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2-Cys Prxs are H2O2-specific antioxidants that become inactivated by enzyme hyperoxidation at elevated
H2O2 levels. Although hyperoxidation restricts the antioxidant physiological role of these enzymes, it also
allows the enzyme to become an efficient chaperone holdase. The critical molecular event allowing the
peroxidase to chaperone switch is thought to be the enzyme assembly into high molecular weight
(HMW) structures brought about by enzyme hyperoxidation. How hyperoxidation promotes HMW as-
sembly is not well understood and Prx mutants allowing disentangling its peroxidase and chaperone
functions are lacking. To begin addressing the link between enzyme hyperoxidation and HMW structures
formation, we have evaluated the in vivo 2-Cys Prxs quaternary structure changes induced by H2O2 by
size exclusion chromatography (SEC) on crude lysates, using wild type (Wt) untagged and Myc-tagged S.
cerevisiae 2-Cys Prx Tsa1 and derivative Tsa1 mutants or genetic conditions known to inactivate per-
oxidase or chaperone activity or altering the enzyme sensitivity to hyperoxidation. Our data confirm the
strict causative link between H2O2-induced hyperoxidation and HMW formation/stabilization, also
raising the question of whether CP hyperoxidation triggers the assembly of HMW structures by the
stacking of decamers, which is the prevalent view of the literature, or rather, the stabilization of pre-
assembled stacked decamers.

& 2015 Published by Elsevier B.V.
1. Introduction

Peroxiredoxins (Prxs) are enzymes that catalyze the reduction
of hydrogen peroxide (H2O2) via a conserved active-site cysteine
(Cys) residue. Amongst the six Prx subfamilies, which are dis-
tinguished by sequence similarities [32,43], Prx1, also known as
typical 2-Cys Prxs, are the most widespread, from archaea, bacteria
to eukaryotes. The eukaryotic enzymes of the Prx1 group share
with the other family members fast catalytic rates in the order of
�107 M�1 s�1 [33,37], but carry the unique property of becoming
inactive by hyperoxidation at elevated H2O2 levels [45,47,49].
These enzymatic specific attributes determine the unique cellular
functions of eukaryotic 2-Cys Prxs as antioxidants, H2O2 signaling
effectors and controllers, and as chaperones [14].

2-Cys Prx are obligate head-to-tail B-type homodimers, each
with two catalytic Cys residues. In the peroxidatic cycle, the
N-terminal Cys, named CP for peroxidatic Cys, reduces H2O2, and is
dano).
ork.
in turn oxidized to a sulfenic acid (CP-SOH) [48] (Fig. 1). The Cys-
sulfenic acid moiety then condenses with the C-terminal catalytic
Cys residue of the other subunit, or resolving Cys (CR) into an in-
termolecular disulfide. In the reduced enzyme CP and CR are �13 Å
apart. Therefore, disulfide formation involves an important struc-
tural remodeling occurring both at the CP-active site pocket and
CR-containing C-terminal domain, which switches the enzyme
structure form a fully folded (FF) to a locally unfolded (LU) con-
formation [17,47]. Based on a series of elegant studies Karplus and
coworkers have proposed that the enzyme FF conformation both
stabilizes the deprotonated reactive form of CP and provides a
steric and electrostatic environment that activates H2O2, hence
establishing the observed CP extraordinary high reactivity for
H2O2[18,22]. The catalytic intermolecular disulfide is subsequently
reduced by thioredoxin, which completes the catalytic cycle, and
returns the enzyme to the FF conformation. In eukaryotic enzymes
however, the CP-SOH can further react with H2O2 instead of con-
densing with CR, thus becoming oxidized to the corresponding
sulfinic acid (�SO2H), which interrupts the peroxidatic cycle.
Hyperoxidized Prx is not a dead-end product; it is reactivated by
ATP-dependent reduction of the sulfinate by sulfiredoxin (Srx)
[45,6]. The sensitivity of eukaryotic enzymes to hyperoxidation is
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Fig. 1. The peroxidatic cycle of eukaryotic 2-Cys Prxs. Eukaryotic typical 2-Cys Prx are obligate dimers with a mechanism involving two Cys residues, in which CP decomposes
H2O2 into H2O by nucleophilic attack and is oxidized to a sulfenic acid (CP-SOH). The sulfenic acid then reacts with the resolving Cys (CR) residue of the other subunit to form
an intermolecular disulfide [48]. This disulfide is then reduced by thioredoxin, which completes the catalytic cycle. Alternatively, when H2O2 levels raises, the CP-SOH can
further react with H2O2, which leads to formation of a CP-sulfinic acid (CP-SO2H). The latter is reversed back to CP-SOH by ATP-dependent reduction by sulfiredoxin (Srx).
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linked to the presence of two sequence fingerprints absent in
other family enzymes, a three amino acids insertion in the loop
between α4 and β5 associated with a conserved GGLC motif, and
an additional helix (α7) occurring as a C-terminal extension and
containing the conserved YF motif [47]. Such a structural config-
uration is thought to slow down the FF to LU transition rate,
thereby favoring hyperoxidation [47].

