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Abstract: Human saliva offers many advantages over other biofluids regarding its use and value as a
bioanalytical medium for the identification and prognostic monitoring of human diseases, mainly
because its collection is largely non-invasive, is relatively cheap, and does not require any major
clinical supervision, nor supervisory input. Indeed, participants donating this biofluid for such
purposes, including the identification, validation and quantification of surrogate biomarkers, may
easily self-collect such samples in their homes following the provision of full collection details to
them by researchers. In this report, the authors have focused on the applications of metabolomics
technologies to the diagnosis and progressive severity monitoring of human cancer conditions,
firstly oral cancers (e.g., oral cavity squamous cell carcinoma), and secondly extra-oral (systemic)
cancers such as lung, breast and prostate cancers. For each publication reviewed, the authors
provide a detailed evaluation and critical appraisal of the experimental design, sample size, ease of
sample collection (usually but not exclusively as whole mouth saliva (WMS)), their transport, length
of storage and preparation for analysis. Moreover, recommended protocols for the optimisation
of NMR pulse sequences for analysis, along with the application of methods and techniques for
verifying and resonance assignments and validating the quantification of biomolecules responsible,
are critically considered. In view of the authors’ specialisms and research interests, the majority of
these investigations were conducted using NMR-based metabolomics techniques. The extension of
these studies to determinations of metabolic pathways which have been pathologically disturbed
in these diseases is also assessed here and reviewed. Where available, data for the monitoring of
patients’ responses to chemotherapeutic treatments, and in one case, radiotherapy, are also evaluated
herein. Additionally, a novel case study featured evaluates the molecular nature, levels and diagnostic
potential of 1H NMR-detectable salivary ‘acute-phase’ glycoprotein carbohydrate side chains, and/or
their monomeric saccharide derivatives, as biomarkers for cancer and inflammatory conditions.

Keywords: saliva; metabolomics; 1H NMR analysis; 19F NMR analysis; NMR-based metabolomics;
oral cancers; systemic cancers; diagnosis; prognostic monitoring; chemical pathology; GlycA and
GlycB biomarkers

1. Introduction

In Part I of this series, the authors provided a full review and critique of the value
of NMR-linked technologies for chemopathological investigations of human saliva and
further oral fluids [1]. This included full considerations of the different classes, sources,
and biomolecular composition of human saliva as a biofluid, and also the distinction of
selected ‘pools’ of metabolites found therein between host, oral microbiome and perhaps
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other sources; the value of saliva, most notably as whole mouth saliva (WMS), and super-
natants arising from its centrifugation (WMSSs), as an acceptable medium for the tracking
of disease biomarkers, most especially but not exclusively for oral diseases; the ease of
collection routes and processes for this biofluid, and sensible advice concerning the correct
protocols to employ for its donation by recruited participants, particularly the minimum
fasting abstention period required in order to circumvent issues arising from interfering
xenobiotic resonances in salivary 1H NMR profiles. Critical regimens evaluated included
the transport, storage and preparation of samples for NMR analysis, the latter featuring
protocols for the treatment of samples with salivary metabolite-preserving microbicidal
agents; optimal pulse sequences for the acquisition of spectra on WMSSs, along with recom-
mended methods for, and the assignment benefits offered by, a range of two-dimensional
(2D) NMR strategies; and post-acquisitional preprocessing of the 1H NMR spectral profiles
of these samples, particularly the chemical shift ‘bucketing’ or ‘binning’ of 1H NMR signals,
together with finite methods for the quantification of metabolites, and the normalisation,
transformation and scaling of multivariate (MV) datasets arising from these profiles. Also
featured was a new factor analysis-based strategy for salivary phenotype analysis, which
served to effectively distinguish between oral microbiome- or host-dominant, or for that
matter admixed, metabolic profiles of human saliva samples. Moreover, the potential future
applications of low-field (LF) compact NMR spectrometers for exploring the health status
of dental patients, with oral conditions or otherwise, was reviewed, with special reference
to their employment at point-of-contact sites such as dental surgeries or pharmacies.

