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Microglia were previously regarded as a homogenous myeloid cell lineage in the
mammalian central nervous system (CNS). However, accumulating evidences show that
microglia in the brain and SC are quite different in development, cellular phenotypes
and biological functions. Although this is a very interesting phenomenon, the underlying
mechanisms and its significance for neurological diseases in association with behavioral
and cognitive changes are still unclear. How microglia differ between these two regions
and whether such diversity may contribute to CNS development and functions as well
as neurological diseases will be discussed in this Perspective.
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INTRODUCTION

Microglia are important for building and defending the central nervous system (CNS) (Tay
et al., 2017) are considered the most dynamic glial cell type in the CNS to sense and adapt to
their surroundings, thereby giving them a complex feature of heterogeneity (Nayak et al., 2014).
However, the implication of spatial heterogeneity of microglia in normal CNS functions and
diseases is still evasive. Although the past years have witnessed a dramatic growth of attention on
microglial functions in the CNS, evidence available for this Perspective is rather limited, because
most microglial studies have investigated only the brain and have used disease models concerning
the brain or the spinal microglial functions separately, and a direct comparison between the brain
and the spinal cord (SC) under basal or diseased condition is rare. The aim of this paper is hence
to provide an updated available knowledge on microglial differences between the brain and the SC
and to discuss its potential application for treating neurological diseases. Besides region-specific
features, microglia are also increasingly known to differ temporally and between genders, but these
other heterogenous aspects will not be focused here and readers are referred to other recent reviews
(Mapplebeck et al., 2016; Silvin and Ginhoux, 2018; Rahimian et al., 2019).

DIFFERENCES IN DEVELOPMENT AND PHENOTYPES OF
MICROGLIA IN THE BRAIN VERSUS IN THE SC

Using various immunohistochemical markers for microglia, including tomato lectin, CD45, CD68,
major histocompatibility complex (MHC)-II, CD11b/c (OX-42), and ionized calcium-binding
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adaptor molecule-1 (Iba1), researchers have observed generally
similar developmental aspects of microglia in their entrance and
colonization in the brain and the SC, but minor differences exist
(Rezaie and Male, 1999). In a study comparing cell populations
in the lumbar locomotor region of the spinal cord and in the
brainstem motor nucleus of new-born rats, Cifra et al. (2012)
observed less than 10% of microglia in the neonate brainstem but
very few microglia in the spinal gray matter (Table 1). Moreover,
an earlier study discovered that microglial density in the adult
colony-stimulating factor (CSF)1-deficient mice was specifically
decreased by 86.4% in the white matter tract of the spinal dorsal
column compared with that in age-matched wild-type controls,
whereas the decrease was much less (24.0%) in the gray matter
of cerebral cortex (Kondo and Duncan, 2009). This suggests that
spinal microglia respond to CSF1-dependent cell proliferation
more sensitively than cortical microglia, but whether this is due
to the differential expression of CSF1 and/or its receptor in
different CNS regions is unclear. A very recent study comparing
cerebellar and cerebral microglia in CSF1-deficient mice also
confirmed that CSF1 depletion did not affect microglia in the
forebrain (Kana et al., 2019). Nevertheless, CSF1 is more enriched
in the brain than the spinal cord. IL-34, an alternative ligand for
CSF1R, is also highly expressed in the brain compared to the
spinal cord and is critical for developing cerebral microglia, in
contrast to CSF1 (Greter et al., 2012; Wang et al., 2012). However,
whether it is dispensable for spinal microglia development or
not is unclear. In another recent study using a diphtheria toxin
receptor (DTR)-based genetic depletion approach for adult mice,
Bruttger et al., 2015) further revealed that while microglia were

TABLE 1 | Differences in regional features of brain versus spinal microglia.

Features Brain versus SC References

Entrance • <10% of total brainstem cells but few
microglia in the SC in rats at P4;

• Entrance in the cerebrum at GW4-8
but in the SC at GW9-16 in humans;

Monier et al., 2007;
Cifra et al., 2012

Proliferation • Spinal microglia more sensitive to
CSF1 and genetic ablation;

• Cerebral microglia less responsive to
CSF1;

Kondo and
Duncan, 2009;
Bruttger et al.,
2015; Kana et al.,
2019

Receptors
and genes

• Lower expression of CSF1 and IL34 in
the SC;

• Higher levels of CD11b, CD45, CD86,
CCR9 and MHCII but lower level of
CD172a in the SC;

• Fos and Kif genes more enriched in
the SC;

• CST3−SPARC− IBA1+ microglia more
enriched in the juvenile SC;

de Haas et al.,
2008; Olson, 2010;
Wang et al., 2012;
Li et al., 2016;
Gosselin et al.,
2017; Masuda
et al., 2019

Response to
injury

• CD68, C1qb, C3, C4a and Tgfb1
upregulated in the SC but
downregulated in the cortex after SNI;

• BDNF upregulated in the SC but
downregulated in the hippocampus
and no difference in change of TNF
after SNI;

• Inflammatory response greater in the
SC after trauma.