Enzymatic cycling involves dramatic changes in quaternary
structure that are crucial for 2-Cys Prxs differential functions.
Reduced 2-Cys Prxs is typically in the form of decamers arranged
into a ring-like toroid structure constituted of five B-type dimers
interacting via their A-type interface [17,41,46,5]. During cycling
decamers dissociate into dimers upon disulfide formation and are
regained upon disulfide reduction [36,4,46]. As proposed by Kar-
plus and coworkers, there is a reciprocal stabilization between the
enzyme in the FF conformation and decamer assembly [17], which
explains both that the decamer form enhances catalysis and that
catalytic disulfide formation, by locking the enzyme into the LU
conformation, dissociates the decamers into dimers [17,46,5,8]. In
contrast, enzyme hyperoxidation triggers the stacking of dec-
amers, up to filaments, which stabilize the decameric structure
[16,26,38,40,9].

By combining extremely high H2O2 reaction rates, reflected by
very low Km values [33], very high expression levels, and the en-
zyme oxidative inactivation at elevated H2O2 levels [45,47,49],
2-Cys Prxs are very efficient towards the low metabolically pro-
duced H2O2 levels and relatively inefficient towards peroxide on-
slaughts [14,27]. Concurrently, hyperoxidation constitutes the
gateway to the enzyme extra-antioxidant functions, and in parti-
cular to its chaperone function.

Jang, Lee and coworkers showed using the two S. cerevisiae
2-Cys Prx Tsa1 and Tsa2 in vitro that heat or H2O2 both promote
formation of enzyme high molecular weight (HMW) structures of
size 4 1000 kDa and of spherical shape that have lost peroxidase
activity, but are capable of preventing aggregation of heat-dena-
tured model substrates [20], a function assimilated to that of a
chaperone holdase. In the case of H2O2, CP was required for the
acquisition of the chaperone function, and sulfiredoxin (Srx1)
switched the enzyme back to a low molecular weight (LMW)
peroxidase active form by reducing the sulfinate [20,30]. However,
CP was dispensable for heat-induced chaperone activity, which led
Jang and coworkers to suggest that heat and H2O2 trigger the
functional switch of 2-Cys Prx through distinct mechanisms [20]. A
chaperone holdase activity similar to Tsa1/2 has now been de-
scribed for human cytosolic 2-Cys Prxs Prdx1 [19,34,35] and Prdx2
[29], plant chloroplastic 2-Cys Prxs [23], S. mansoni 2-Cys Prx
SmPrx1 [2,40], L. infantum mitochondrial 2-Cys Prx mTXNPx [44],
H. pylori 2-Cys Prx AhpC [12], cyanobacterial Anabaena PCC7120
2-Cys Prx alr4641 [3] and P. aeruginosa 2-Cys Prx PaPrx [1]. In most
of these cases, the available data fit the model of Jang whereby
H2O2-induced CP hyperoxidation promotes formation of 2-Cys Prx
HMW structures with chaperone holdase activity, while Srx-de-
pendent sulfinate reduction returns the enzyme to the peroxidatic
cycle [20,30]. Note that the Tsa1/2 HMW spherical structures,
which have only been described by Jang and colleagues, must
somehow be related to the typical decamers stacks, which were
shown by others to also carry chaperone activity. The term HMW
structures is used thereof to describe multimers 4 decamers. The
above chaperone model does not hold true for the L. infantum
mitochondrial 2-Cys Prx mTXNPx however [11,44]. In this case, CP
and hence enzyme hyperoxidation is dispensable for chaperone
function, and heat but not H2O2 triggers within the reduced dec-
amer major conformational changes that increase surface hydro-
phobicity, without quaternary structure changes. In the case of the
A. thaliana chloroplastic 2-Cys Prx, although the chaperone func-
tion is activated by H2O2 and requires CP sulfinylation, the cha-
perone active form of the enzyme is a decamer and not a higher
order oligomer [23].

