦C until analysis.

2.3. Sample Preparation

A total of 2 mg of dried metabolites were reconstituted in the same solvent of extraction
and homogenized until the sample was completely dissolved, then adjusted to 1 mL with the
same solvent. The mix was subsequently filtered through syringe filters (0.45 µm pore size).

2.4. UHPLC Analysis

The metabolites were detected with a UHPLC Thermo UltiMate 3000 system, coupled
with a Diod Array detector from 190 nm to 1100 nm (DAD RS 3000 and RS 3400 MWD)
(Thermo Scientific™; Dionex™ UltiMate™ 3000; US) and fluorescence detection (FLD
3100 and RS 3400 FLD HR) (Ultimate 3000) using a C18 column ((4.6 × 250 mm 5 µm),
C/N5020- 03946, S/N 3FF37044 GL Sciences Inc. Tokyo Japan) in a column compartment
(TCC 3000 SD and RS TCC 3000). The UHPLC was equipped with an auto injector (WPS
3000 WPS 3000 SL and RS), a pump (SRD 3 × 00) opted for a flow rate of 1 mL/min, and
the temperature set at 30 ◦C with an injection volume of 10 µL. Wavelengths were set as
an indicator at 210, 280, 350, and 450 nm. A total of 10 µL of the sample was eluted with
a mobile phase composed of HPLC water/Trifluoroacetic acid (0.08%) and Acetonitrile
(Sigma-Aldrich) with a (95/5%) gradient following these steps—Step 1: 5% Acetonitrile for
2 min; step 2: From 5% Acetonitrile to 90% Acetonitrile in 20 min; step 3: 95% Acetonitrile
for 2 min; and finally, step 4: 5% Acetonitrile for 2 min. The QC strategy procedure adopted
in this paper is based on the use of blank, calibration, and control samples. Blank and
calibration samples allowed for the control of the performance of the HPLC instrument
(Thermo Scientific™; Thermo UltiMate 3000 system, US), while control samples were
included in the analytical batch and treated in the same way as the samples [16].

2.5. Peak Identification by GC/MS

UHPLC has been demonstrated as a powerful, robust, sensitive, and selective method
for the simultaneous quantification of various compounds. For a good separation with
UHPLC, some controllable factors, including flow rate, eluent additives, pH, analyte nature,
type of mobile phase, type of stationary phase, the content of sample matrices, type and
settings of the detector, and temperature must be enhanced. With the aim of a good UHPLC
separation, these factors mentioned above were optimized for the analysis of our samples.
We performed several runs of the same sample (10 times) and we collected the same peak
several times. A co-elution of the different collected peaks was performed to ensure that
the same peak had been collected.

After reaching the equilibrium, the sample was injected into the sample loop and
21 global UHPLC (Thermo Scientific™; Thermo UltiMate 3000 system, US) chromatograms
were chosen. Each sample was subjected to two independent HPLC (Thermo Scientific™;
Thermo UltiMate 3000 system, US) runs to validate the metabolomic profile and to have the
right retention time for the 21 reproducible peaks that were significantly different between
the two groups and could be suggested as potential metabolic biomarkers. Fractions were
manually collected throughout the running UHPLC chromatogram. Every identified peak
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was collected separately, and a triplicate was performed for every peak. All the fractions
were dried under reduced pressure in a speed vacuum at 45 ◦C. To further identify the
21 metabolites, the dried fractions were analyzed using the Agilent GC 7890B-MS 240
(Agilent, CA, USA) ion trap gas chromatography (GC) technology equipped with an MS
detector. The GC-MS analysis was performed in two steps:

For the first step, each sample pellet was diluted with 500 µL of the extraction solvent.
The mixtures were filtered through a 0.22 µm Millex-GV Syringe Filter (Millex® Syringe
Filters; Merck KGaA, Darmstadt, Germany). All the samples were run on GCMS with a
500 µL blank of each extraction solvent.