Primarily, Section 1 of this report provides a short appraisal of the many advantages of-
fered by ‘state-of-the-art’ high-resolution 1H NMR analysis techniques for the metabolomics
analysis of human saliva samples. Also covered are typical WMSS 1H NMR resonance
assignments, along with some major recent improvements in this technique’s selectivity
and sensitivity, and its ability to rapidly acquire such data at maximal levels of laboratory
efficacy. Although unusual, this section then briefly explores corresponding developments in
high-field 19F NMR analysis, and its potential relevance to both diagnostic and drug-tracking
metabolomics strategies is discussed. A further sub-section devoted to the importance of
metabolomics investigations to clinical epidemiology is also included here. Subsequently,
essential information focused on the metabolic pathways which facilitate the sustenance of
cancer cell longevity and proliferation is provided (Section 2), along with a brief overview
based on the applications of NMR-linked metabolomics analysis for the screening of saliva
samples for differential classes of cancers in general, including recently conducted systematic
reviews (Section 3). Subsequently, Section 4 begins with the application of these approaches
towards the diagnosis and prognostic monitoring of a series of oral cancers (OCs) in humans
(notably potentially malignant oral condition (PMOC) prequelae, and oral cavity squamous
cell carcinoma (OCC) and oropharyngeal squamous cell carcinoma (OPC)), whereas Section 5
features the use of human saliva for the detection and monitoring of a wide range of extra-
oral (systemic) cancers, notably head and neck, squamous cell, lung, breast, pancreatic and
prostate cancers, amongst others. Following this, Section 6 provides a review of information
provided in a recent case study based on a common adverse response to radiation therapy
applied in the treatment of head and neck cancer (HNC), specifically oral mucositis (OM).
Finally, in view of their now recognised and increased applications to explore and determine
the pathological status of a wide range of cancers and inflammatory conditions, Section 7
features a new case study involving the very first evaluation of the 1H NMR signals of
‘acute-phase’ glycoproteins detectable in WMSS samples, groundwork which was conducted
for the first time here in order to potentially establish their value as diagnostic biomarkers
in cancers, in addition to other diseases, notably inflammatory ones. Also explored are
the potentially confounding roles of interferences in the 1H NMR determination of such
critically important biomacromolecules. Additionally, Section 8 discusses the clinical impli-
cations of salivary metabolomics studies. Section 9 then provides full details of the reliable
employment of such ‘big’ metabolomics datasets to inform researchers of dysregulated
or imbalanced metabolic pathways so that drug targets may be identified, developments
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which may then in turn lead to drug discovery programmes. This section also includes the
potential use of these multianalyte metabolomics strategies to inform clinicians on suitable
drug treatment options for cancers. Finally, limitations of the applications of NMR-based
salivary metabolomics techniques to evaluate key biomarkers for the potential diagnosis
and tracking of human cancers are provided in Section 10, and this is followed by a series
of generalised conclusions for this study (Section 11).

Of key importance, novel supporting disease screening protocols, facilities and devices
are urgently required in order to combat morbidity and mortality in cancer conditions, and
therefore heightened efforts should be made by those involved in salivary metabolomics
investigations of human saliva, in order to further facilitate and/or verify early diagnoses.

1.1. Appraisal of Benefits Offered by the 1H NMR Analysis of Human Saliva

Figure 1a,b show the expanded high- and low-field regions, respectively, of a 600 MHz
noesy-presat 1H NMR spectrum of a typical whole-mouth salivary supernatant (WMSS)
sample collected from a healthy human participant. In addition to a wide range of reso-
nances arising from bacterial organic anion catabolites such as acetate, lactate, fumarate,
propionate, n-butyrate, succinate and formate, etc. (biomolecules predominantly, but not
exclusively, arising from the salivary microbiome), these spectra contain many further
signals, e.g., amino acids, carbohydrates including N-acetylsugars, purines and pyrim-
idines, and lipids etc. Also shown are the results of experiments which were set up to
investigate spectral quality as a function of the number of 1H NMR scans performed on a
single WMSS sample, in this case using both the noesy-presat and WET pulse sequences.
Clearly, the spectral quality achieved on our 600 MHz spectrometer was very good, and
only small differences between such profiles obtained from the use of only 8 scans, and
those acquired using as many as 512 scans were discernible. However, determinations
of the signal-to-noise (STN) ratio for the TSP quantitative internal standard and chemical
shift reference (δ = 0.00 ppm) revealed an improved sensitivity for the 512-scan profile
in noesy-presat spectra acquired, i.e., STN values of 267 versus 1241 for 8 and 512 scans,
respectively, i.e., a nearly five-fold enhancement for the latter. However, the achievement
of high quality biofluid spectra with only 8 scans here is particularly notable, and this has
not been previously reported on WMSS samples.