In summary, except for the cases of the L. infantum mitochon-
drial and At chloroplastic 2-Cys Prxs, available data support the
notion that H2O2-induced CP hyperoxidation activates 2-Cys Prx
chaperone function by promoting the stacking of decamers. To
elucidate the still unknown physiological scope and mechanism of
the chaperone function of 2-Cys Prx in vivo, it is important to
generate mutations that could unambiguously separate this func-
tion from the enzyme peroxidase function, and to establish assays
allowing evaluating these mutations. Extensive information on the
peroxidatic cycle is now available, which include knowledge of the
peroxidatic catalytic site per se and the role of and molecular re-
quirements for decamer formation (summarized in [18,22]). In
contrast little is know on the link between hyperoxidation and
HMW structures formation, which appears as a basic requirement
for the chaperone function, and the few available data are very
often controversial.
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To begin addressing the link between enzyme sulfinylation and
HMW structures formation, we have tested whether the in vivo
quaternary structure of 2-Cys Prxs could be evaluated by size ex-
clusion chromatography on crude lysates. These experiments were
performed in S. cerevisiae using Tsa1 as model, and mutations
known to inactivate chaperone activity or altering the enzyme
sensitivity to hyperoxidation. Lysates from cells exposed to H2O2

were used to follow the dynamics of enzyme sulfinylation and
quaternary structural changes. Data obtained with Tsa1 mutations
were compared with those obtained with the same mutations in
2-Cys Prx from other organisms. Our data confirm the strict cau-
sative link between H2O2-induced sulfinylation and the stabiliza-
tion of Tsa1 oligomers with a size compatible with that of two-
stacked decamers. Our data also suggest that CP hyperoxidation
stabilizes preassembled stacked decamers, rather than triggering
the assembly of HMW structures.
2. Results and discussion

2.1. SRX1 overexpression and truncation of YF-containing Tsa1
C-terminal extension abate H2O2-induced enzyme sulfinylation

To address the link between 2-Cys Prx sulfinylation and en-
zyme oligomerization, we selected Tsa1 mutants and genetic
conditions predicted to alter enzyme sulfinylation. We used a
N-terminal Myc-tagged version of Tsa1 (Myc-Tsa1) [6] and se-
lected three derivative mutants. Myc-Tsa1ΔYF lacks the YF-con-
taining last twelve C-terminal amino acids, and is predicted to be
insensitive to sulfinylation, based on data obtained with the S.
pombe 2-Cys Prx Tpx1 [21,25] human cytosolic Prdx2 [29] and
endoplasmic reticulum (ER) Prdx4 [10]; Tsa1C48S carries a serine
substitution of CP, and therefore lacks peroxidase activity, and
Tsa1C171S a serine substitution of the resolutive CR, which has been
shown to decrease the sensitivity to sulfinylation of human Prdx4
[10] and A. thaliana 2-Cys Prx [23]. Myc-Tsa1 and its corresponding
mutants were expressed in a strain lacking Tsa1 (Δtsa1). To ap-
preciate the impact of the N-terminal Myc tag, we also included
the analysis of untagged wild type Tsa1 in the corresponding Wt
Fig. 2. Evaluation of the sensitivity to sulfinylation of Tsa1 and derivative mutants. TCA-
F) yeast cells expressing Myc-Tsa1, MycTsa1C48S, Myc-Tsa1C171S, Myc-Tsa1ΔYF or overexp
indicated amount of H2O2 during 15 min (G and H) were resolved by reducing SDS PAGE
indicated. The red arrow indicates the sulfinylation signal band.
strain. We also included strains lacking SRX1 (Δsrx1) and over-
expressing it from the strong CMV promoter in the high-copy
episomal plasmid pCM190 (pCM190-SRX1) [15].