The second step was the derivatization: Each sample was re-dried and derivatized
by adding 800 µL of N-Hexane and 400 µL of (1 M) Sodium methylate to the metabolite
pellets. The resulting solution was then vortexed, 200 µL of H2SO4 (0.1 M) was added,
and the mixture was homogenized. After decantation, 500 µL of the supernatants were
transferred to GC-MS glass vials. A blank with MilliQ water was prepared and treated the
same as the derivatized samples.

2.6. GC-MS Analysis

The samples were analyzed using the Agilent GC 7890B–MS 240 (Agilent, CA, United
States) ion trap Gas Chromatography technology equipped with MS detector (GC-MS).
Injections were in a splitless mode for 0.75 min, using a 2 mm I.D. non-deactivated direct
liner. The separation was carried out on an HP-5MS capillary column (30 m × 0.250 mm;
0.25-µm film thickness). The analysis was carried out in full scan mode for 60 min. Au-
tosampler injected 1 µL of each sample and the separation was performed using the column
in split mode and with the ionization range from 50 to 1000 mV. The carrier gas was helium
with a flow rate of 1.1 mL/min. The injector temperature was set at 280 ◦C and GC oven
temperature was programmed at 40 ◦C for 2 min, then a slope from 50 ◦C up to 250 ◦C
maintained for 20 min. The analysis was carried out in full scan mode for 60 min.

2.7. Identification and Comparison of Volatile Compounds

Mass spectral data processing and metabolite identification were performed using
Automated Mass Spectral Deconvolution and Identification System (AMDIS) (AMDIS-
version 2.71, 2012) and the National Institute of Standards and Technology (NIST) (version
2.0, 2011) database. The detected metabolite peaks were identified using three components
within NIST; these were a match of >800, a 90% probability of a match to NIST library
standards and a head-to-tail comparison of the fragments. A compound was considered to
be present when it satisfied these 3 criteria. This process provided relative ion abundance;
therefore, no units of ion abundance are available. A compound with a similarity index of
more than 80% was considered as a potential biomarker [17], therefore compounds that
were found in less than 20% of the entire sample cohort were removed from further analysis.

2.8. Statistical Analysis Approaches for Metabolic Change Detection

The UHPLC data sets multivariate statistical analysis was conducted using SIMCA-
P version 12.0 software package (Umetrics, Umeå, Sweden). First, the unsupervised
principal component analysis (PCA) was performed to observe intrinsic clusters and find
obvious outliers. Then, the supervised orthogonal projection to least squares discriminant
analysis (OPLS-DA) was employed to visually discriminate between KT patients and
healthy controls. The OPLS-DA model removes variability not relevant to class separation.
Thus, only one predictive component is normally used for the discrimination between two
classes. OPLS-DA was used to differentiate metabolite profiles between different extraction
methods. For the model validation parameter Q2 (the fraction of variations of the X and
Y matrices explained by the model; the X matrix was the metabolite features, and the Y
matrix was the treatment groups), values above 0.4 were indicative of a robust model, i.e.,
true differences between the comparing groups, and Q2 between 0.7 and 1.0 indicated that
the model was highly robust. R2X (R2Y) indicated the fraction in which the X (Y) matrix
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was explained by the model. The statistical model was tested for robustness with the
use of a CV-ANOVA (analysis of variance in the cross-validated residuals of a Y variable)
from SIMCA. The difference between the KT and CT groups was calculated with unpaired
sample t-test (Student’s t-test) (Excel 2019). All features with p-values below 0.05 indicated
that these features can indeed be regarded as potential “biomarkers”.

3. Results
3.1. Patient Characteristics

To assess the effects of changes in the metabolic profile of the gut microbiota, we
performed an untargeted metabolomic analysis of fecal contents using UHPLC protocol.
Fecal metabolite profiling was analyzed in 40 kidney graft recipients vs. healthy subjects.
The demographic and clinical characteristics of the kidney graft recipients are summarized
in Table 1 and supplementary Table S1.

Table 1. Clinical and demographic data of study groups.

