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Abstract

Background: Endometrial cancers (ECs) are one of the most common types of malignant tumor in females. Substantial
efforts had been made to identify significantly mutated genes (SMGs) in ECs and use them as biomarkers for
the classification of histological subtypes and the prediction of clinical outcomes. However, the impact of non-significantly
mutated genes (non-SMGs), which may also play important roles in the prognosis of EC patients, has not been
extensively studied. Therefore, it is essential for the discovery of biomarkers in ECs to further investigate the non-SMGs
that were highly associated with clinical outcomes.

Results: For the 9681 non-SMGs reported by the mutation annotation pipeline, there were 1053, 1273 and 395 non-SMGs
differentially expressed between the patient groups divided by the clinical endpoints of histological grade, histological type
as well as the International Federation of Gynecology and Obstetrics (FIGO) stage of ECs, respectively. In the
gene set enrichment analysis, the cancer-related pathways, namely neuroactive ligand-receptor interaction signaling
pathway, CAMP signaling pathway and calcium signaling pathway, were significantly enriched with the differentially
expressed non-SMGs for all the three endpoints. We further identified 23, 19 and 24 non-SMGs, which were
highly associated with histological grade, histological type and FIGO stage, respectively, from the differentially
expressed non-SMGs by using the variable combination population analysis (VCPA) approach and found that
69.6% (16/23), 78.9% (15/19) and 66.7% (16/24) of the identified non-SMGs had been previously reported to
be correlated with cancers. In addition, the averaged areas under the receiver operating characteristic curve
(AUCs) achieved by the predictive models with identified non-SMGs as predictors in predicting histological
type, histological grade, and FIGO stage were 0.993, 0.961 and 0.832, respectively, which were superior to those achieved
by the models with SMGs as features (averaged AUCs = 0.928, 0.864 and 0.535, resp).
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Conclusions: Besides the SMGs, the non-SMGs reported in the mutation annotation analysis may also involve the crucial
genes that were highly associated with clinical outcomes. Combining the mutation status with the gene expression
profiles can efficiently identify the cancer-related non-SMGs as predictors for cancer prognostic prediction and provide
more supplemental candidates for the discovery of biomarkers.
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characteristics

Background

Endometrial cancers (ECs) are the most common malig-
nancies among women in the Western world. The
prevalence of ECs is increasing [1], with an estimated
60,050 new cases and 10,470 deaths in 2016 [2], likely
due to the obesity that is a major risk factor of ECs
[3]. ECs can be divided into different subtypes, each
exhibiting a unique pathology and different biological
behaviour [4].

Somatic mutation is a major factor in tumorigenesis.
Recent advances have revealed that mutations in cancer
genes are implicated in tumour development and have
promoted our understanding of cancer pathology [5]. The
standard method employed thus far, is to identify mutated
genes based on the frequency of gene mutations in one
type of cancer [6]. Mutation frequency analysis have
revealed that the number of significantly mutated genes
(SMGs), which are somatically mutated at significantly
higher rates than the background mutation rate in ECs, is
the greatest in 21 cancer types [7]. Recently, several SMGs
strongly associated with clinical cancer outcomes have
been extensively characterized. For example, mutations in
FGFR2 may constitute a therapeutic target for ECs [8, 9].
PIK3CA mutations display less aggressive clinical behav-
iour [10]. Loss of PTEN expression may be associated with
better overall survival in patients with the recurrence and
metastasis of ECs [11-13]. Although previous studies have
achieved great advances, a number of limitations still
remain to be resolved. Due to that most of mutated genes
in cancers are passenger genes that don’t promote tumori-
gensis, an effective method for identifying cancer-related
genes among the large number of mutant genes is still
needed. Furthermore, researchers are usually interested in
SMGs associated with ECs and ignore low frequency or
non-significantly mutated genes (non-SMGs) reported by
the mutation annotation pipeline that could also be ECs-
related genes. Among the mutated genes obtained from
the annotated somatic mutation data (Level 2) on the
TCGA data portal (http://cancergenome.nih.gov), the
genes, which were not reported as SMGs, were defined as
non-SMGs in our study. Therefore, elucidating the role of
non-SMGs implicated with ECs tumorigensis, and discov-
ering effective cancer diagnostic and therapeutic targets
are crucial to improving the clinical outcome of ECs.