We first inspected how Tsa1 mutations and the modulation of
SRX1 expression impacted enzyme sulfinylation by western blots
with an anti-PrxSO2/3 antibody (Fig. 2). Lysates were prepared be-
fore and at different times after cell exposure to 500 μM H2O2, a
concentration causing full Tsa1 sulfinylation (see Fig. 2G). Sulfiny-
lation of Myc-Tsa1 was maximal at 15 min, started to decrease at
60 min and disappeared at 180 min (Fig. 2A). Myc-Tsa1C48S did not
produce any sulfinylation signal, due to the absence of CP (see
Fig. 4B), thus confirming the high specificity of the antibody to-
wards CP sulfinylation. Myc-Tsa1C171S produced a sulfinylation signal
that was 1.5–2 fold lower than Myc-Tsa1 (Fig. 2B), and required
twice as much H2O2 to reach the levels of sulfinylation seen in Myc-
Tsa1 (Fig. 2compare G and H). The lower sensitivity to sulfinylation
of Myc-Tsa1C171S is consistent with the effect of the same mutation
in A. thaliana 2-Cys Prx and human ER Prdx4 [10,23]. Myc-Τsa1ΔYF
also produced a sulfinylation signal in response to H2O2, but again
its intensity was strongly decreased and disappeared much faster
than that of Myc-tsa1 (60 vs 180 min, compare Fig. 2A and C), thus
confirming data obtained with S. pombe Tpx1. As the C-Ter domain
contributes to the stability of the FF active site conformation, and
hence to H2O2 reactivity, deleting it affects the sensitivity to sulfi-
nylation by decreasing H2O2 reactivity [22]. The same rationale can
be made for Myc-Tsa1C171S if we consider that the CR substitution
alters the C-Ter structure. Untagged Wt Tsa1 produced a sulfinyla-
tion signal of intensity similar to Myc-Tsa1, but which surprisingly
disappeared much faster than that of the tagged enzyme (60 vs
180 min, compare Fig. 2A and D). This difference in the enzyme-
recycling rate might be explained by an effect of the tag of de-
creasing Srx enzyme binding or Srx accessibility to the sulfinylated
residue. In Δsrx1, sulfinylation of untagged Tsa1 at 15 min was in-
distinguishable form the one seen in Wt cells, but as previously
shown [6], the signal remained up to 180 min by lack of enzyme
recycling (Fig. 2 compare D and E). In contrast, in cells carrying
pCM190-SRX1, the sulfinylation signal was barely visible (Fig. 2
compare D and F), which indicate a much faster rate of enzyme
recycling by virtue of Srx1 overexpression.
precipitated lysates from, Δtsa1 (A–C, G and H) or in Δtsa1Δsrx1 (E) or in Wt (D and
ressing SRX1, as indicated, which were exposed to H2O2 (500 μM) (A–F), or to the
, followed by western blot using the anti-Myc, anti-Tsa1 or anti-SO2/3 antibodies, as
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2.2. H2O2 triggers the reversible oligomerization of Myc-Tsa1 into the
size of two decamers

To analyze the in vivo oligomeric state of Myc-Tsa1, we performed
size exclusion chromatography on N-ethylmaleimide (NEM)-treated
crude cell extracts from Myc-Tsa1-expressing Δtsa1 cells that were
left untreated or were exposed to H2O2 (500 μM) for 15 and
180 min. Collected fractions were resolved by SDS-PAGE in which
reducing agents were omitted in order to simultaneously evaluate
disulfide-linked homodimer formation. Western blots were probed
with anti-Myc and anti-PrxSO2/3 antibodies (Fig. 3A). In untreated
cells lysates, Myc-Tsa1 largely eluted at a size between that of a
monomer (theoretical molecular weight of 21.5 kDa) and dimer
(43 kDa), with traces of it equally distributed in all fractions, up to
the column size exclusion (670 kDa). Myc-Tsa1 was mostly in the
disulfide-linked dimer form, but these disulfides had probably
formed after lysis, due to incomplete free sulfhydryls quenching,
since Myc-Tsa1 from trichloroacetic acid (TCA)-precipitated lysates
from the same cells largely migrated as a reduced monomer (not
shown). As expected, probing membranes with the anti-PrxSO2/3 did
not yield any signal. In lysates from the 15 min H2O2 exposure
sample, half of Myc-Tsa1 now eluted at about the 27 kDa elution
control, close to the size of monomeric enzyme (21.5 kDa), and the
other half at a size of about 500 kDa, which is compatible with that
of two-stacked Myc-Tsa1 decamers, also referred from now on to the
high molecular weight (HMW) form. A chromatogram of standard
molecular weight markers is shown in Fig. 3C. Disulfide-linked di-
mers were here almost totally absent, as a consequence of enzyme
sulfinylation, as also shown by probing membranes with the anti-
PrxSO2/3 antibody that revealed intense signals. Sulfinylation was
Fig. 3. SEC elution profile of Myc-Tsa1 and the effect of inactivating SRX1 on the enzy
expressing Myc-Tsa1 were taken before and after exposure to H2O2 (500 μM) for the indic
PAGE, followed by western blot using the anti-Myc or anti-SO2/3 antibody as indicated. Th
the gel. The red star indicates non-specific signals revealed by the anti-SO2/3 antibod
oglobulin (670 kDa), apoferitin (443 kDa), β-amylase (200 kDa) to help resolve the size
equally distributed in fractions corresponding to the monomeric and
HMW forms. Remarquably, in lysates from the 180 min H2O2 ex-
posure sample, the Myc-Tsa1 elution pattern resembled now to that
of untreated cells. Still, a strong sulfinylation signal persisted in Myc-
Tsa1 monomers. We similarly analyzed the elution of Myc-Tsa1 from
Δsrx1 lysates (Fig. 3B). Elution of Myc-Tsa1 from lysates of untreated
cells resembled the one observed in WT untreated cells, except for a
smaller proportion of monomeric enzyme and the presence of a
small proportion of the enzyme in the HMW form. In lysates of the
15 min H2O2 exposure sample, elution of Myc-Tsa1 had also a wild
type pattern, except for a higher abundance of the HMW species. In
lysates of the 180 min sample however, the major fraction of Myc-
Tsa1 now remained in the sulfinylated HMW form, in contrast to
what was observed in WT cells.