Figure 1. Cont.
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Figure 1. High-Resolution 1H NMR Analysis of Human Salivary Supernatant Samples. (a,b), High- 
and low-field regions (0.70–4.40 and 6.75–9.65 ppm, respectively) of the 600 MHz noesy-presat 1H 
NMR spectrum of a WMSS sample donated by a healthy human participant. Samples were prepared 
according to the methods described in Refs. [1,2], and contained added phosphate buffer to control 
pH, azide as a microbicide to curtail metabolite consumption/fermentation and catabolite 
generation by bacteria during periods of sample preparation and storage prior to analysis, and 250 
μmol./L TSP as a chemical shift reference (δ = 0.00 ppm) and quantitative 1H NMR standard. (c,d), 
1.60–2.50 ppm regions of repeat noesy-presat and WET pulse sequence 1H NMR profiles acquired 
on a human WMSS sample for 512 and only 8 scans, respectively. The noesy-presat or WET pulse 
sequences were employed to suppress the intense water resonance. Typical spectra are shown. 
Resonance assignment number codes and abbreviations are listed in Table 1. The asterisks in (c,d) 
represent 13C satellites of the very intense WMSS acetate-CH3 resonance.  

Table 1. 1H NMR Resonance Assignments for Human WMSS Samples at an Operating Frequency 
of 600 MHz. * Broad resonance located at δ = 8.05 ppm, which along with those at ö = 6.85 and 7.55 
ppm [1] (also visible in Figure 1b), presumably arise from salivary protein tyrosine, phenylalanine, 
tryptophan and/or histidine residues. ** This aldehydic proton (-CHO function) signal may be a 
singlet or a triplet; if a triplet, as in saturated aldehydes (n-alkanals), without expansion it appears 
as a singlet in view of a very low J coupling constant value (1.4 Hz) [3]. Abbreviations: APP, acute-
phase protein; s, d, t, q and m, singlet, doublet, triplet, quartet and multiplet resonance multiplicities, 
respectively. 

Assignment 
Number/Code 

Chemical Shift 
(δ/ppm) Multiplicity Assignment 

1 0.92 t n-Butyrate-CH3  
2 0.94 broad Protein BCAA side-chain-CH3 

Figure 1. High-Resolution 1H NMR Analysis of Human Salivary Supernatant Samples. (a,b), High-
and low-field regions (0.70–4.40 and 6.75–9.65 ppm, respectively) of the 600 MHz noesy-presat 1H
NMR spectrum of a WMSS sample donated by a healthy human participant. Samples were prepared
according to the methods described in Refs. [1,2], and contained added phosphate buffer to control
pH, azide as a microbicide to curtail metabolite consumption/fermentation and catabolite generation
by bacteria during periods of sample preparation and storage prior to analysis, and 250 µmol./L TSP
as a chemical shift reference (δ = 0.00 ppm) and quantitative 1H NMR standard. (c,d), 1.60–2.50 ppm
regions of repeat noesy-presat and WET pulse sequence 1H NMR profiles acquired on a human
WMSS sample for 512 and only 8 scans, respectively. The noesy-presat or WET pulse sequences were
employed to suppress the intense water resonance. Typical spectra are shown. Resonance assignment
number codes and abbreviations are listed in Table 1. The asterisks in (c,d) represent 13C satellites of
the very intense WMSS acetate-CH3 resonance.
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Table 1. 1H NMR Resonance Assignments for Human WMSS Samples at an Operating Frequency
of 600 MHz. * Broad resonance located at δ = 8.05 ppm, which along with those at ö = 6.85 and
7.55 ppm [1] (also visible in Figure 1b), presumably arise from salivary protein tyrosine, pheny-
lalanine, tryptophan and/or histidine residues. ** This aldehydic proton (-CHO function) signal
may be a singlet or a triplet; if a triplet, as in saturated aldehydes (n-alkanals), without expansion
it appears as a singlet in view of a very low J coupling constant value (1.4 Hz) [3]. Abbreviations:
APP, acute-phase protein; s, d, t, q and m, singlet, doublet, triplet, quartet and multiplet resonance
multiplicities, respectively.