Next-generation sequencing (NGS) technology provides
an important tool for cancer genome and genetic re-
searches, uncovering a wide range of genetic aberrations
that contribute to cancer development and progression.
Recent studies utilizing the popular method of integrated
RNA and DNA sequencing to identify cancer-related
genes, have uncovered various gene mutations and expres-
sion mechanisms underlying tumorigenesis, progression,
and prognosis [14—16]. Histological grade, histological type,
and the International Federation of Gynecology and Ob-
stetrics (FIGO) stage are important prognostic parameters
for women with endometrial carcinoma [17-19]. Several
studies have demonstrated the prognostic importance
of histological grade, histological type, and FIGO
stage [20, 21]. Depending on the three above patho-
logical endpoints, the prognosis of EC patients varies sig-
nificantly. Therefore, identifying biomarkers of potential
use in targeted therapies and diagnosis of ECs is essential
for the three pathological endpoints. Furthermore, recent
research has shown that the variable combination popula-
tion analysis (VCPA) algorithm [22], which considers the
effects of variable combination, is an effective variable
selection method. We used VCPA to discover the cancer-
related non-SMGs from a large number of mutant genes.

Here, we proposed a strategy which integrates somatic
mutations, RNA sequencing (RNA-Seq) gene expression
data, and clinical data in The Cancer Genome Atlas
(TCGA) Uterine Corpus Endometrial Carcinoma
(UCEQ) patients to identify cancer-related non-SMGs.
In our study, we firstly found the non-SMGs by the
mutation annotation analysis and performed differential
expression analysis of non-SMGs between the different
groups of each clinical endpoints. Clinical endpoints
refers to histological grade, histological type, and FIGO
stage of ECs. Then, VCPA method was further per-
formed to select non-SMG associated with clinical phe-
notypes of ECs. As a result, there were 23, 19 and 24
non-SMGs selected by VCPA approach as the prognostic
predictors for the histological grade, the histological
type, and the FIGO stage, respectively. Importantly, most
of these non-SMGs associated with clinical phenotypes of
ECs have been reported in cancers or diseases. Our results
indicated that non-SMGs may constitute potential cancer-
related genes. Predictive models demonstrated that the
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non-SMGs associated with each clinical endpoint had a
greater ability to distinguish the clinical phenotype of ECs
compared with SMGs and can therefore be used as the
potential biomarkers for cancer diagnosis and prognosis.
These findings highlighted that the strategy proposed in
our study can efficiently identify the important non-SMGs
in cancers, which not only participate in the process of
cancer progression, but may also serve as potential diag-
nostic biomarkers.

Methods

Tumour samples

Clinical data, somatic mutation data (Level 2) and RNA-Seq
gene expression data (Level 3) of ECs were downloaded
from the TCGA data portal (http://cancergenome.nih.gov)
[23]. RNA-Seq gene expression data and somatic
mutation data were generated using the Illumina
Genome Analyzer platform.

Mutation annotation

In order to identify mutations that may promote the ini-
tiation and progression of cancer, we used two popular
prediction systems, namely Sorting Intolerant From Tol-
erant (SIFT) [24] and Polymorphism Phenotyping v2
(PolyPhen2) [25], both of which are available in the
Annotate Variation (ANNOVAR) [26] website. In the
SIFT program, a lower score indicates a greater prob-
ability of a deleterious mutation, while in PolyPhen2 a
higher score indicates a greater probability of a deleteri-
ous mutation. We specified a non-synonymous single
nucleotide variant (SNV) as deleterious if it had a SIFT
score < 0.05 or a PolyPhen2 score > 0.5. Indels in the
coding regions were all considered as deleterious.
Similar to the previous study [27], our individual-based
‘deleterious mutation’ profile included deleterious
missense SNVs, all other non-silent SNVs (nonsense,
nonstop, splicing sites, and translation start sites), and
all indels.