In summary, in untreated cells Myc-Tsa1 mainly exists as a non-
covalently-linked dimer, with H2O2 triggering its reversible oligo-
merization into a HMW form of size compatible with two-stacked
decamers, while undergoing reversible sulfinylation. InΔsrx1, H2O2

also triggers the oligomerization of Myc-Tsa1 to the two-stacked
decamers form, but the enzyme remains in this form presumably by
lack of sulfinate reduction. Myc-Tsa1 oligomeric transitions are
consistent with those observed with untagged Tsa1 by native PAGE,
also showing formations of HMW forms in response to H2O2 and
their reversion upon Srx1 sulfinate reduction [30].

2.3. Ser substitution of peroxidatic Cys stabilizes the Myc-Tsa1 two-
stacked decamer

We next analyzed Myc-Tsa1 catalytic Cys mutants, also ex-
pressed in Δtsa1. Myc-Tsa1C171S had an elution profile resembling
me quaternary structure. Crude lysates from Δtsa1 (A) or in Δtsa1Δsrx1 (B) cells
ated time and resolved by SEC. Elution fractions were resolved by non-reducing SDS
e elution fraction of standard molecular weight markers is represented at the top of
y. (C) Representative chromatogram of standard molecular weight markers, thyr-
of the two-stacked decamers.



Fig. 5. SEC elution profile of untagged Tsa1. Crude lysates from Wt cells were taken
before and after exposure to H2O2 (500 μM) for the indicated time and resolved by
SEC. Elution fractions were resolved by non-reducing SDS PAGE, followed by
western blot using the anti-Myc or anti-SO2/3 antibody as indicated. The elution
fraction of standard molecular weight markers is represented at the top of the gel.
The red star indicates non-specific signals revealed by the anti-SO2/3 antibody.

Fig. 4. SEC elution profile of Myc-Tsa1C171Sand Myc-Tsa1C48S. Crude lysates from Δtsa1 cells expressing Myc-Tsa1C171S (A) or Myc-Tsa1C48S (B) were taken before and after
exposure to H2O2 (500 μM) for the indicated time and resolved by SEC. Elution fractions were resolved by non-reducing SDS PAGE, followed by western blot using the anti-
Myc or anti-SO2/3 antibody as indicated. The elution fraction of standard molecular weight markers is represented at the top of the gel. The red star indicates non-specific
signals revealed by the anti-SO2/3 antibody.
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that of Wt enzyme, except for its weaker sulfinylation, in keeping
with the data of Fig. 2, and for the reversion of the HMW form at
180 min after H2O2 exposure that was not as complete. As pre-
dicted, this mutant did not form any disulfide-linked dimer by lack
of CR. Myc-Tsa1C48S in contrast had a strikingly different behavior.
Elution of this mutant from untreated cell lysates resembled the
elution of Myc-Tsa1 from the 15 min H2O2 exposure sample, with
half of the protein in the monomeric form and the other half in the
HMW form. Further, 15 min after H2O2 exposure, most of Myc-
Tsa1C48S was now shifted to the HMW form, thus indicating that
despite lack of CP the enzyme retained the ability to respond to
H2O2. Lastly at 180 min, the protein still eluted for its major part at
the HMW size, indicating lack of reversibility. As noticed above,
this mutant did not give any sulfinylation signal, and as Myc-
Tsa1C171S did not form the disulfide-linked dimer.

In summary, Myc-Tsa1C171S is less prone to sulfinylation, pre-
sumably by decreased H2O2 reactivity (see above). Further, it fully
assembles into the HMW form that might be more stable than that
of the Wt tagged enzyme. This latter result should be considered
in view of the observation by native PAGE that the same Tsa1
mutant, but without any tag, is constitutively present in the HMW
form prior to exposure to H2O2 [20], and of the same mutant in A.
thaliana 2-Cys Prx the decameric form of which is more stable
[23,24]. Myc-Tsa1C48S is already in the HMW form prior to ex-
posure to H2O2, in keeping with the behavior of the same mutation
in purified S. mansoni 2-Cys Prx SmPrx1 [2] and purified bovine
mitochondrial 2-Cys Prx SP-22 [16], which both eluted during SEC
as HMW species, and were seen as long filaments of multiple
decamer stacks by transmission electron microscopy. However our
data disagree with native PAGE analysis data of the same Tsa1 and
of human Prdx2 mutants showing they could not assemble into a
HMW form in response to H2O2 [20,29]. The basis of these dis-
crepant results is not clear. The stability of 2-Cys Prx with a Ser
substitution of CP raises the question of the structural determi-
nants allowing formation of HMW structures that remains still
poorly understood and controversial [2,39]. Another peculiar
phenotype of Myc-Tsa1C48S observed here is its ability to further
switch its quaternary structure to the HMW form in response to
H2O2, which might indicate either another 2-Cys Prx H2O2-re-
sponsive domain in addition to CP or the presence of an unknown
H2O2 responsive factor helping Tsa1 HMW assembly.

