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Abstract. Computational alignment of a biopolymer sequence (e.g., an RNA or
a protein) to a structure is an effective approach to predict and search for the
structure of new sequences. To identify the structure of remote homologs, the
structure-sequence alignment has to consider not only sequence similarity but
also spatially conserved conformations caused by residue interactions, and con-
sequently is computationally intractable. It is difficult to cope with the ineffi-
ciency without compromising alignment accuracy, especially for structure search
in genomes or large databases.

This paper introduces a novel method and a parameterized algorithm for
structure-sequence alignment. Both the structure and the sequence are repre-
sented as graphs, where in general the graph for a biopolymer structure has a
naturally small tree width. The algorithm constructs an optimal alignment by
finding in the sequence graph the maximum valued subgraph isomorphic to the
structure graph. It has the computational time complexity O(ktN2) for the struc-
ture of N residues and its tree decomposition of width t. The parameter k, small
in nature, is determined by a statistical cutoff for the correspondence between the
structure and the sequence. The paper demonstrates a successful application of
the algorithm to developing a fast program for RNA structural homology search.

1 Introduction

Structure-sequence alignment plays the central role in a number of important computa-
tional biology methods. For instance, protein threading, an effective method to predict
protein tertiary structure, is based on the alignment between the target sequence and
structure templates in a template database [3,5,37,19,36]. Structure-sequence alignment
is also essential to RNA structural homology search, a viable approach to annotating
(and identifying new) non-coding RNAs [10,12,29,22]. Structure-sequence alignment
also finds applications in other bioinformatics tasks where structure plays an instru-
mental role, such as in the identification of the structure of intermolecular interactions
[25,27], and in the discovery of the structure of biological pathways through compara-
tive genomics [8].
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The structure-sequence alignment is to find an optimal way to “fit” the residues of
a target sequence in the spatial positions of a structure template. To be able to identify
the structure of remote homologs, the alignment has to consider not only sequence sim-
ilarity but also spatially conserved conformations caused by sophisticated interactions
between residues, and consequently is computationally intractable. For example, it is
both NP-hard for protein threading with amino acid interactions [18] and for thermody-
namic determination of RNA secondary structure including pseudoknots [23].

The alignment problem has often been formulated as integer programming that
characterizes residue spatial interactions with (a large number of) linear inequality
constraints [36,20]. Commercial software packages for linear programming are usu-
ally used to approximate the integer programming and to reduce the computation time.
More sophisticated techniques, such as branch-and-cut, can be used to dynamically in-
clude only needed linear constraints [20,28]. Moreover, a divide-and-conquer method
based on the notion of “open-links” has also been devised to address the residue-residue
interaction issue [37]. For RNA structure-sequence alignment, dynamic programming
has been extended to include crossing patterns of RNA nucleotide interactions [32,7].
The above algorithmic techniques cope with the alignment intractability, however, most
of them still require computation time polynomial of a high-degree.

In this paper, we introduce an efficient structure-sequence alignment algorithm.
Both structure and sequence are represented as mixed graphs (with directed and undi-
rected edges); the optimal alignment corresponds to finding in the sequence graph the
maximum valued subgraph isomorphic to the structure graph. In addition, we introduce
an integer parameter k to constrain the correspondence between the graphs. A dynamic
programming algorithm is developed over a tree decomposition of the structure graph.
For each value of k, the optimal alignment can be found in time O(ktN2) for each
structure template containing N residues given a tree decomposition of tree width t.