To further refine the deleterious mutation profile, the
Catalogue of Somatic Mutations in Cancer (COSMIC)
database [28], including mutations from EC tumour
samples with matched normal samples, was subse-
quently used to identify mutations that were confirmed
in ECs or reported in other cancers. In this study, if a
gene occurred in at least one deleterious mutation that
was confirmed in ECs or reported in other cancers, we
considered this gene to be a damaging gene.

Identification of non-SMGs that are closely related to
clinical endpoints

We used the RNA-Seq data of the ECs in the TCGA
portal to construct expression matrices. In our study,
the mutated genes excluding the 58 SMGs
(Additional file 1) in ECs, which had been reported in
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previous study [7], were defined as non-significantly
mutated genes (non-SMGs). To identify non-SMGs
associated with clinical endpoints of ECs, we conducted
differential expression analysis and VCPA based on
histological grade, histological type and FIGO stage of ECs
separately.

Firstly, according to the EC histological grade (cell
differentiation) information, we assigned EC patients into
the low grade group (grade I and grade II endometrial
adenocarcinomas (EACs)) and the high grade group
(grade III EACs, high grade serous endometrial adenocar-
cinomas, and high grade mixed serous and endometrioid
carcinomas). We also classified the ECs patients into, early
stage (stage I-1I) and advanced stage (stage III-IV) based
on the FIGO stage. In addition, the EC patients were di-
vided into Type I (estrogen related) (early stage and low
grade EACs) and Type II (the non-estrogen related)
(advanced stage and high grade EACs, serous endome-
trioid carcinomas, and mixed serous and endometrioid
adenocarcinomas) based on their histological types. Then,
for each clinical endpoint, the student’s t-test with false
discovery rate (FDR)-adjusted p value <0.05 and fold
change >2 (FC > 2) or fold change < 0.5 (FC < 0.5) were
used as the filtering criteria to select differentially
expressed genes (DEGs) from the non-SMGs in damaging
genes set. The same approach was used to identify DEGs
from SMGs in damaging genes set. Previous research
showed that the variable combination population analysis
(VCPA) algorithm [22] can efficiently consider the effects
of the feature combinations on the prediction models.
Therefore, we used it to further identify the non-SMGs
that are highly related to the clinical endpoints of ECs and
their best combinations in predictive models. The
MATLAB source code of VCPA can be downloaded from
the website: https://cn.mathworks.com/matlabcentral/pro-
file/authors/5526470-yonghuan-yun.

Binary classification models for clinical endpoints

Support vector machine (SVM) has been applied exten-
sively in the classification of two groups and is widely used
in clinical endpoint prediction [29-33]. In this study, bin-
ary classification was conducted using libsvm3.17 [34] and
the performance of the predictive models were assessed
by the averaged areas under the receiver operating charac-
teristic curve (AUCs). For the prediction of the
histological grade, the histological type and the FIGO
stage, we constructed the predictive models with the non-
SMGs selected by VCPA as features. To determine the
predictive ability of features, two thirds of the positive and
negative samples were randomly selected as the training
set, respectively, and the remaining positive samples and
negative samples were used to build the test set. The
model was constructed by using the training set with 10-
fold cross-validation and then validated by using the test
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set. This process had been repeated for 100 times. To val-  ECs (i.e., histological grade, histological type and FIGO
idate the ability of the features to discriminate the clinical ~ stage) (Fig. 1). The strategy was mainly divided into four
phenotypes of ECs, SMGs were also used as features to  parts. For the 18,285 mutated genes with gene expres-
develop predictive model with the same procedure. sion data, we firstly performed mutation annotation for