2.4. The N-Ter tag destabilizes Tsa1 HMW structures

The presence of an N-terminal tag has previously been shown
to modify the function of 2-Cys Prxs [8]. That the Myc tag also
alters the function of Tsa1 was already suggested by the inability of
Myc-Tsa1 to fully rescue the H2O2 tolerance of a Δtsa1 strain
(unpublished data), and by the slower recycling of the sulfinylated
enzyme (see Fig. 1). We thus assayed the elution profile of un-
tagged Tsa1 (Fig. 5). Untagged Tsa1 elution pattern was quite dif-
ferent from that of the Myc-tagged enzyme, since more than half
of it was in the HMW form (70%), and the remainder in the
monomer-dimer form. At 15 min after H2O2 exposure, the HMW
form switched to the monomer-dimer form, which resulted in
equal amounts of enzymes in these two forms; at 180 min, the
elution pattern had returned to that of untreated cells, but with a
slightly higher amount of protein, as a probable result of gene
induction. Traces of the sulfinylation signal were seen at 15 min.

Comparison of Tsa1 and Myc-Tsa1 elution profiles strongly
suggests that the N-Terminal Myc tag destabilizes the HMW forms
of the enzyme, despite a protracted sulfinylation in Myc-Tsa1.
These data are fully consistent with those of bovine mitochondrial
Prdx3 (or known as SP-22), in which removal of the N-terminal His
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tag stimulated the enzyme peroxidase activity by 3–4 fold, but also
destabilized the dodecameric form of the enzyme [8], and with
those of the A. thaliana chloroplastic 2-Cys Prx in which the
N-terminal His tag also decreased peroxidase activity, but also
increased the enzyme sensitivity to hyperoxidation [23]. In con-
trast, the in vitro dimer to decamer equilibrium of the L. braziliensis
mitochondrial 2-Cys Prx LbPrx1m (similar to L. infantum mi-
tochondrial 2-Cys Prx mTXNPx) is not altered by the N-terminal
His tag [31]. However in the latter case, lowering the pH to acidic
conditions was used to alter enzyme quaternary structure instead
of protein redox changes as in our assay, which make the com-
parison irrelevant.

2.5. Myc-Tsa1ΔYF and SRX1 promote entry into the peroxidatic cycle

We next evaluated Myc-Tsa1ΔYF and the effect of over-
expressing SRX1 on the untagged enzyme, both conditions abating
enzyme sulfinylation. Myc-Tsa1ΔYF had a unique elution pattern
(Fig. 6A). Prior to H2O2 exposure, a large proportion of the protein
eluted at the size of the two-stacked decamers, and about a
quarter of it in the disulfide-linked dimer form. Then, 15 min after
H2O2 exposure, Myc-Tsa1ΔYF was almost totally shifted to the
monomer-dimer size, with about more than half of the protein in
the disulfide-linked dimer form. At 180 min, the protein had en-
tirely returned to the double decamer form. Elution of untagged
Tsa1 from lysates of cells overexpressing SRX1 was very similar to
that of Myc-Tsa1ΔYF since prior to H2O2 exposure, a major part of
it also eluted in the HMW form, but then was almost completely
switched to the monomer-dimer form after 15 min of H2O2 ex-
posure to completely return to the HMW form after 180 min
(Fig. 6B). Note that in lysates of SRX1-overexpressing cells exposed
for 15 min to H2O2 untagged Tsa1 eluted exclusively as a disulfide-
linked dimer, whereas in Wt cells it was about equally distributed
between a disulfide-linked dimer and a monomer. As expected
from the results of Fig. 2, for both Myc-Tsa1ΔYF and SRX1
overexpression no sulfinylation signal was seen.