Our algorithm is a parameterized algorithm [11], in which the naturally small pa-
rameter k determined by a statistical cutoff reflects the accuracy of the alignment. The
new algorithm with the time complexity O(ktN2) is more efficient than previous algo-
rithms, for example, of the time complexity O(Nk) [37]. This is also because the tree
width t of the graph for a biopolymer structure is small in nature. For example, the tree
width is 2 for the graph of any pseudoknot-free RNA and the width can only increase
slightly for all known pseudoknot structures (see Figure 5). Our experiments also show
that among 3890 protein tertiary structure templates compiled using PISCES [33], only
0.8% of them have tree width t > 10 and 92% have t < 6, when using a 7.5 Å Cβ-Cβ

distance cutoff for defining pair-wise interactions (Figure 2(a)).
The alignment algorithm has been applied to the development of a fast RNA struc-

ture homology search program [31]. With a significantly reduced amount of computa-
tion time, the new search method achieves the same accuracy as searches based on the
widely used Covariance model (CM) [13]. The new algorithm yields about 24 to 50
times of speed up for the search of pseudoknot-free RNAs with 90 to 150 nucleotides;
it gains even more significant advantage for larger RNAs or structures including pseu-
doknots. In addition, for all the conducted tests, including the searches of medium to
large RNAs in bacteria and yeast genomes, parameter k ≤ 7 has been sufficient for the
accurate identification.
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2 Problem Formulation

We formulate structure-sequence alignment as a generalized subgraph isomorphism
problem. Graphs used here are mixed graphs contaning both undirected and directed
edges. Let V (G), E(G), and A(G) denote the vertex set, the undirected edge set, and
the directed edge (arc) set of graph G, respectively.

Fig. 1. (a) Folded ChainB of Protein Kinase C interacting protein with 8 cores (the PDB-file
corresponding to PDB-ID 1AV5); (b) its corresponding structure graph

Definition 1. A structural unit in a biopolymer sequence is a stretch of contiguous
residues (nucleotides or amino acids). A non-structural stretch, between two consecu-
tive structural units, is called a loop.

A structure of the sequence is characterized by interactions among structural units.
For example, structural units in a tertiary protein are α helices and β strends, called
cores. Figure 1(a) shows a protein structure with 8 structural units. In the RNA sec-
ondary structure, a structural unit is a stretch of nucleotides, one half of a stem formed
by a stack of base pairings.

Given a biopolymer sequence, a structure graph H can be defined such that each
vertex in V (H) represents a structural unit, each edge in E(H) represents the interac-
tion between two structural units, and each arc in A(H) represents the loop ended by
two structural units. Figure 1(b) shows the structure graph for the folded protein in 1(a).
Figure 5 shows the graph for bacterial tmRNAs.

The alignment between a structure template and a target sequence is to place
residues of the sequence in the spatial positions of the template. Instead of placing
individual residues to the spatial positions, the method we introduce in this paper al-
lows us to put a stretch of residues as a whole in the position of some structural unit
of the template. The sequence to be aligned to the structure is preprocessed so that all
candidates in the sequence are identified for every structural unit in the template.

By representing each candidate as a vertex, the target sequence can also be repre-
sented as a mixed graph G, called a sequence graph. Each edge in E(G) connects a
pair of candidates that may possibly interact but do not overlap in sequence positions,
and an arc in A(G) connects two candidates that do not overlap.
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Based on the graph representations, the structure-sequence alignment problem can
be formulated as the problem of finding in the sequence graph G a subgraph isomorphic
to the structure graph H such that the objective function based on the alignment score
achieves the optimum. For this, we first introduce a mechanism to parameterize (and to
scrutinize) the mapping between H and G.

Definition 2. A map scheme M between graphs H and G is a function: V (H) → 2V (G)

that maps every vertex in H to a subset of vertices in G. The maximum size of such a
subset, k = maxv∈V (H){|M(v)|}, is called the map width of the map scheme.