To test the effectiveness of the selection of the fea- gene mutations by SIFT, Polyphen2 and COSMIC data-
tures, for each of the clinical endpoints, we randomly se-  base to found the damaging genes (including SMGs and
lected the same number of genes from the non-SMGs non-SMGs). Secondly, differential expression analysis
lists as features to construct the predictive models. The  between the groups of patients with the same clinical

entire process had also been repeated for 100 times. endpoint was used to identify DEGs from 18,285 mu-
tated genes. Then, for non-SMGs that were DEGs in
KEGG pathway enrichment analysis damaging genes set, we used VCPA algorithm to fur-

Gene set enrichment analysis was performed using ther discover non-SMGs associated with each clinical
the online tool the Database for Annotation, endpoint of ECs, which were considered as the poten-
Visualization and Integrated Discovery (DAVID) v6.8 tial biomarkers in ECs. Finally, the potential
[35, 36] (https://david.ncifcrf.gov/). This tool provides biomarkers-based predictive models were constructed
biological pathways annotation and biological processes to discriminate the patients with different phenotypes
(e.g., gene ontology (GO) terms). The biological pathways in the clinical endpoint of ECs. 10-fold cross valid-
with p < 0.05 (Fisher’s exact test) [37] were considered as  ation and AUCs were used to assess the performance
the significantly enriched Kyoto encyclopedia of genes and  of the models on training set and validation set,

genomes (KEGG) pathways in our study. respectively. Moreover, to verify the biological func-

tion of potential biomarkers and the ability of them
Results to distinguish the patients, we also used the features
An overview of identifying important non-SMGs in ECs identified from the SMGs, which were reported by

In this study, we proposed a novel strategy to identify = mutation annotation analysis, as features to develop the
the important non-SMGs related to clinical endpoints of  predictive models. Figure 1 presented a framework of the

Somatimuations Mutation annotation
. _
(239 patients, SIFT . polyphen2
18,285 genes) —— COSMIC database
Non-
SMGs SMGs
RNA-Seq data
(239 patients, T-test (FDR-adjusted p value DEGs

3 clinical endpoints, | < (.05) and FC >2 or FC <0.5

18,285 genes
) %&pped N’frlapped

12732/ 1053%/ 395¢ 42/ 40/ 1¢
DEGs DEGs
(Non-SMGs) (SMGs)
Feature selection
(VCPA)

192/ 23%/ 24¢
DEGs

|

Clinical endpoints . Clinical endpoints
prediction Comparison prediction
(histological type, (histological type,
grade and FIGO grade and FIGO
stage) stage)

DEGs, differentially expressed genes; SMGs, significantly mutated genes that were reported
in literature; Non-SMGs, non-significantly mutated genes; FC, Fold change; VCPA, variable
combination population analysis algorithm. 2 Histological type; ® Histological grade; °FIGO
stage.

Fig. 1 Framework for identifying the non-SMGs associated with clinical endpoints and validating their phenotypic relevance in ECs
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strategy in this study and the detailed description of each
step was provided in the Methods.

Identifying damaging genes

In our work, by integrating the somatic mutation profiles
and RNA-Seq expression profiles of 239 EC samples, we
detected 18,285 mutated genes with gene expression data
in tumour samples. Following the annotations of their
mutations, 9735 genes were identified as damaging genes.
54 out of 9735 damaging genes had been reported as
SMGs in the previously study [7]. Therefore, 9681 genes
were considered as non-SMGs.