Assignment
Number/Code

Chemical Shift
(δ/ppm) Multiplicity Assignment

1 0.92 t n-Butyrate-CH3
2 0.94 broad Protein BCAA side-chain-CH3
3 0.96 t Leucine-CH3
4 0.97 d Valine-CH3
5 1.02 d Valine-CH3
6 1.06 t Propioniate-CH3
7 1.20 t Ethanol-CH3
8 1.13 d iso-Butyrate-CH3
9 1.33 d Lactate-CH3

10 1.48 d Alanine-CH3
11 1.57 tq n-Butyrate-β-CH2
12 1.65 m 5-Aminovalerate-CH2′s
13 1.80, 2.028 2 x s Acetate-CH3

13C satellites
14 1.87 s Thymine-CH3
15 1.92 s Acetate-CH3

16 1.95–2.10 broad/sharp s
Broad: Glycoprotein

-NHCOCH3/Sharp: Free Aminosugar-
and N-Acetyl-amino acid-NHCOCH3

GlycA 2.040 s GlycA APP N-Acetylglucosamine
residues

Nan-CH3 2.06 s Free N-Acetylneuraminate
Met 2.13 s Methionine-S(CH3)3
17 2.17 q Propioniate-CH2/n-Butyrate-α-CH2
18 2.23 t 5-Aminovalerate-CH2-CO2

−

Glu 2.36 m Glutamate–β-CH2
19 2.38 s Pyruvate-CH3
20 2.405 s Succinate-CH2′s
21 2.39 m Isobutyrate-CH
22 2.59 s Methylamine H2NCH3

23 2.75 s/m DimethylamineH2N(CH3)
/Methionine-CH2

24 2.95 s Trimethylamine N(CH3)3
25 3.04 t 5-Aminovalerate-5-CH2/Lysine-ε-CH2
DS 3.145 s Dimethylsulphone-OS(CH3)2
26 3.21 s Choline-N(CH3)3

+

27 3.24 s Betaine-N(CH3)3
28 3.25 t Taurine-CH2NH3

+

29 3.38 s Methanol-CH3
30 3.43 t Taurine-CH2SO3

−

31 3.46 d cis-Aconitate-CH2
32 3.54 dd Glycerol-CH2OH
33 3.56 s Glycine-CH2
34 3.66 q/m Ethanol-CH2/Glutamate-α-CH
35 3.72 m Leucine-α-CH
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Table 1. Cont.

Assignment
Number/Code

Chemical Shift
(δ/ppm) Multiplicity Assignment

Glyc 3.92 s Glycolate-CH2
Cr 3.95 s Creatine-N(CH3)

Nan 4.02 m N-Acetylneuraminate-C4H
36 4.13 q Lactate-CH
37 6.88 d Tyrosine-Aromatic ring protons

2-HPA 6.93 m 2-Hydroxyphenylacetate-
Aromatic ring proton

38 7.06 s Histidine-Imidazole ring protons
39 7.20 d Tyrosine-Aromatic ring protons
40 7.32 m Phenylalanine-Aromatic ring proton
41 7.36 m Phenylalanine-Aromatic ring proton
42 7.42 m Phenylalanine-Aromatic ring proton
43 7.65 s Guanine-CH=
44 7.78 s Histidine-Imidazole ring protons
45 8.05 broad * Protein aromatic amino acid residue(s)
46 8.45 s Formate-CH