A map scheme can be obtained in the preprocessing step that finds all candidates of
every structural unit. The qualification of these candidates can usually be quantified by
a statistical cutoff of the degree to which a candidate is aligned to a structural unit. One
may simply choose the top k candidates for each structural unit. More sophisticated
map schemes are possible (see section 4), in which ideally, the parameter k reflects the
accuracy of alignment results. We define the following parameterized problem:

GENERALIZED SUBGRAPH ISOMORPHISM:
INPUT: mixed graphs H and G, and map scheme M of width k;
OUTPUT: a subgraph G′ of G and an isomorphic mapping f : V (H) → V (G′), con-
strained by f(x) ∈ M(x) for any x, such that the objective function

∑

u∈V (H)

S1(u, f(u)) +
∑

(u,v)∈E(H)

S2((u, v), (f(u), f(v))) +

∑

〈u,v〉∈A(H)

S3(〈u, v〉, 〈f(u), f(v)〉) (1)

achieves the optimum (i.e., maximum or minimum).
Functions S1, S2, and S3 are application dependent, scoring respectively three dif-

ferent alignments between the structure template and the target sequence: the alignment
between a structural unit u and its candidate f(u), the alignment between the interac-
tion of two structural units (u, v) and the interaction of the corresponding candidates
(f(u), f(v)), and the alignment between a loop (connecting two neighboring structural
units u and v) and its correspondence loop in the sequence.

This problem generalizes the well-known NP-hard subgraph isomorphism deci-
sion problem. Efficient algorithms for subgraph isomorphism may be obtained on con-
strained instances. However, algorithms of this kind only exist for the cases where H is
small, fixed, and G is planar or of a small tree width [1,14,24]. None of these conditions
can be satisfied by the application in structure-sequence alignment, where the structure
can be large and the sequence graph is often arbitrary.

We conclude this section by noting that the parameterization introduced on the map
width does not trivialize the problem under investigation. In fact, one can transform
NP-hard problem 3-SAT to (a decision version of) this problem when k is fixed to be
3, leading to the following theorem (the proof details are omitted).

Theorem 1. The problem GENERALIZED SUBGRAPH ISOMORPHISM remains NP-
hard on map schemes of map width k = 3.
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3 Parameterized Alignment Algorithm

Definition 3. [30] Pair (T, X) is a tree decomposition of a mixed graph H if

1. T is a tree,
2. X = {Xi|i ∈ V (T ), Xi ⊆ V (H)}, and

⋃
Xi∈X Xi = V (H),

3. ∀u, v, (u, v) ∈ E(H) or 〈u, v〉 ∈ A(H), ∃i ∈ V (T ) such that u, v ∈ Xi, and
4. ∀i, j, k ∈ V (T ), if k is on the path from i to j in tree T , then Xi ∩ Xj ⊆ Xk.

The tree width of (T, X) is defined as maxi∈V (T ){|Xi|} − 1. The tree width of the
graph is the minimum tree width over all possible tree decompositions of the graph.
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Fig. 2. (a) Tree width distribution of the graphs for 3,890 protein structure templates compiled
using PISCES [33,34]. (b) A tree decomposition for the structure graph in Figure 1(b).

Biopolymer structure graphs in general have small tree width. For instance, the tree
width of the structure graphs for pseudoknot-free RNAs is 2, and it can only increase
slightly for all known pseudoknots. Figure 2(a) gives a statistics on the tree width of
about 3,890 protein structure templates compiled using PISCES [33,34]. Figure 2(b)
shows a tree decomposition for the protein structure graph in Figure 1(b).

3.1 Parameterized Algorithm for Subgraph Isomorphism

We now describe a tree decomposition based parameterized algorithm for the problem
GENERALIZED SUBGRAPH ISOMORPHISM formulated in section 2. Our algorithm as-
sumes a given tree decomposition (T, X) of width t for structure graph H . Our algo-
rithm follows the basic idea of the tree decomposition based techniques in [1,2].