Identifying non-SMGs associated with histological grade
of ECs

For the 9681 non-SMGs that were found after annota-
tion of gene mutations, we compared their expression
levels between the low grade group and the high grade
group. In total, 1053 non-SMGs were selected as DEGs
(Additional file 2). Using the same method, 4 SMGs
(DNER, PIK3CA, SLCI1A2, TPX2) (Additional file 3) were
also identified as DEGs from 54 SMGs. As shown in
Fig. 2a, 1053 non-SMGs were significantly enriched in
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cancer-related or disease-related signaling pathways, in-
cluding neuroactive ligand-receptor interaction signaling
pathway (p < 0.001), calcium signaling pathway
(p = 0.002), cCAMP signaling pathway (p = 0.049), and
retinol metabolism signaling pathway (p = 0.027). The
top 10 significantly enriched KEGG pathways were
shown in Fig. 2a and their detailed descriptions were
listed in Additional file 4.

We performed VCPA to further select non-SMGs associ-
ated with histological grade from 1053 non-SMGs, and
finally identified 23 non-SMGs that were considered as po-
tential biomarkers (Additional file 5). Moreover, in order to
determine whether the 23 potential biomarkers could be
used as binary classification features and had better ability to
distinguish the patients between low grade and high grade
groups than the ability of SMGs, we examined 4 SMGs that
were selected from 54 SMGs by differential expression ana-
lysis between low grade and high grade groups. The predict-
ive models were constructed by using the 23 potential
biomarkers and 4 SMGs as features, respectively. The pre-
diction results of test set were shown in Fig. 2b. The predict-
ive results of the 23 potential biomarkers were significantly
superior to those of the 4 SMGs for the histological grade
(two-sided t-test, p < 0.001, avg. AUC: 0.961 vs. 0.864).

a

hsa04080:Neuroactive ligand-receptor interaction
hsa04723:Retrograde endocannabinoid signaling
hsa04727:GABAergic synapse
hsa04970:Salivary secretion

hsa04974:Protein digestion and absorption
hsa04725:Cholinergic synapse
hsa04726:Serotonergic synapse

hsa00982:Drug metabolism - cytochrome P450
hsa05033:Nicotine addiction
hsa05032:Morphine addiction

p=0.05

-log (p value)

b Histological grade

1.0 ——

0.9 =t =
Q [ H
S 0.8 _—i '
< ° M

P <0.001
P=0.318
0.7 4
P<0.001
0.6

23 potential biomakers

p values were calculated based on a two-side Student's t-test

23 randomly selected non-SMGs

Fig. 2 Significant KEGG pathways and the predictive model performance of non-SMGs associated with histological grade. a The KEGG pathways
of the 1053 non-SMGs with the 10 lowest p values (p < 0.05). The p values were calculated using Fisher's exact test and depicted on a log scale
(—logyo p value). b The box plots of model performance on prediction the histological grade of ECs. Red triangles represent the average AUC. The

4 SMGs
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To test the selection effectiveness of the 23 potential
biomarkers, 23 genes were randomly selected from the
1053 non-SMGs as features and used to construct the pre-
dictive models. This process had been repeated for 100
times. The predictive results of the test set were shown in
Fig. 2b. The 23 genes randomly selected from 1053 DEGs
exhibited a weaker ability to predictive the histological
grade (avg. AUC = 0.873) than the 23 potential bio-
markers. These results indicated that the predictive ability
of the 23 potential biomarkers was significantly superior
to 23 genes that were randomly selected from 1053 non-
SMGs (two-sided t-test, p < 0.001).

Identifying non-SMGs associated with histological type of
ECs

The results of differential expression analysis between
the Type I and Type II groups of ECs showed that 1273
out of 9681 non-SMGs (Additional file 6) and 4 out of
54 SMGs (Additional file 7) were significantly differen-
tially expressed between the two patient groups. Gene
set enrichment analysis revealed that 1273 non-SMGs
were mainly involved in cancer-related or disease-related
signaling pathways, including neuroactive ligand-
receptor interaction signaling pathway (p < 0.001),
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calcium signaling pathway (p = 0.006), cCAMP signaling
pathway (p = 0.005), and retinol metabolism signaling
pathway (p = 0.013). The 10 lowest p value KEGG path-
ways were shown in Fig. 3a. The KEGG pathways were
detailed in Additional file 8.