47 9.57 ** s(t) Unassigned saturated aldehyde-CHO
function

1.2. 19F NMR Analysis of Human Saliva, Oral Biopsies and Tap Water

Of more general interest, and in support of the wide range of multinuclear advantages
and biomedical applications of high-resolution NMR spectroscopy, together with its ability
to identify and quantify many biomolecular and/or xenobiotic analytes simultaneously
and rapidly, Figure 2 shows the 19F NMR spectra of a typical WMSS sample, and also a very
low concentration fluoride calibration standard solution, the former clearly demonstrating
the direct detection of traces of fluoride in this biofluid. For this purpose, we employed a
trifluoroacetate (TFA) internal standard (δ = −75.3 ppm). The fluoride anion concentration
of the above standard was 20 µmol./L (0.38 ppm), a value which is very similar to its mean
baseline human salivary level of 0.41 ± 0.38 ppm (mean ± SD) [4] (equivalent to a mean
value of 21.6 µmol./L), although it should be noted that fluoride was undetectable in at
least some baseline control WMSS samples explored with this technique; participants fasted
for an 8 h. duration prior to providing samples.

The major barrier for this analysis was overcoming the interfering very broad, fast-
relaxing fluorine resonances which arose from a solid fluoropolymer present in the NMR
magnet probe-head. However, this was effectively achieved by the removal of data points
from the start of the FID which contributed to these very broad signals in the spectrum,
followed by the use of part of the FID in order to predict and replace that which was
removed. This process resulted in a flatter baseline, with only the much narrower F−

and TFA resonances remaining unchanged. Importantly, this processing of the FID is
mathematically robust and reproducible.

These spectra clearly demonstrate that, for the first time, 19F NMR analysis can be
readily employed to monitor F− levels in human saliva, and also perhaps to ‘speciate’
fluorine in this biofluid. There are also clear applications of this strategy to the analysis
of fluorine-containing agents such as dentifrice fluorophosphate and fluoro-substituted
drugs, along with fluoride itself, in oral biopsies, for example, in primary root carious
lesions. Also shown is the very first direct 19F NMR detection and quantification of tap
water fluoride in a UK (East Midlands) city, a non-artificially fluoridated area—according to
information available in Ref. [5], this level should lie somewhere within the 0.10–0.70 ppm
(5–37 µmol./L) range. The STN parameter determined for the above 20.0 µmol./L (final
analyte solution level 17.6 µmol./L) fluoride calibration standard was 50, so therefore levels
as low as 3–4 µmol./L are quantifiable in biofluids and environmental samples with a
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corresponding STN value of ca. 10. Clearly, these STN values and quantification limits will
be enhanced and diminished somewhat, respectively, by markedly increasing the number
of NMR spectral scans made over and above our value here of 2048 during acquisition.
Quantitative 19F NMR analysis of this calibration standard solution yielded an acceptable
estimate of its fluoride concentration of 21.4 µmol./L, i.e., a value within 7% of its known
level. These pioneering 19F NMR analysis studies will be reported in more detail elsewhere.
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Figure 2. Newly Developed Biomedical Applications of High-Field 19F NMR Spectroscopy: Analysis
of Human Saliva and Tap Water. 19F NMR spectra of (a) an aqueous sodium fluoride calibration stan-
dard (δF = −119.5 ppm; final analyte concentration 17.6 µmol./L) and (b) a WMSS sample collected
from a participant following an 8.00 h. oral abstention ‘fasting’ period. Analysis solutions contained
527 µL of a 20 µmol./L sodium fluoride solution, 60 µL of 2H2O and 13 µL of a 50.00 mmol./L
trifluoroacetate (TFA) internal standard (δF = −75.3 ppm). 19F NMR spectra were acquired on a
JNM-ECZ600R/S1 600 MHz NMR spectrometer (operating at a frequency of 564.72 MHz for 19F),
over a 400 ppm spectral width and with an FID acquisition time of 0.92 s. An 8.3 µs 90◦ pulse was
used; the relaxation delay between pulses was 3 s. In total, 2048 scans were acquired with 256 K
data points, which were then Fourier-transformed with zero-filling to 512 K data points and a single
exponential function of 5.0 Hz. Baseline roll signal from the fast-relaxing fluoropolymer species in the
NMR probe-head was removed using backward linear prediction (order = 16, sample data 512 points,
reconstructed data 32 points); baseline correction was applied to spectra using a polynomial function.
The resulting signal-to-noise (STN) ratio for the 19F resonance in (a) was 50:1. Chemical shift values
were referenced to external fluorotrichloromethane (CFCl3; Jeol UK Ltd. default reference setting).
Inset: Partial 19F NMR spectrum of a local, East Midlands, UK, sample of tap water (shown in green)
demonstrating the detection of fluoride anion therein; this spectrum was also acquired with backward
linear prediction and 2048 scans.