To simplify our discussion, we assume that T for the tree decomposition is a binary
tree. The following notations will also be useful. Let U ⊆ V (H) and Y ⊆ V (G)
such that |U | = |Y |. Then a mapping f : U → Y is a valid mapping for U if f is a
subgraph isomorphism between the graph induced by U and the graph induced by Y . If
W ⊆ U , then f |W is f projected onto W , therefore a valid mapping for W . A partial
isomorphism for H with respect to Xi is a valid mapping f for U = Xi ∪

⋃
k∈D(i) Xk,

where D(i) is the set of i’s descendent nodes in the tree.
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In a bottom up fashion, the algorithm establishes one table for each tree node. Let
Xi = {u0, u1, . . . , ut}. Table mi for tree node i consists of |Xi| + 3 columns, one for
every vertex in Xi. Rows are all possible mappings for Xi restricted by the map scheme
M ; each row is of the form 〈x0, x1, . . . , xt〉 representing the mapping f , f(ul) = xl,
l = 0, 1, . . . , t. There are three additional columns in the table: V, S, Opt (see Fig-
ure 3). V (f) = ‘

√′ if and only if mapping f is valid for Xi. S(f) is the optimal
score over all the partial isomorphism e for H with respect to Xi such that f = e|Xi .
Opt(f) indicates whether S(f) is the optimal over all valid mapping f ′ for Xi, where
f ′|Xi∩Xp = f |Xi∩Xp for p, the parent node of i.

u0…uh…um…ur…ut V S Opt

x0…xh…xm…xr…xt

Xi Xk

Xi Xj Xi-Xk-Xj
mi

f

v1…vp u0…um V S Opt

a1…ap x0…xm

b1…bp x0…xm

Xk-Xi Xi Xk

mk

w1…wq uh…ur V S Opt

c1…cq xh…xr

d1…dq xh…xr

Xj-Xi Xi Xj

mj

g h

Fig. 3. Computing dynamic programming tables over a tree decomposition in which tree node i
has two children k and j

If i is a leaf node, the score S(f) is simply the value computed based on formula (1)
(given in section 2) for vertices in Xi only. If i is an internal node with children nodes
k and j, S(f) is the sum of the following three value :

1. The value computed for f with formula (1) for vertices in Xi only,
2. The maximum S value over all valid mappings g in table mk such that g|Xi∩Xk

=
f |Xi∩Xk

, and
3. The maximum S value over all valid mappings h in table mj such that h|Xi∩Xj =

f |Xi∩Xj .

Figure 3 illustrates the computation for row f in table mi of the internal node i that
has two children nodes k and j. The formal algorithm, GENSUBGISOMO, is outlined as
a recursive process in Figure 4. The optimal score computed in the table for the root of
the tree T is the best isomorphism score. A recursive routine can be used to trace back
the corresponding optimal isomorphism. Details are omitted here.

We need to prove that the (bottom up) dynamic programming always produces cor-
rect partial isomorphisms. Since the algorithm automatically validates the isomorphism
for locally involved vertices, it suffices to ensure that for every u ∈ Xi, the mapping
from u to x for some x ∈ M(u) does not conflict with an earlier mapping from v to
x, for some vertex v ∈ Xk, where k is a descendent of i. Interestingly enough, for
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ALGORITHMGENSUBGISOMO (T , Xi, M , i, mi)
If i has left child k, GENSUBGISOMO(T , Xk, M , k, mk);
If i has right child j, GENSUBGISOMO(T , Xj , M , j, mj);
For every every mapping f for Xi, constrained by M

If i has left child k in T
Find in mk a valid mapping g, such that g|Xi∩Xk = f |Xi∩Xk of Opt(g) being ‘

√′;
If i has right child j in T

Find in mj a valid mapping h, such that h|Xi∩Xj = f |Xi∩Xj of Opt(h) being ‘
√′;

Compute score score(f) with formula (1) for Xi only;
Let S(f) = score(f) + S(g) + S(h);
If i has parent p in T, and S(f) maximizes over all f ′ with f ′|Xi∩Xp =f |Xi∩Xp

Let Opt(f) = ‘
√′;

Return (mi);

Fig. 4. An outline for the tree decomposition based recursive algorithm GENSUBGISOMO that
solves the problem GENERALIZED SUBGRAPH ISOMORPHISM. The algorithm assumes the input
of a tree decomposition (T, X) and a map scheme M ; it returns table mi for every node i in T .

mixed graphs H constructed from biopolymer structures, the non-conflict property is
also automatically guaranteed. The following is a brief justification for this claim.