Subjects Age (Y)
Mean ± SD Gender Diet BMI ± SD Immunosuppressive

Therapy
Period (Y) after Tx

Mean ± SD

Patients 42 ± 6 28 M/12 F Low salt 23.7 ± 5 Str/Fk/MMF 6 ± 5
Controls 44 ± 5 10 M/10 F Balanced 20 ± 4 - -

(Y) year; SD Standard deviation; Str: steroids; FK: tacrolimus; MMF: mycophenolic acid; (-): not applicable; F: Female; M: Male; Tx: Treatment.

3.2. Metabolomics Workflow

Figure 1 shows the schematic workflow of our global metabolomics study. Fecal
samples were collected from 40 KT patients and 20 Healthy controls. Metabolites were
extracted from the fecal samples following the gradient of solvent polarity and analyzed
using the UHPLC platform; the metabolite identification was subsequently performed
using GC-MS approach. To discriminate KT patients from healthy subjects, all metabolic
features were analyzed in the principal component analysis (PCA) and orthogonal partial
least square discrimination analysis (OPLS-DA) (Figures 2–5). The potential biomarkers
were further extracted using the criteria of VIP > 1 and FDR ≤ 0.05.
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samples from stable kidney transplant patients.
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3.3. Dynamic Changes in Unknown Fecal Metabolic Patterns in Kidney Transplant Patients

To analyze changes in the metabolic pattern, which are associated with the kidney
transplantation process and therapy, we performed a successive extraction of both polar
and non-polar metabolites with five solvents to ensure a full coverage of metabolites, and
thereby running separate phases after each extraction on the UHPLC. We used two typical
analytical procedure steps (as often used in metabolomics). Following the successive five-
solvent extraction from the feces, a total of approximately 95 different reproducible peaks
(RPs) or features of whole polar and non-polar metabolites were detected using untargeted
UHPLC (Figure 2).
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Figure 2. Representative fecal UHPLC spectra with retention time of samples from kidney transplant patients (KT) and
healthy volunteers (CT). UHPLC analysis with C18 column, 30 ◦C, UV Diod Array detector from 190 nm to 1100 nm.
The mobile phase used was HPLC water/Trifluoroacetic acid (0.08%) and Acetonitrile with a 95:5 gradient, flow rate of
1 mL/min. Yellow rectangles highlight common RPs between KT and CT groups. Red rectangles highlight specific RPs of
the KT group. Blue rectangles highlight specific RPs of the control (T) group.

The metabolomic signature showed dramatic changes in response to immunosuppres-
sive therapy. The unsupervised PCA was initially utilized on the identified peaks and the
scatter plots using the score of the first principal component (PC1) and the second principal
component (PC2) for each sample. As we can see, the PCA model showed a clear trend
of group clustering between the kidney transplant group and the control healthy group
(Figure 3A). To maximize the group separation and identify discriminating metabolites, the
supervised OPLS-DA classification model, using one PLS component and one orthogonal
component, was established. The OPLS-DA method was able to correctly separate the
whole fecal metabolome of healthy subjects from kidney transplant patients (Figure 3B).
Furthermore, the CV-ANOVA test was performed to examine the statistical significance of
the differences between the two groups in the OPLS-DA model, which resulted in a score of
p = 2.31 × 10−23, indicating that the differences between the groups within the model were
highly significant. Goodness of fit values and predictive ability values (R2X, R2Y, and Q2)
were 0.347, 0.983, and 0.904, respectively. These values indicated that the model possessed
a satisfactory fit with good predictive power. Globally, both PCA and OPLS-DA analyses
revealed that the two groups had unique metabolome profiles. Furthermore, to assess
differences in the metabolic structure among patients undergoing kidney graft over time,
we divided our cohort into the following subgroups according to the post-graft period:
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short post-graft period (“SG” from 3 months to 1 year; n = 11), medium-length post-graft
period (“MG” from 1 year to 10 years; n = 20), and long post-transplant period (“LG” from
10 to 22 years; n = 9). The OPLS-DA plot reported a total discrimination between the CT
group and the different graft periods (SG, MG, and LG), but no significant separation
according to the post-graft period (Supplementary Figure S1).
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of the data from all the five extractions confirms that there are no outlying samples within a 95% confidence interval.
(A) PCA−score plot model, with values of R2 = 0.504 and Q2 = 0.315. Blue circles represent healthy control samples and
green circles represent KT samples (B) Orthogonal partial least squares discriminant analysis (OPLS-DA)—score plot model
showing separation based on all extraction methods, with R2(X) = 0.347, R2(Y) = 0.983, Q2 = 0.904, and cross-validated
analysis of variance (CV−ANOVA) p = 2.31 × 10−23 values. Blue circles represent healthy control samples and green circles
represent KT samples.