Furthermore, 19 of 1273 non-SMGs were further identi-
fied by performing VCPA and were considered as poten-
tial biomarkers for histological type (Additional file 9). A
predictive model with 19 non-SMGs as features was de-
veloped for predicting the histological type. To validate
the ability of 19 non-SMGs to distinguish histological type,
we also examined 4 SMGs (DNER, TPX2, MYCN, and
PIK3R1) that were selected from 54 SMGs by differential
expression analysis between Type I group and Type II
group. The prediction results of test set for histological
type were shown in Fig. 3b. It clearly showed that the
model performance of 19 non-SMGs was significantly su-
perior to the results of 4 SMGs (two-sided t-test,
p < 0.001, avg. AUC: 0.993 vs. 0.928).

To verify the effectiveness of the proposed feature
selection method, 19 genes were randomly selected
from the 1273 non-SMGs and used as features to
construct the predictive models. This procedure had
been repeated for 100 times. Our results showed that

a

hsa04080:Neuroactive ligand-receptor interaction
hsa05033:Nicotine addiction
hsa04723:Retrograde endocannabinoid signaling
hsa04740:Olfactory transduction
hsa04724:Glutamatergic synapse
hsa05032:Morphine addiction
hsa04725:Cholinergic synapse
hsa04727:GABAergic synapse
hsa04726:Serotonergic synapse
hsa04713:Circadian entrainment

Histological type

p=0.05

T T T
6 8 10
-log (p value)

12

14

0.9 1

0.8 4

AUC

P <0.001

0.7

0.6

P<0.001

P <0.001

19 potential biomakers

19 randomly selected non-SMGs

4 SMGs

Fig. 3 Significant KEGG pathways and the predictive model performance of non-SMGs associated with histological type. a The KEGG pathways of
the 1273 non-SMGs with the 10 lowest p values (p < 0.05). The p values were calculated using Fisher's exact test and depicted on a log scale
(—logyo p value)). b The box plots of model performance on prediction the histological grade of ECs. Red triangles represent the average AUC.
The p values were calculated based on a two-side Student's t-test
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the average AUC value for histological type of 19 po-
tential biomarkers was significantly superior to the 19
non-SMGs that were randomly selected from the
1273 non-SMGs (two-sided t-test, p < 0.001, avg. avg.
AUC: 0.993 vs. 0.866) (Fig. 3b).

Identifying non-SMGs associated with FIGO stage of ECs
In the differential expression analysis between the early
stage group and advanced stage group of ECs, we identi-
fied 395 non-SMGs (Additional file 10) from the 9681
non-SMGs, and 1 SMG (DNER) from the 54 SMGs. As
shown in Fig. 4a, 395 non-SMGs were significantly
enriched in neuroactive ligand-receptor interaction sig-
naling pathway (p < 0.001) and cAMP signaling pathway
(p 0.007) (Fig. 4a). We found 24 non-SMGs
(Additional file 11) that were considered as potential
biomarkers by using VCPA, and then used them as fea-
tures to build predictive model for predicting the FIGO
stage. The prediction results were shown in Fig. 4b. The
phenotypic (FIGO stage) relevance of 24 non-SMGs was
significantly superior to 1 SMGs (DNER) (two-sided t-
test, p < 0.001, avg. AUC: 0.832 vs. 0.535).

Moreover, we randomly selected 24 non-SMGs from
the 395 non-DEGs as features to build predictive
model with same method as that for the 24 potential
biomarkers. The procedure had also been repeated for
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100 times and the results are shown in Fig. 4b. As
shown, 24 potential biomarkers had a significantly better
ability to distinguish FIGO stage than random selection of
24 non-SMGs from the 395 non-DEGs (two-sided t-test,
p < 0.001, avg. AUC: 0.832 vs. 0.606).