Schnell et al., 1999;
Batchelor et al.,
2008; Li et al.,
2016; Liu et al.,
2017

rapidly ablated in all studied areas, e.g., the cortex, cerebellum
and SC, within 3 days, residual microglia recovered more rapidly
in the SC than in the cortex within 7 days, providing another
evidence on the sensitivity of spinal microglia to changes in
environmental cues.

Importantly, much of the knowledge on developmental
features of microglia in the SC comes from previous studies on
human post-mortem samples (Table 1). In the developing human
CNS, both brain and SC microglial progenitors are suggested
to enter their respective eminence from the meninges (Rezaie
and Male, 1999; Monier et al., 2007). However, Rezaie and Male
(1999) found that human amoeboid-like microglia-macrophages
appeared in the SC at gestational weeks (GW)9 and peaked at
GW16, which is later than entrance in the cerebrum at GW4-8
as described by Monier et al. (2007). Morphologically, Hutchins
et al. found that during GW18-24, gray matter microglia were
ramified while white matter microglia were amoeboid in the
SC (Hutchins et al., 1992). Since morphological maturation of
microglia- macrophage precursors stages a step-wise amoeboid,
intermediate, and ramified transition (Verney et al., 2010),
this indicates an inside-out migratory route of microglia-
macrophage progenitors in the SC, which also resembles the
early developmental cerebrum (Monier et al., 2007; Verney et al.,
2010). McKay et al. found that morphologies of microglia even
differed between the dorsal and ventral horns within the spinal
gray matter in adult rats (McKay et al., 2007), with both microglial
size (length between the tips of the two longest processes through
the soma) and soma area smaller in the dorsal horn (DH) than in
the ventral horn.

Other microglial phenotypes may also differ from those in
the brain at adulthood (Table 1). Fundamental gene expression
differences in microglia between the brain and SC have been
particularly noticed. For instance, de Haas et al. made a pilot
comparison of the protein expression of several microglial
molecules among the mouse hippocampus, cerebral cortex,
cerebellum and SC, and observed that levels of CD11b, CD45,
CD86, and CCR9 were higher in the SC as compared to other
regions (de Haas et al., 2008). A later study similarly found higher
levels of several immune molecules on spinal microglia than
their counterparts in the brain both at steady state and upon
viral infection (Olson, 2010). We previously also confirmed that
microglial expression of CD11b/c and MHCII were constitutively
higher in the SC than in the cerebral cortex and thalamus,
which conversely expressed more abundantly CD172a (SIRPα),
an inhibitory immune receptor (Li et al., 2016).

Using genome-wide chromatin gene expression profiling
and/or single-cell RNA sequencing (scRNAseq) analysis, three
recent pivotal studies included microglia in the SC (Matcovitch-
Natan et al., 2016; Gosselin et al., 2017). Matcovitch-Natan
et al. (2016) provided seminal evidence that microglia underwent
a three-step developmental program - early, pre-, and adult
microglia across the mouse brain. Gosselin et al. (2017)
examined the transcriptomes and epigenetic landscapes of
human microglia isolated from surgically resected brain tissue
ex vivo and after transition to an in vitro environment,
and studied transcriptomes of various mouse CNS regions.
However, neither study specifically addressed regional aspects
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FIGURE 1 | Differences between brain and spinal microglia and the potential contributing factors.

of spinal microglial transcriptomic features in development and
adulthood. In the study of Gosselin et al., gene family members
of Fos and Kif seemed to be more enriched in the SC than
the brain as a function of development in mice (Gosselin et al.,
2017). Very recently, Masuda et al. (2019) made a thorough
scRNAseq analysis of mouse microglia across different CNS
regions, including the SC, in embryonic, juvenile and adult
stages and found that compared to juvenile microglia, adult
microglial clusters showed a more homogenous distribution
across regions. Although the authors did not focus on the SC in
particular either, their results demonstrated that a minor cluster
(C7, representing CST3−SPARC−IBA1+ microglia) was more
prevalent in the juvenile SC and cerebellum as well as in the adult
cerebellum and corpus callosum compared to the cortex and
hippocampus (Masuda et al., 2019). These studies nevertheless
provide some first clues on whether differentiation of microglia
is orchestrated synchronically in different CNS regions across
different developmental stages.

It is still unclear what underlies the fundamental difference
between spinal and brain microglia and whether this is mainly
caused by intrinsic or extrinsic factors (Figure 1). Guiding cues
that drive the differences of microglia between the brain and
the SC may come from the peripheral circulation, as blood-
derived molecules penetrate the blood-brain barrier (BBB) and
the blood-SC barrier (BSCB) in different manners (Abbott
et al., 2010; Bartanusz et al., 2011). The BSCB is generally
considered as the morphological extension of the BBB into the
SC. Nevertheless, evidences suggest that structural and functional
differences exist between them, so that the BSCB has higher
permeability and lower expressions of tight junction proteins,
such as ZO-1 and Occludin, and adherence junction proteins,
such as VE-cadherin and β-catenin (reviewed in Bartanusz
et al., 2011). It is noteworthy that glial cell types themselves

may contribute to the morphological and functional differences
between the BBB and BSCB.