To better delineate the fecal metabolic alterations between healthy and kidney allograft
subjects, we separately analyzed the five extractions. For each extraction, the unsupervised
PCA analysis clearly showed a significant separation between the two studied groups, and
the established OPLS-DA model exhibited a good ability to discriminate from each other as
well (Figure 4). Interestingly, the number of detectable reproducible peaks (RPs) decreased
according to the decrease of the polarity of the solvent. Ethanol extraction showed the
highest detectable RPs (n = 36 RPs). Additionally, we reported 32 detectable RPs for the
Ethyl acetate extraction, 28 detectable RPs for the Diethyl ether extraction, and 26 detectable
RPs for the Chloroform extraction, Hexane extraction showed the lowest detectable RPs
(n= 23 RPs).

3.4. Fecal Metabolic Differences between Kidney Transplant Patients and Healthy Individuals and
the Selection of Potential Biomarkers

To assess the potential utility of altered metabolites as predictive markers of potential
biomarkers of kidney transplant patients undergoing immunosuppression therapy, relevant
RPs were selected between the control and kidney transplant groups using the Student’s
t-test. When a p-value is below 0.05, the variable is considered to contribute to the difference
between the two groups. First, we investigated the total dataset from all the extractions. As
shown in Table 2, a total of 21 differential RPs in feces were picked as potential biomarkers
of kidney transplant patients.



Diagnostics 2021, 11, 962 8 of 15Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. OPLS-DA score plots of the fecal metabolic profiles from the KT and control (T) groups. An overview of the data 
from each extraction confirms that there are no outlying samples within a 95% confidence interval. Green circles represent 
KT samples and blue circles represent healthy control samples. (A) OPLS-DA score plot model showing discrimination of 
stable KT patients from controls based on the Ethanol extraction method, with R2(X) = 0.602, R2(Y) = 0. 881, Q2 = 0.71, and 
CV-ANOVA p = 2.85 × 10−9 values. (B) OPLS-DA score plot model showing discrimination of stable KT patients from 
controls based on the Ethyl Acetate extraction method, with R2(X) = 0.291, R2(Y) = 0.871, Q2 = 0.718, and CV-ANOVA p = 
1.56 × 10−14 values. (C) OPLS-DA score plot model showing discrimination of stable KT patients from controls based on 
the Diethyl ether extraction method, with R2(X) = 0.486, R2(Y) = 0.938, Q2 = 0.815, and CV-ANOVA p = 2.02 × 10−24 values. 
(D) OPLS-DA score plot model showing discrimination of stable KT patients from controls based on the Chloroform 
extraction method, with R2(X) = 0.505, R2(Y) = 0.889, Q2 = 0.791, and CV-ANOVA p = 1.07 × 10−12 values. (E) OPLS-DA 
score plot model showing discrimination of stable KT patients from controls based on the Hexane extraction method, with 
R2(X) = 0.341, R2(Y) = 0.873, Q2 = 0.798, and CV-ANOVA p = 9.63 × 10−19 values. 

To gain further insights, the significantly different 21 UHPLC fractions were collected 
separately, and then analyzed using a GC/MS approach that was shown to achieve a 
comprehensive metabolic fingerprint with good analytical characteristics (Figure 5). After 
excluding the solvents’ metabolites, the 21 metabolites were identified and listed in Table 2. 