Note that the directed edges in graph H form the total order relation (V (H), �)
defined as follows: v � u if (i) either 〈u, v〉 ∈ A(H), or (ii) ∃w, v � w and 〈u, w〉 ∈
A(H). This relation needs to be satisfied by any (partial) isomorphism. Assume vertices
u ∈ Xi, v ∈ Xk, and k is one of i’s descendants in the tree. Assume v � u (the case
of u � v is similar). Then in general there exists j on the path from i to k, such that
∃w ∈ Xj , v � w and w � u. An induction on the distance of the chain from u to v can
assert that the mapping conflict cannot occur between u and v so long as v � u.

Theorem 2. GENSUBGISOMO correctly solves the GENERALIZED SUBGRAPH ISO-
MORPHISM problem for every given tree decomposition and every given map scheme.

Corollary 3. Parameterized algorithm GENSUBGISOMO computes the optimal
structure-sequence alignment for every given map scheme of width k.

3.2 Tree Decomposition and Total Alignment Time

For graphs with tree width t, theoretical algorithms [4] can find an optimal tree decom-
position in time O(ctn) for some (possibly large) constant c. We introduce a simple
greedy algorithm for tree decomposition that practically runs fast on structure graphs.

Given a structure graph H , undirected edges are selected such that removals of these
edges from the graph result in an outerplanar graph. The removals of these edges are
done by first removing an edge (but not the endpoints) that crosses with the maximum
number of other edges, and then repeating the same process until the resulting graph
contains no crossing edges. Note that two edges (u, v) and (u′, v′) in H cross each
other if either v′ � v � u′ � u or v � v′ � u � u′ (see section 3.1 for the definition
of the partial order (V (H), �).
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Fig. 5. Diagram of the pairing regions on the tmRNA gene. Upper case letters indicate base
sequences that pair with the corresponding lower case letters. The four pseudoknots constitute
the central part of the tmRNA gene and are called Pk1, Pk2, Pk3, Pk4 respectively.

A simple recursive algorithm can find a tree decomposition of tree width 2 for the
remaining outerplanar graph. Then for each removed edge (u, v), in the tree we place
v in every node on the (shortest) path from a node containing v to a node containing
u. The tree decompositon shown in Figure 2(b) is obtained by first removing crossing
edge (3, 5). Then a tree decomposition for the remaining outerplanar graph is built,
which is extended to the tree decomposition for the original graph by placing vertex 3
(in the bold font) in node {1, 5, 4} on the path from node {1, 4, 3} to node {1, 8, 5}.
This strategy produces a tree decomposition of size at most 2 + c if there are c crossing
edges removed. In reality, the obtained tree decomposition has much smaller tree width.
For example, for the structure graph constructed from the bacterial tmRNA structure
(Figure 5), our strategy shall yield a tree decomposition of tree width 4 instead of 9.
This algorithm is of linear time O(|E(H) + |A(H)| + |V (H)|).

The running time for algorithm GENSUBGISOMO is O(ktt2n), for map width k,
tree width t, number of vertices n in H . For each row in the table, the compliance
with subgraph isomorphism needs to be validated and a score computed according to
formula (1) (by looking up pre-computed values of functions S1, S2, S3). The former
step needs O(t2) and the latter O(t2 + 2t log2 k) (note that the rows of a table can be
ordered to facilitate binary search by the computation for its parent node).

It takes O(knN) time to preprocess the target sequence of length N to construct
the sequence graph. Simultaneously, this step pre-computes the values of functions
S1, S2. The values of function S3 can then be pre-computed, using time O(k

∑l
i=1 l2i )=

O(knN), where li is the length of ith loop and l is the number of loops in the structure.
Summing up the times needed by the preprocessing, tree decomposition, and ALGO-
RITHM GENSUBGISOMO gives us a loose upper bound O(ktnN), or O(ktN2), for the
total time for the structure-sequence alignment.