In summary, both the deletion of the C-terminal-containing YF
motif and the over expression of SRX1 increase the enzyme pro-
portion in the HMW under steady state, prior to exposure to H2O2

(compare Fig. 6 and the Myc-Tsa1 elution profile in Fig. 3A), while
completely switching it to the dimer-monomer form in response
to H2O2. These two genetic conditions both increase the enzyme
overall peroxidase efficiency by preventing its inactivation, and
Fig. 6. SEC elution profile of Myc-Tsa1ΔYF and the effect of overexpressing SRX1on Tsa1
Wt overexpressing SRX1 (B) were taken before and after exposure to H2O2 (500 μM) fo
reducing SDS PAGE, followed by western blot using the anti-Myc or anti-SO2/3 antibo
presented at the top of the gel. The red star indicates non-specific signals revealed by t
therefore must result in lowered cellular H2O2 levels at steady
state, compared to Myc-Tsa1 expressing cells. Decreased steady
state cellular H2O2 levels might decrease the rate at which the
enzyme is brought into the peroxidatic cycle, i.e. in the dimer-
monomer form, hence keeping it in the HMW form. In contrast, in
response to H2O2 the enzyme remains in the peroxidatic cycle,
iteratively disassembling the HMW forms upon disulfide bond
formation, hence keeping it in the dimer-monomer form. Of note,
deleting the YF-containing C-terminal 2-Cys Prx domain, while it
significantly decrease sensitivity to hyperoxidation, does not pre-
vent formation of the two-stacked decamer form, which fit those
of a similar mutation in S. mansoni 2-Cys Prx SmPrx1 that as-
sembled as a stable double decamer [2], but not with those of A.
thaliana 2-Cys Prx and human Prdx2, the C-Ter deletion of which
were shown unable to assemble as a decamer or as HMW struc-
ture in response to H2O2, respectively [23,29]. Based on the crystal
structure of a double decamer, Angelucci and coworkers have
suggested that the C-Ter domain sterically prevents the stacking of
two decamers when folded, and must therefore be disordered for
stacking, which would explain why its removal favors HMW as-
sembly [2,40]. However, a recent cryo-microscopic study of fila-
ments of human Prdx3 obtained at acidic pH indicates that the
C-ter domain appears well structured [39].
3. Conclusion

The 2-Cys Prxs family enzymes are H2O2-specific antioxidants
that carry the unusual feature of enzyme oxidative inactivation at
elevated H2O2 levels. Although it restricts H2O2 scavenging effi-
ciency, inactivation of the enzyme by hyperoxidation constitutes
the gateway to its extra-antioxidant functions, and in particular its
ability to operate as very efficient chaperone holdases [20]. The
critical molecular event allowing the switch from a peroxidase to a
chaperone is believed to be the enzyme assembly into HMW
structures formed by the stacking of decamers up to filaments, an
event that correlates with enzyme hyperoxidation. However, al-
though enzyme hyperoxidation promotes HMW assembly and/or
stabilizes these structures, how this event occurs at the molecular
level is yet unknown.

To begin answering this question, we have here evaluated the
relationship between enzyme quaternary structure and its hy-
peroxidation in vivo by SEC. A salient result of this set of
quaternary structure. Crude lysates from Δtsa1 cells expressing Myc-Tsa1ΔYF (A) or
r the indicated time and resolved by SEC. Elution fractions were resolved by non-
dy as indicated. The elution fraction of standard molecular weight markers is re-
he anti-SO2/3 antibody.
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experiments is the observation that depending on the conditions,
Tsa1 elutes as two distinct oligomeric forms, as a disulfide-linked
or non-covalently linked dimer, assuming the latter form dis-
sociates during SDS-PAGE, and as a HMW forms that we interpret
is constituted of two-stacked decamers. As inferred by combining
the data obtained with the native untagged enzyme the Myc-
Tagged one, the latter having the advantage of exacerbating qua-
ternary structures changes by decreasing the stability of the HMW
form, we propose that Tsa1 exist in cells as a relatively instable
two-stacked decamer (seen with native Tsa1 but not with Myc-
Tsa1). Exposure to H2O2 leads to two outcomes: (i) with untagged
and tagged Wt enzymes, after a few peroxidatic cycles CP becomes
hyperoxidized, which stabilizes the HMW form, now also seen
with Myc-Tsa1, until the enzyme is recycled by Srx1 that returns it
to the relatively instable HMW form; (ii) under conditions pre-
venting sulfinylation, i.e. Myc-Tsa1ΔYF and SRX1 overexpression,
the enzyme is instead kept in the dimer-monomer form by en-
tering into iterative peroxidatic cycles, which breaks apart the
HMW form until resolution of the H2O2 onslaught. Jang, and
coworkers used native PAGE to monitor the changes in enzyme
quaternary structure triggered by H2O2, and showed the presence
of two main oligomeric forms of undefined size, one of which
must be the dimeric enzyme and the other presumably the two-
stacked decamers [20,30]. We confirm here these data, and also
provide a visualization of the alternative enzyme paths. We also
further demonstrate the causative link between HMW formation/
stabilization and CP sulfinylation. Furthermore, provided that our
estimate of the size of the observed HMW as a two-stacked dec-
amer is correct, our data raise the question of whether CP hyper-
oxidation triggers the assembly of HMW structures by the stacking
of decamers, a view that reflects the literature, or as suggested
here, the stabilization of preassembled stacked decamers. Our
study also provides the effects of specific mutations on Tsa1 sen-
sitivity to hyperoxidation and on its quaternary structural changes.
These mutants and the SEC assay on crude lysates used here
should help contribute to disentangle the intricate function of
2-Cys Prxs as antioxidants and chaperone holdases.
4. Experimental procedures