As shown in Table 2, the 21 metabolites could mainly be classified into 9 fatty acids 
and long-chain fatty acids, 3 phenolic compounds, 2 amino acids, and 7 other classified 
metabolites. The identified metabolites mainly correspond to the alterations of 
biosynthesis of unsaturated fatty acids and tryptophan metabolism. 

Subsequently, the most relevant metabolites were summarized considering the five 
extractions separately, as mentioned in Table 2. Interestingly, the ethanol extraction, 
followed by the Ethyl acetate and the diethyl ether extractions, allowed for the highest 
number of differential metabolites that could be suggested as potential biomarkers 
separating the two groups. Furthermore, ethanol extraction covered the biggest range of 
metabolite polarity. 
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KT samples and blue circles represent healthy control samples. (A) OPLS-DA score plot model showing discrimination of
stable KT patients from controls based on the Ethanol extraction method, with R2(X) = 0.602, R2(Y) = 0. 881, Q2 = 0.71, and
CV-ANOVA p = 2.85 × 10−9 values. (B) OPLS-DA score plot model showing discrimination of stable KT patients from
controls based on the Ethyl Acetate extraction method, with R2(X) = 0.291, R2(Y) = 0.871, Q2 = 0.718, and CV-ANOVA
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values. (D) OPLS-DA score plot model showing discrimination of stable KT patients from controls based on the Chloroform
extraction method, with R2(X) = 0.505, R2(Y) = 0.889, Q2 = 0.791, and CV-ANOVA p = 1.07 × 10−12 values. (E) OPLS-DA
score plot model showing discrimination of stable KT patients from controls based on the Hexane extraction method, with
R2(X) = 0.341, R2(Y) = 0.873, Q2 = 0.798, and CV-ANOVA p = 9.63 × 10−19 values.

To gain further insights, the significantly different 21 UHPLC fractions were collected
separately, and then analyzed using a GC/MS approach that was shown to achieve a
comprehensive metabolic fingerprint with good analytical characteristics (Figure 5). After
excluding the solvents’ metabolites, the 21 metabolites were identified and listed in Table 2.
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Table 2. Biomarkers selected in the fecal metabolic profiles of KT patients.

Extraction RT Metabolites Sub Class m/z Chemical Structure p-Value

Ethanol

2,4 Dodecanoic acid Fatty acids 103.1/89.1/117.1 MF: C12H24O2
MW: 200.32 g/mol <0.001

5,5 Ethyl oleate Dithianes 43.05/55.12/69.06 MF: C20H38O2
MW: 310.5 g/mol <0.001

8,9 trans-O-Dithiane-4,5-diol Fatty acid ester 152.98/108.79/44.03 MF: C4H8O2S2
MW: 152.2 g/mol <0.001

9,8 Formic acid Carboxylic acid 29.02/46.04/45 MF: CH2O2
MW: 46.025 g/mol <0.001

12,5 L-Tryptophan Essential amino
acid 130.07/159.09/232.06 MF: C11H12N2O2

MW: 204.22 g/mol <0.001

16,08 4-Hydroxyphenylpyruvic acid Benzenoids 190.1/89.06/116.05 MF: C9H8O4
MW: 180.16 g/mol <0.001

16,2 5alpha-Cholest-7-en-3beta-ol Sterols 43.05/386.33/255.22 MF: C27H46O
MW: 386.7 g/mol <0.001