Intriguingly, 19F NMR analysis may also be employed for investigating the mecha-
nisms of action and dispositions of fluorine-containing anti-cancer agents, and the develop-
ment and testing of fluorine-containing chemotherapeutic agents (such as 5-fluorouracil),
which can act as powerful molecular ‘warheads’ in cancer treatment when linked to appro-
priate tumour-targeted drug delivery systems [6]. Further developments have included
the design and synthesis of fluorine-containing toxoids, i.e., fluorotaxoids [6]. Hence, 19F
NMR analysis is likely to offer valuable molecular information regarding the therapeutic
monitoring of these novel therapeutic agents, their prodrugs and metabolites in biofluids
or tissue biopsies collected from selected groups of human patients, including those with
deficient catabolising enzymes for fluorouracil, or those undergoing haemodialysis. In
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addition to having much relevance to salivary diagnostics for cancer conditions, these
19F NMR investigations will be valuable for probing the potential therapeutic activities of
fluorocarbon drugs, and for monitoring their biodistributions and effective targeting of
tumours and associated tissues.

1.3. Importance of Metabolomics Investigations in Clinical Epidemiology

Currently, metabolomics techniques are becoming increasingly important and com-
mon in clinical epidemiology in view of the advent of newly developed quantitative pro-
filing and sensitivity advantages of the technologies applied (e.g., 1H NMR spectroscopy,
LC-MS, etc.), and highly valuable metabolite datasets which arise from their implementa-
tion facilitate our understanding of the biomolecular basis of human health and disease
states. Indeed, the majority of clinical epidemiological investigations frequently involve
the determination of a panel of blood plasma or serum sample biomarkers, for example,
glucose, lipoprotein cholesterol, creatinine, total protein, etc., for probing the health and
disease status of human populations. Since high-resolution 1H NMR analysis represents a
high-throughput technique which may simultaneously identify and quantitate very large
numbers of metabolites in a single biofluid (e.g., >120 or so in human urine) within a
short period of time, this platform is readily applicable to such clinical epidemiological
investigations featuring very large numbers of participants, although the correct standardi-
sation of protocols for sample collection and laboratory preparation methods is an essential
pre-requirement, as are many other factors. Such studies also require rigorous experimental
design and modelling considerations prior to proceeding, so that all possible contributory
‘input’ variables are incorporated, including major demographic variables such as age,
gender and body mass index (BMI), together with known or perceived risk factors, etc., in
order to optimise the value and precision of data acquired, hypothesis-driven or otherwise.
Examples of the use of the 1H NMR-based metabolomics technique to large-scale clinical
epidemiological studies include its use for the detection and measurement of biomarkers
for early atherosclerosis [7], type 2 diabetes mellitus [8], diabetic nephropathy [9], coronary
heart disease [10] and all-cause mortality [11].

The research group that undertook these investigations have also taken various routes
towards multi-omics systems epidemiology, for example, to understand liver function [12]
and to identify causal networks of gene expression modules [13]. Interestingly, these re-
searchers state the total cost of a single 1H NMR screen of blood plasma or serum, featuring
the provision of finite bioanalytical data on a range of cholesterol marker indices, a plethora
of lipoprotein classes, many low-molecular–mass biomolecules such as proteinogenic and
some non-proteinogenic amino acids, glycolysis pathway-associated metabolites, diabetes-
relevant ketone bodies, creatinine and carbohydrates, the latter including glucose and
acute-phase protein (APP)-linked N-acetylsugars as residues present in their molecularly-
mobile carbohydrate side-chains. According to these reports, all of these metabolite and
biomarker determinations are acquirable from a single blood plasma or serum sample at
economic costings which are comparable with those of standard lipid assays for clinical
monitoring purposes.