Discussion

In this study, we examined the role of non-SMGs that
were significantly differentially expressed between the
patient groups in each clinical endpoint of ECs by com-
bining the somatic mutations and gene expression ana-
lysis. Mutations, which make gene function loss and
disrupt important biological processes, have a close rela-
tionship with tumorigenesis. Analysing gene expression
levels can help us understand the mutation mechanism
and identify cancer-related genes. Mutated genes
cooperatively participate in the development and pro-
gression of cancer and may be highly correlated with the
dysregulation of gene expression.

Patients with high grade and low grade EC exist clinical,
morphological, and pathogenesis differences. Low grade
patients are associated with favourable prognosis of ECs,
while the prognosis in high grade group is generally poor
[38-40]. It is crucial for ECs to select the appropriate
diagnose and treatment option. In our study, 23 non-
SMGs associated with histological grade were identified

hsa04080:Neuroactive ligand-receptor interaction
hsa04740:Olfactory transduction
hsa05033:Nicotine addiction

hsa05030:Cocaine addiction

hsa04024:cAMP signaling pathway
hsa04971:Gastric acid secretion
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Fig. 4 Significant KEGG pathways and the predictive model performance of non-SMGs associated with FIGO stage. a The KEGG pathways of the
395 non-SMGs (p < 0.05). The p values were calculated using Fisher's exact test and depicted on a log scale (~log; p value). b The box plots of
model performance on prediction the histological grade of ECs. Red triangles represent the average AUC. The p values were calculated based on
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(Additional file 5) by VCPA and 16 out of them had been
reported to be associated with various cancers or diseases.
Among these genes, the gene PSATI had been well stud-
ied in several cancers, such as the breast cancer, the lung
cancer and the esophageal squamous cell carcinoma [41-
43]. In breast cancer, over-expression of PSATI was sig-
nificantly associated with the malignant phenotype and
survivals [41]. In lung cancer, PSATI can promote cell
invasion by activating MMP1 pathway and was found as a
novel predictor in stage I non-small cell lung cancer [42].
In esophageal squamous cell carcinoma, PSATI was iden-
tified as an potential anticancer therapeutic target [43].
Furthermore, PAST1 can act as a subtype-specific bio-
marker that contributes to defining tumor histology at the
molecular level [44]. The gene TFAP2B, for which the
genetic variation was implicated with adipocytokine regu-
lation and type 2 diabetes mellitus [45, 46], had been sug-
gested to play a potential oncogenic role by regulating
cancer cell growth and was previously identified as a
promising therapeutic target for lung cancer [47]. Recent
reports have displayed that DCLK1 is a marker of differen-
tiated cells and an epigenetic biomarker of intestinal can-
cer stem cell in colorectal cancer [48]. After annotation of
gene mutations, 9 out of 12 EC patients harbouring
DCLKI deleterious mutations were in the low grade group
(Additional file 12). The expression of DCLKI was found
to be up-regulated (T-test with FDR-adjusted p value
<0.05, and FC > 2) in high grade EC patients in our study.
These results suggested that DCLKI may be involved in
cell differentiation of ECs and the expression of it was as-
sociated with high grade ECs. NDST4 was previously iden-
tified as a putative tumor-suppressor gene in human
colorectal cancer and its genetic loss might be related to
the colorectal cancer progression [49]. In this study, we
found that there were 4 low grade samples harbouring the
deleterious mutations of NDST4, and the expression of
NDST4 was significantly up-regulated (T-test with FDR-
adjusted p value <0.05, and FC > 2) in high grade EC pa-
tients. Therefore, the mutation of NDST4 may be an im-
portant factor in EC development.