17,6 Valeric acid Straight chain
fatty acid 60.02/27.03/29.05 MF: C5H10O2

MW: 102.13 g/mol <0.001

18,02 Erucic acid Long-chain fatty
acid 321.2/303.3/255.1 MF: C22H42O2

MW: 338.6 g/mol <0.001

Ethyl Acetate

4,1 Palmitic acid Long-chain fatty
acid 74/87/143 MF: C16H32O2

MW: 256.42 g/mol <0.001

10,5 Octadecanoic acid Long-chain fatty
acid 265.4/283.4/266.5 MF: C18H36O2

MW: 284.5 g/mol <0.001

13,48 Isostearic acid Long-chain fatty
acid 74.04/87.04/255.2 MF: C18H36O2

MW: 284.5 g/mol <0.001

13,9 Stigmastanol Sterols 43.99/107.71/215.7 MF: C29H52O
MW: 416.7 g/mol <0.001

Diethyl
Ether

3,8 5beta-Coprostanol Cholestane
steroids 81.09/95.02/67.1 MF: C27H48O

MW: 388.7 g/mol <0.001

10,2 p-Anisic acid Benzenoids 135.04/209.07/165.03 MF: C8H8O3
MW: 152.15 g/mol <0.001

11,5 Hentriacontane Alkanes 71/85/99 MF: C31H64
MW: 436.8 g/mol <0.001

16,9 13-Methylmyristic acid Long-chain fatty
acid 73.05/89.04/43.05 MF: C15H30O2

MW: 242.4 g/mol <0.001

Chloroform
4,03 2,4-Di-tert-butylphenol Benzenoids 191.99/57.23/163.15 MF: C14H22O

MW: 206.32g/mol <0.001

14,56 Androst-5-ene-3,17-dione Androstane
steroids 286/177/91 MF: C19H26O2

MW: 286.4 g/mol <0.001

Hexane
8,8 Oleic Acid Long-chain fatty

acid 41/55/43 MF: C18H34O2
MW: 282.5 g/mol <0.001

12,6 Aspartylglycine ethyl ester Alkyl-
phenylketones 88.1/70.09/43.12 MF: C8H14N2O5

MW: 218.21 g/mol <0.001

RT: retention time, MF: molecular formula, MW: molecular weight.

As shown in Table 2, the 21 metabolites could mainly be classified into 9 fatty acids
and long-chain fatty acids, 3 phenolic compounds, 2 amino acids, and 7 other classified
metabolites. The identified metabolites mainly correspond to the alterations of biosynthesis
of unsaturated fatty acids and tryptophan metabolism.

Subsequently, the most relevant metabolites were summarized considering the five ex-
tractions separately, as mentioned in Table 2. Interestingly, the ethanol extraction, followed
by the Ethyl acetate and the diethyl ether extractions, allowed for the highest number of
differential metabolites that could be suggested as potential biomarkers separating the two
groups. Furthermore, ethanol extraction covered the biggest range of metabolite polarity.
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4. Discussion

Currently, metabolomics is a promising tool for the study of the metabolic profile in
renal disease, allowing for the potential identification of relevant biomarkers in kidney
transplantation management and therapy [18,19]. To the best of our knowledge, this is the
first untargeted metabolomic analysis investigating fecal metabolome in renal function
decline, especially in stable KT patients receiving immunosuppression therapy.

Recent data have focused on the serum and urine metabolic signature of kidney
transplant patients [20]. Several mechanisms, such as uremic toxins or an alteration in
enzyme activity, have been suggested to link blood or urine metabolites to an impaired
renal function [21,22]. Fecal samples have recently been thought of as a good choice for the
study of metabolism since they can be collected easily and noninvasively [23]. Likewise,
metabolomic analyses of feces could increase our understanding of the mechanisms under-
lying gut microbiome–host interactions in the kidney transplantation state [24]. However,
to date, metabolomic analyses of fecal samples in these patients remain elusive.