4 Applications in Fast RNA Structural Homology Search

To evaluate the performance of our method and algorithm for structure-sequence align-
ment, we have applied them to the development of a fast program that can search for
RNA structural homologs. We have also conducted extensive tests on finding medium
to large RNA secondary structures (including pseudoknots) in both random sequences
and biological genomes (bacteria and yeasts) [31]. We summarize our test results in the
following.
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4.1 Data Preparations

The tests on RNA structure searches that we conducted can be grouped into three cate-
gories:

1. On 8 RNA pseudoknot-free structures, of medium size (61 - 112 nucleotides), in-
serted in random sequences of length 105,

2. On 6 RNA pseudoknot structures, of medium size (55 - 170 nucleotides), inserted
in random sequences of length 105, and

3. On 3 RNA pseudoknot structures, of medium to large size (61 - 755), in a variety
of genomes of lengths range from 2.7 × 104 to 1.1 × 107.

Each homologous RNA family is modelled with a structure graph. Each undirected
edge in the graph represents a stem that is profiled with a simplified Covariance Model
(CM) [13]. Each arc in the graph represents a loop (5’ to 3’) that is profiled with a profile
Hidden Markov Model (HMM). In the first two categories of searches, for each family
we downloaded from the Rfam database [16] 30 RNA sequences with their mutual
identities below 80%. We used them to train the CMs and profile HMMs in the model.

For each family we downloaded from Rfam another 30 sequences with their mutual
identities below 80% and use them for search. They were inserted in a random back-
ground of 105 nucleotides generated with the same base compositions. Using a method
similar to the one used in RSEARCH [17], we computed the statistical distribution for
the alignment scores with a random sequence of 3,000 nucleotides generated with the
same base composition as the sequences to be searched. An alignment score with a Z-
score exceeding 5.0 was reported as a hit. Both random sequences and genomes were
scanned through with a window of a size correlated with the structure model size. The
segment of the sequence falling within the window was aligned to the model with the
structure-sequence alignment algorithm presented in the earlier sections.

For the tests of the third category, we searched for three RNA pseudoknot structures:
the pseudoknot structure in the 3’ UTR in the corona virus family [15], the bacterial
tmRNA structure (see Figure 5) that contains 4 pseudoknots [26], and yeast telom-
erase RNA consisting of up to 755 nucleotides [9]. The structures for these RNAs were
trained with 14, 85, and 5 available sequences respectively. The searched genomes for
the 3’ UTR pseudoknot were Bovine corona virus, Murine hepatitus virus, Porcine diar-
rhea virus, and Human corona virus, with the average length 3×104. The two searched
bacteria genomes for the tmRNA were Haemophilus influenzae and Neisseria menin-
gitidis, with the average length 2 × 106. Yeast genomes,Saccharomyces cerevisiae and
Saccharomyces bayanus of the average length 11 × 106, were used to search for the
telomerase RNA.

To obtain a reasonably small value for the parameter k, the map scheme between the
structure and the sequence was designed with the constraint that candidates of a given
stem were restricted in certain region in the target sequence. For this, we assumed that
for homologous sequences, the distances from each pairing region of the given stem
to the 3’ end follow a Gaussian distribution, whose mean and standard deviation were
computed based on the training sequences. For training sequences representing distant
homologs of an RNA family, we could effectively divide data into groups so that a
different but related structure model was built for each group and used for searches.
This method ensures a small value for the parameter k in search models.
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Fig. 6. Performance comparison between the tree decomposition based method and the CM
based method on search for RNA structures, (a) and (b) for pseudoknot-free structures, (c) and
(d) for pseudoknots

4.2 Performance Evaluations

We conducted the tests on the tree decomposition based search program and on a Co-
variance Model (CM) based search system1 and compared the performances of the two.
The tests results showed that, on all three categories, parameter k = 7 was sufficient
for our new search program to achieve the same accuracy as the CM based search
system does. But the computation time used by the new method was significantly re-
duced.