MICROGLIAL REGIONAL
HETEROGENEITY IN
NEUROINFLAMMATORY CNS DISEASES

Although unconfirmed yet, it is highly expected that basal
differences of microglia between the SC and the brain may
contribute to the onset, development and treatment response
of respective CNS diseases. Such differences are parallel to
the facts that the brain and the SC play non-redundant
roles in high-order functions of vertebrates and hence require
different neurotransmission signals and regional connections.
Knowledge on spinal microglia-mediated neuroinflammation
and in comparison to brain microglia, however, has been
mostly derived from studies on neurological conditions so
far, namely traumatic brain injury (TBI), spinal cord injury
(SCI), as well as spinal nerve injury models (Details on the
respective models are provided in these recent reviews (Zhang
and Gensel, 2014; Gensel and Zhang, 2015; Hu et al., 2015;
Martini and Willison, 2016; Jassam et al., 2017; Cox, 2018;
Table 1). Subtle to dramatic pathological and neuroinflammatory
differences exist among different models. For instance, TBI is
regarded as a diffuse injury, whereas spinal cord injury and
stroke are anatomically discrete (Cox, 2018). Whether microglia
contribute to such differences is currently unknown. In a recent
study using spared nerve injury (SNI) model in mice, Liu
et al. showed opposite changes in dendritic lengths and spine
densities between hippocampal CA1 pyramidal neurons and
spinal neurons along with differential expression of hippocampal
and spinal brain-derived neurotrophic factor (BDNF) after SNI,

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 November 2019 | Volume 13 | Article 504

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00504 November 12, 2019 Time: 18:59 # 4

Xuan et al. Differences of Microglia in the Brain and the Spinal Cord

which was prevented by genetic deletion of tumor necrosis
factor (TNF) receptor 1, a microglia-enriched cytokine receptor,
and by inhibition or ablation of microglia (Liu et al., 2017).
It is intriguing how the same TNF receptor can play opposite
roles in regulation of neurons at different sites but differential
microglial reaction after SNI would be expected. In line
with this notion, using a similar SNI rat model, we earlier
had observed that baseline differences of spinal and cortical
microglia in CD172a+ and MHCII+ subpopulations as well as
in expression of microglial activation genes underlined their
differential responses to SNI as well as to the analgesic effect
of minocycline, so that genes involved in M2 polarization and
phagocytosis were upregulated in the spinal dorsal horn after
SNI compared to Sham, but were downregulated in the cortex
(Li et al., 2016). However, Liu et al. found that SNI increased
TNF-α levels in both the hippocampus and the ipsilateral spinal
dorsal horn compared with shams, which was also similarly
dampened by minocycline treatment and by DTR-mediated
genetic depletion of microglia (Liu et al., 2017), implying similar
activation responses of spinal and hippocampal microglia to
SNI. Causes for discrepancies in these studies need to be
further examined.

Studies on TBI and SCI have reported that acute inflammatory
response to traumatic injury is significantly greater in the SC
than in the cerebral cortex. A more careful dissection on these
differences was thoroughly provided in an earlier review (Zhang
and Gensel, 2014) and therefore we will not reiterate here but
only give a couple of exemplar evidences briefly. For instance,
Schnell et al. originally found that myeloid recruitment to the
lesion site and the surrounding parenchyma was significantly
higher in the SC than in the brain. The area of BBB breakdown
was substantially larger and vascular damage persisted longer
in the SC (Schnell et al., 1999). A later study consistently
found that, one week after mechanical injuries to both the
gray and white matters, microglial response was significantly
greater in the SC compared to the brain (Batchelor et al.,
2008). In addition, a greater inflammatory response in the
white matter compared to the gray matter within both the
brain and SC was observed (McKay et al., 2007; Batchelor
et al., 2008). In an in vitro cell culture study on morphological

properties and secretion of inflammatory and trophic effectors
by microglia derived from the brain or spinal cord of
neonatal rats, Baskar Jesudasan et al. (2014) demonstrated that
spinal microglia assumed a less inflammatory phenotype after
lipopolysaccharide-induced activation, with reduced release of
proinflammatory cytokines and nitric oxide, a less amoeboid
morphology, and reduced phagocytosis relative to brain-
derived microglia. These results suggest that local instead of
global microglia-modulatory and/or anti-inflammatory strategies
targeting microglia more specifically may be more valuable to
reduce damages caused by local microglial activation in treating
SC-related neurological diseases.

DISCUSSION

Brain microglia may be more important for regulating neuron-
mediated cognition and emotion, whereas spinal microglia
more relevant for controlling neuron-mediated sensory-motor
functions. This may commit brain and spinal microglia to
different CNS conditions, e.g., psychiatric and mental disorders
versus sensory-motor neurological diseases. It is doubtless that
more and more researchers are recognizing the existence of
microglial regional specificity, but more vigorous investigations
are still required for us to more deeply understand this
interesting phenomenon.
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