Similar powerful arguments are also likely to apply to the use of human saliva for such
purposes, which offers additional benefits, including ease of sample collection, handling
and analytical preparation, along with its ability to detect and predominantly quantify 100
or so metabolites simultaneously at NMR operating frequencies of 600 MHz or higher [1].
However, to the best of our knowledge, to date there appears to be little or no application of
salivary NMR-based metabolomics in addressing the critical sample analysis requirement
within large-scale clinical epidemiological cohort studies. Hence, there remains a major
exigency for the wide-scale, perhaps global use of these technologies in such typically
widespread or global investigations, most especially because of the lowered costs associated
with the collection and handling of this biofluid when comparatively evaluated against
those for blood plasma or serum analysis.
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Hence, the 1H NMR-based metabolomics analysis of human saliva samples has much
to offer in the context of large-scale clinical epidemiological studies, and after making al-
lowances for selected restrictions, could be factored in as a major work task for such studies,
not only for oral diseases including cancers, but also systemic ones which may already
employ validated salivary biomarkers reliably for diagnosis and monitoring purposes.

For such studies, the increasing build-up of valuable quantitative 1H NMR data
based on systemic metabolism is continually evolving, and for the last 20–30 years or so
has now demonstrated a multitude of new biomarkers. Indeed, in our laboratory, it is
only on very rare occasions that our researchers fail to detect one or more new or novel,
previously undiscovered molecular species when conducting just about any NMR-linked
metabolomics experiment. This confirms that quantitative NMR (qNMR) and associated
MV metabolomics or computational intelligence analyses will inevitably transmute and
remodel the practices of both clinical epidemiology and genetics.

2. Metabolic Pathways That Sustain Cancer Cell Survival and Proliferation

To date, much has been learnt on the major metabolic pathways dysregulated in cancer
conditions, and this information has allowed the development of drug-targeting strategies,
and the design and testing of targeted drugs [14]. In general, both catabolic and anabolic
routes are upregulated by cancer cells in order to optimise energy and biomacromolecule
generation. Indeed, glucose and glutamine represent key biomolecules which have the abil-
ity to furnish cancer cells with the majority of energy which is essential for their growth and
proliferation, and also serve as metabolite sources for their evolution. Primarily, glucose is
taken up by tumour cells via the glucose transporter 1 (GLUT1) transporter system and then
enters the glycolysis pathway, and the glucose-6-phosphate glycolytic intermediate may
then be diverter-routed to the pentose phosphate pathway, generating ribose-5-phosphate
(nucleotide synthesis), along with electron-donating equivalents of NADPH (anabolic ac-
tivities). However, a further glycolytic intermediate, 3-phosphoglycerate, can be redirected
to the biosynthesis of both glycine and serine, which can then be integrated into protein or
nucleotide structures, or employed as sources of other metabolites. Lastly, pyruvate arising
from the glycolysis pathway can be reduced to lactate by lactate dehydrogenase, oxidised
in the mitochondrial tricarboxylic acid (TCA) cycle, or transformed to citrate, which serves
as a precursor for the biosynthesis of cholesterol and fatty acids (FAs) [7].

HMG-CoA reductase acts as the pivotal enzyme for cholesterol biosynthesis, whereas
FA biosynthesis is dependent on the availability of acetyl-CoA carboxylase (ACC) and
FASN enzymes. The SLC1A5 amino acid transporter delivers glutamine to tumour cells
for the purpose of protein or nucleotide biosynthesis; however, it can also be metabolised
to glutamate, and subsequently α-ketoglutarate, which may then either be oxidatively
converted within the mitochondrial TCA cycle, or reductively metabolised to citrate, and in
this context also contributes towards FA and cholesterol biosynthesis. Moreover, transami-
nation of cytoplasmic glutamine generates further amino acids from their corresponding
α-ketoacid anions. Specific transporters are employed for the uptake of both methionine
and arginine from external locations, which are then utilised for protein biosynthesis or
alternative functions [14].