Figure 6(a) and (b) respectively show the sensitivity comparison and specificity
comparison between the two search methods on pseudoknot-free RNA structures. These
structures were from eight RNA families: Entero CRE, SECIS, Lin 4, Entero OriR,
Let 7, Tymo tRNA-like, Purine, and S box, in the increasing order of their length. The
tree decomposition based algorithm performed quite well for k = 6 and larger values.

Figure 6(c) and (d) respectively show the sensitivity comparison and specificity
comparison between the two search methods on RNA pseudoknot structures. These
were from six RNA families: Antizyme FSE, corona pk3, HDV ribozyme,
Tombus 3 IV, Alpha RBS, and IFN gamma, in the increasing order of their lengths.
As for pseudoknot-free structures, the tree decomposition based searches for pseudo-

1 We developed this CM based system [21] in the same spirit of Brown and Wilson’s work
[6] that profiles pseudoknots with intersection of CMs. CM was first introduced by Eddy and
Durbin [13] and has proved very accurate in profiling for search of pseudoknot-free RNA
structures.
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Fig. 7. The speed up of the tree decomposition based method over the CM based method: (a) on
pseudoknot-free structures, and (b) on pseudoknot structures

Left Right Left offset Right offset Time Left off Right off Time

BCV 30798 30859 0 0 0.053 0 0 1.24 3.1 x 104

MHV 31792 31153 0 0 0.053 0 0 1.27 3.1 x 104

PDV 27802 27882 0 0 0.048 0 0 1.17 2.8 x 104

HCV 27063 27125 0 0 0.047 0 0 1.12 2.7 x 104

HI 472209 472574 -1 -1 44.0 0 0 1700 1.83 x 105

NM 1241197 1241559 0 0 52.9 0 0 2044 2.2 x 105

SC 307688 308429 -3 -1 492.3 - - - 1.03 x 107

SB 7121529 7122284 -3 2 550.2 - - - 1.15 x 107

Genome
length

3'PK

TLRNA

tmRNA

Tree decomposition based CM basedReal locationncRNA

Fig. 8. Performance comparison between the tree decomposition based method and the CM
based method on RNA structure searches on genomes. Offset is between the annotated and the
real positions. Time unit is hour.

knots achieved the same performance as the CM based method for parameter values
k ≤ 7.

Figure 7 shows the speed up by the new method over the CM based method, for
(a) pseudoknot-free and (b) pseudoknot structures. It is evident that for k = 7 the
new method was about 20 to 30 times faster than the other method on pseudoknot-free
structures. On the pseudoknot structures, typically on Alpha RBS and Tombus 3 IV
containing more than 100 nucleotides, the new method was 66 and 38 times faster,
suggesting its advantage in the search of larger and more complex structures.

Figure 8 compares the search results obtained by the two methods on three types of
RNA pseudoknots in virus, bacteria, and yeast genomes. Parameter k = 7 is used for
the parameterized algorithm. Both methods achieve 100% sensitivity and specificity. It
clearly shows that the new method had a speed-up of about 30 to 40 times over the other
method for searches in virus and bacteria genomes. With the new method, searching
genomes of a moderate size for structures as complex as tmRNA gene (see Figure 5)
only took days, instead of months. Searching a larger genome such as yeast for larger
structure like telomerase RNAs was also successful, a task not accomplishable by the
CM based system within a reasonable amount of time.
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5 Conclusions

We introduced a novel method and an efficient parameterized algorithm for the
structure-sequence alignment problem by exploiting the small tree width of biopoly-
mer structure graphs. The algorithm was applied to the development of a fast search
program that is capable of accurately identifying complex RNA secondary structure
including pseudoknots in genomes [31]. Our method provides a new perspective on
structure-sequence alignment that is important in a number of bioinformatics research
areas where structure plays an instrumental role. In particular, we expect the tree de-
composition based method, together with one for protein side-chain packing [35], to
yield efficient and accurate protein threading algorithms.
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