Our purpose was to develop an untargeted metabolomic extraction method for the
analysis of fecal metabolic fingerprint that could enable us to discriminate enrolled KT
patients from controls. Until now, only a few studies have dealt with the optimization of
the method used for the sample preparation of feces. To maximize metabolite coverage,
we optimized, for the first time, a five-solvent-based method to extract both polar and
non-polar metabolites simultaneously from the same samples. This could be extremely
beneficial as it avoids much of the variation that can occur when extracting both types of
metabolites separately from different samples. Taken together, our results showed that fecal
metabolic profiles of KT patients issued from all the five extractions were different from
the control group. The same results were found when the five extractions were analyzed
separately. These findings are in line with our recently published study investigating
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metabolic profiles of kidney transplant recipients using the GC-MS analysis approach [25].
The present results indicate that our concurrent analysis approach could successfully
distinguish between groups through the statistical analysis of the profiling data. Overall,
our findings are in line with previous reports which demonstrated that both urine and
plasma metabolomic signatures can discriminate between grafts and healthy subjects [26].
Furthermore, according to our GC-MS analysis, the identified metabolites vary profoundly
in polarity. They range from hydrophilic, polar metabolites with low molecular weight,
to hydrophobic, non-polar high-molecular-weight metabolites. This diversity means that
our method is an efficient extraction approach that could potentially be used for the
clinical recovery of the whole fecal metabolome and for biomarker discovery. Interestingly,
our findings showed the efficiency of the pioneer extraction of fecal metabolites using
at least three different solvents with increasing polarity: highly polar, intermediate, and
non-polar. Ethanol, diethyl ether, and Ethyl acetate extractions allowed for the highest
number of differential metabolites. As such, most of the recent studies have tried to
improve metabolite extraction and profiling, focusing on either the polar metabolites or
on lipids. However, few studies, if any, have performed protocols that are effective at
simultaneously extracting both polar and non-polar metabolites [27,28]. Moreover, there is
still little information in the literature and lack of a universal approach to sample treatment
for fecal metabolic profiling [29].

Using VIP and FDR values from OPLS-DA, a total 21 RPs were selected as the best
predictors from the different extractions. The 21 RPs indicating significant differences in
metabolic profiles between the kidney transplants and controls could be potential clinical
biomarkers. Thus, the corresponding metabolites of the selected 21 RPs were then deeply
analyzed by GC-MS. Among these identified metabolites, we reported long-chain fatty
acids, phenolic compounds, and amino acids. Nevertheless, these relevant metabolites that
clearly distinguish stable transplant recipients from controls may correspond mainly to
alterations of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, or gut
microbial metabolism. These results are in line with previous observations and are likely
to yield new insights into kidney transplant outcomes.

Based on the metabolite selection step, fatty acids and long-chain fatty acids, including
dodecanoic acid, valeric acid, palmitic acid, octadecanoic acid, isostearic acid, erucic acid,
and oleic acid, were significantly altered in KT. At this point, altered fatty acids may be a
marker of the progressing organism wasting in the course of kidney failure. This is con-
sistent with most earlier studies that have focused on the lipid nephrotoxicity hypothesis
based on Moorhead’s work [30]. There are pieces of evidence that fatty acid dysregulation
can contribute to the alteration of renal function [31]. Indeed, several reports have shown
that excess fatty acids, such as palmitic acid and stearic acid, accompanied by triglyceride
accumulation can damage the renal tissue that facilitates the progression of nephropa-
thy [32], especially when associated with obesity and diabetes. Lipotoxicity induced by
saturated FAs (SFA), including palmitic and stearic acids, causes insulin resistance and cell
death. Furthermore, a recent report has demonstrated the marked elevation of plasma-free
fatty acids and saturated fatty acids in the pre-hemodialysis blood samples from end-stage
renal disease patients as compared to controls [33]. An interesting in vivo study showed a
significant impact of altered fatty acid metabolism in advanced chronic kidney disease [34].