4.1. Yeast strains, plasmids, growth media and standard methods

The S. cerevisiae strains used here are Y252 (Mataura3-52 lys2-
801amberade2-101ochretrp1-Δ1 leu2-Δ1) [42], and BY4741 [7] and
derivatives (listed in Table 1). Cells were grown at 30 °C in YPD (1%
yeast extract, 2% peptone and 2% glucose), or minimal media (SD)
(0.67% yeast nitrogen base w/o amino acids, 2% glucose), with
amino acid supplements as appropriate. The plasmids used in this
study are pRS316-Myc-Tsa1 [6] and derivative pRS316-Myc-
TSA1C48S and pRS316-Myc-TSA1C171S, that were generated by
standard PCR-mediated site-directed mutagenesis using pRS316-
Myc-TSA1 as template [28]; pRS316-Myc-Tsa1YF was similarly
prepared by deleting the sequence encoding c-terminal last 11
Table 1
Genotype of the S. cerevisiae strains used in this study

Strain Genotype Reference source

Y252 Mata ura3-52 lys2-801amberade2-101ochretrp1-
Δ1 leu2-Δ1

BY4741 Mata his3Δ0 leu2Δ0 met15Δ0 ura3Δ0
BY4742 Mata his3Δ0 leu2Δ0 lys2Δ0 ura3Δ0
Δtsa1 BY4741 tsa1D::kanMX4 This work
Δsrx1 srx1Δ::kanMX4 This work
Dtsa1Dsrx1 BY4741 srx1D::natMX4 tsa1D::kanMX4 This work
amino acids before codon stop; for pCM190-SRX1, the PCR-am-
plified SRX1 ORF was cloned between PmeI and NotI downstream
of the CYC1-tetracycline-regulatable promoter of pCM190 [15].

4.2. Size exclusion chromatography

For extracts preparation, the pellets of exponentially growing
cell cultures were resuspended in lysis buffer [PBS pH 7.8, NEM
50 mM, PMSF, Complete protease inhibitors cocktail (ROCHE)] at a
density of 2.4�106 cellules/mL. Cells were lysed on a Constant Cell
Disruption Systems (CCDS, One Shot, CellD) under a pressure of
2500 bar. Lysates were centrifuged at 10,000g, 4 °C for 10 min, and
the supernatant (100 mL) applied on a Superdex 200 10/300 GL (GE
Healthcare) column pre-calibrated using a solution of thyroglobulin
(670 kDa), apoferritin (443 kDa), catalase (232 kDa), β-amylase
(200 kDa), aldolase (158 kDa), ovalbuline (43 kDa), chymo-
trypsinogene A (27 kDa) and ribonuclease A (13 kDa). Chromato-
graphy was performed by High Performance Liquid Chromato-
graphy on an AKTA purifier (AmershamPharmaciaBiotec) at a rate of
500 μL/min at room temperature. PBS was used for the elution.

4.3. Western blot

For analysis of enzyme sulfinylation, lysates were prepared by
the TCA lysis protocol, and separated by reducing 12 % SDS-PAGE,
as described [13]. For analysis of SEC eluates, collected fractions
(500 μL) were concentrated on a StrataClean resin (10 mL), pro-
teins were eluted from the resin into Laemli buffer [2% SDS, 62.5
mM Tris–HCl pH 8.7, 10% glycerol, 0.01% bromophenol blue], as-
sessed for protein content, and loaded on non-reducing 12% SDS-
PAGE. Gels were then transferred to a nitrocellulose membrane.
Membranes were probed with the following primary antibodies
anti-Myc (9E10), anti-Tpx1 (a gift from Drs Yang Sol Lee and Ho
Hee Jang, Korea), and anti-Prx-SO2/3 (Ab16830, Abcam), which
were revealed using fluorescent anti-mouse IgG or anti-rabbit IgG
secondary antibodies and analyzed on the Odyssey infrared ima-
ging system and software (Odyssey, LI-COR).
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