Histological type is an important predictor of the bio-
logical behavior of ECs, and our study identified 19 non-
SMGs associated with histological type (Additional file 9).
15 out of 19 non-SMGs had been reported in previous
studies as cancer-related or disease-related genes. The
gene BUBI, which is one of the mitotic checkpoint
genes, was associated with the histological differenti-
ation, clinical stage and reduced postoperative survival
of EC patients [50]. The high expression of BUBI was
observed in gastric carcinomas [51], breast cancer [52]
and have been reported to be involved in cancer cell
differentiation [53]. Estrogen receptor 1 (ESRI) gene was
a prognostic markers in ECs and had been suggested to
play an important role in the progression of ECs [54].
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Moreover, the gene expression levels of ESRI and ESR2
had been found to be associated with the phenotype and
survival of EC patients [55]. High expression levels of
ERS1 and ERS2 were correlated with good prognosis of
ECs. In our study, ESRI was significantly down-
regulated (T-test with FDR-adjusted p value <0.05, and
FC < 0.5) in Type II (the non-estrogen related, non-
endometrioid) ECs. We then investigated whether 19
non-SMGs mutations had significantly difference on
histological type. The sample distribution for the 19
non-SMGs with deleterious mutations was shown in
Additional file 13. Our results demonstrated that
KCND3 and ZNE804B deleterious mutations signifi-
cantly tended to occur in Type II EC patients (Fisher
exact test, p = 0.004, p = 0.004, respectively), indicating
the mutations of KCND3 and ZNE804B may be involved
in the progress of ECs.

Cancer stage is the most important indicator for
diagnosis and adjuvant therapy of ECs. In this study,
24 non-SMGs associated with FIGO stage were
selected (Additional file 11) and the sample distribu-
tion for the 24 non-SMGs with deleterious mutations
was shown in Additional file 14. It was found that 16
out of 24 non-SMGs were associated with cancers or
diseases. The gene LHCGR was associated with tumor
metastasis that involved in cell growth and neoangio-
genesis, and plays an important role in luteinizing
hormone (LH) receptors, which may impact on the
tumorigenesis of ECs. The expression of LHCGR was
also correlated with cell proliferation of ECs [56, 57]. The
up-regulated expression of LHCGR had been found in the
malignant tissue comparing with the normal tissue [58].
The down-regulated expression of RERGL was related to
poor prognosis in papillary thyroid cancer patients [59],
and also implicated with advanced stage EC patients in
our study. Yang et al. considered the gene RERGL as a po-
tential tumor suppressor gene [60] because it shared some
conserved regions with RERG [61]. Moreover, the deletion
of RERGL had been reported in colorectal cancer. Backes
et al. found that the gene UQCRFS1 played an important
role in promoting cell growth, and the genetic amplifica-
tion or over-expression of it has been observed in multiple
types of cancers, including breast cancer [62], ovarian can-
cer [63], gastric cancers [64]. In our study, the up-
regulated (T-test with FDR-adjusted p value <0.05, and
FC > 2) of UQCRFSI expression was significantly associ-
ated with the advanced stage ECs, suggesting it may
contribute to the development of ECs.

In addition, the model performance on predicting the
clinical endpoints by using SMGs as features was inferior
to using the non-SMGs identified in our study, indicating
that non-SMGs can be used as a good complement for
cancer diagnosis and treatment. Further studies are still
needed to better understand the biological functions of
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them, which can be helpful to identify the novel thera-
peutic targets for cancer prevention, diagnose and treat-
ment. Note that, when using the SMGs as features, the
insufficient model performance on predicting the clinical
endpoints may be caused by the less number of SMGs in
the models instead of indicating the irrelevant relationship
between the SMGs and the ECs.

Conclusions

In conclusion, similar to SMGs, non-SMGs also play an
important role in ECs. By integrating somatic mutations
and RNA-Seq data, we can effectively identify important
non-SMGs in ECs which are closely related to the
phenotypic characteristics in clinics and can be served as
potential biomarkers for the prediction of FIGO stage,
histological grade, and histological type of ECs.
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