Interesting studies also reported that the tryptophan pathway is involved in chronic
kidney diseases. Recently, it has been demonstrated that tryptophan depletion together
with the accumulation of tryptophan-related toxic metabolites are associated with kidney
function decline and disease progression [35]. Moreover, emerging evidence has shown
that kidney function could be indicated by the ratio between plasma kynurenic acid and
tryptophan [36]. In this clinical context, several enzymes have been proposed to influ-
ence the tryptophan pathway, such as the enzymes kynurenine aminotransferase (KAT),
indoleamine 2,3-dioxygenase (IDO) in the kidney and/or tryptophan 2,3-dioxygenase
(TDO) in the liver [37]. Serum and urinary levels of tryptophan and kynurenic acid have
recently been used as a prognostic and for monitoring the renal transplant function [38].
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In a previous UPLC/MS-based metabolic profiling in patients undergoing hemodialysis,
a total of 19 differential fecal metabolites were identified and correspond mainly to alter-
ations of tryptophan metabolism, lysine degradation, and beta-alanine metabolism [39].
Recent study-based urine metabolomics revealed that 14 differential metabolites identified
distinguished acute rejection from stable transplant recipients and showed high sensitivity
and specificity for the diagnosis of renal allograft recipients with acute rejection [40]. In
another recent report, Bassi et al. showed a correlation between the glomerular filtration
rate (GFR) and the serum concentration of tryptophan, glutamine, and dimethylarginine
isomers. They found the same association between GFR and urinary levels of histidine,
DOPA, dopamine, carnosine, SDMA, and ADMA [41]. Furthermore, urinary and blood
levels of tryptophan and kynurenic acid have been suggested as important parameters in
the prognosis of renal transplant function [35,38].

Nonetheless, no previous reports have assessed the fecal metabolite profiles of sta-
ble renal allografts, although dysbiosis in gut microbiota was previously reported to be
involved in the progression of various kidney diseases [42,43]. Dysbiosis is often observed
in uremic states, especially characterized by the retention of TMAO [44] and uremic tox-
ins (p-cresyl sulphate and sulphate), which derive from the imbalanced metabolism by
commensal gut microbiota. These uremic toxins are considered to be risk factors for the pro-
gression and complications of CKD and impaired renal function [45]. In the present study,
the metabolic profiles suggest a close relationship with gut microbial metabolism. Aromatic
compounds such as benzenoids (Hydroxyphenylpyruvic acid, butylphenol), which are
normally generated and biosynthesized by bacterial species, significantly differed between
KT and control groups. Benzenoid compounds (Phenolic and indolic) are typical products
of bacterial metabolism of aromatic amino acids, and dietary phenolic compounds are often
transformed in the colon by the intestinal microbiota before absorption [46,47]. Clostridium
and Eubacterium genera are considered as key players in this conversion [48]. The potential
mechanistic participation of these metabolites requires further chemical elucidation. We
believe that conducting further research to explore the potential role of benzenoids and
other gut microbiota-derived metabolites in KT is warranted.

5. Conclusions

In this study, we have outlined a method that allows for an easy, non-invasive esti-
mation of the recovery process of kidney-transplanted patients. We reported, for the first
time, the advantage of fecal metabolomic assessment that could be a promising tool for
revealing systematic metabolic variations related to renal graft. For instance, we performed
a new method used for metabolome extraction that allowed us to cover a wide range of
metabolite polarity. Moreover, the OPLS-DA analysis revealed high sensitivity to effec-
tively distinguish between stable transplant recipients and healthy controls according to
the fecal metabolic signature. Nevertheless, a logistic regression analysis was applied to
assess the potential utility of altered metabolites as predictive markers. Interestingly, the
most altered metabolites were long-chain fatty acids, phenolic compounds, and amino
acids. Our preliminary results support the potential utility of fecal metabolome analysis
in renal grafts that could improve current diagnostic methods and standards. The most
important limitation of this methodology was that the use of different extraction solvents,
devised to allow for large-scale quantitation of as many metabolites as possible, which
might be time consuming compared to standard extraction procedures. The proposed
protocol also needs a validation step for the characterized potential biomarkers. Finally,
this large-scale multianalyte targeted approach was tested in fecal samples collected from
a pilot kidney transplantation trial, with the aim of assessing the metabolomic coverage
of this methodology in real samples and exploring its ability to investigate kidney trans-
plantation metabolomic alterations as a case study and identify potential biomarkers. In
this regard, future studies are needed to assess the clinical potential of this metabolomic
platform with a larger sample of cohorts. Nevertheless, future studies are needed to en-
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hance our understanding of the mechanisms underlying metabolomic abnormalities and
gut microbial crosstalk in KT patients.
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