Metabolism in cancer cells is highly complex, and potentially displays much hetero-
geneity within large tumour masses. Fortunately, recent technical developments, which
include in vivo magnetic resonance spectroscopy (MRS), along with hyperpolarised mag-
netic resonance imaging (MRI), may serve to provide a rather detailed molecular ‘picture’
of modifications in metabolite usage and generation in human tumours in vivo, notably
at differential disease sites. Such approaches may also be valuable for the prognostic
monitoring of the dynamic progression of tumour metabolism during disease evolution, or
during their responses to chemotherapeutic treatments administered [15,16]. Indeed, we
look forward to the future applications and developments of these techniques in the oral
cancer areas.
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Briefly, an upregulated level of aerobic glycolysis offers specific advantages towards
cancer cell growth and proliferation [17]. Primarily, when present at blood physiological
levels, glucose engenders an acceptably rapid rate of ATP synthesis in order to satisfy
energetic requirements, and concomitantly empowers anabolic pathways via the generation
of biomass. Moreover, lactate arising from the reduction of pyruvate gives rise to an
acidic extracellular environment that enables the recruitment of immune cells such as
macrophages, a process facilitating metastasis. Finally, pyruvate can be converted to
oxaloacetate, together with alanine and aspartate, which of course are involved in the
biosynthesis of proteins or further metabolites [17–19].

3. Overview of the Metabolomics Screening of Saliva Specimens for Differential
Groups of Cancer Conditions, including Selected Systematic Reviews Conducted:
Applications to Diagnosis, Prognostic Severity Monitoring and Metabolic
Pathway Dysregulations

This evaluation will be commenced with a very recent systematic review conducted
by Assad et al. in 2020 [20], which was focused on an assessment of salivary metabolites
as valuable diagnostic biomarkers in cancer patients. This review was constructed and
performed in two stages, and also investigations featuring determinations of the diagnostic
potential of salivary biomolecules in cases of solid malignant neoplasms. Overall, five
electronic databases were searched, and the revised Quality Assessment of Diagnostic
Accuracy Studies criteria (QUADAS-2) was employed to compute the risk of bias. More-
over, all criteria were conducted according to Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. A grand total of 1151 studies were
reviewed, and of these only 25 were selected for further evaluation: 13 targeted, and 12 un-
targeted metabolomics studies, the majority focused on oral and breast cancers. Of 140
salivary biomarkers found, the most popular were alanine, leucine and valine. Moreover,
of the 11 investigations which reported diagnostic test accuracy (DTA) parameters, proline,
histidine, threonine and monoacylglycerol(s) had the greatest values for breast cancer. Fur-
thermore, a combination of betaine, choline, L-carnitine and pipecolinate had the highest
distinctive potential for the early stages of oral cancer conditions. Notwithstanding, as part
of a minor case study, the authors of the current investigation performed qualitative path-
way topological analyses featuring these ‘validated’ dysregulated metabolite biomarkers
available for firstly breast, and secondly oral cancers. However, this strategy failed to detect
any significant perturbations to human metabolic pathways in both cases considered, an
observation presumably reflecting the low numbers of viable biomarkers detectable in the
report documented in [20].

From Ref. [20], it was concluded that additional investigations with larger sample
sizes are required, along with those featuring the validation and confirmation of results
acquired from untargeted analysis. Notwithstanding, all investigations reported in this
particular systematic review had case-control designs, although none of them completely
satisfied all quality assessments made.

Additionally, for the primary purpose of the current study, we also describe an exten-
sive investigation conducted by Sugimoto et al. [21] reported in 2010, who performed a
fully comprehensive metabolomics analysis of saliva samples donated by patients with
oral (n = 69), pancreatic (n = 18) and breast cancers (n = 30), along with 11 periodontal (PD)
patients and 87 healthy controls. For this study, capillary electrophoresis time-of-flight
mass spectrometry (CE-TOF-MS) was employed as a metabolic screening tool. Overall,
a total of 57 lead biomolecules with the ability to accurately predict the probability of
being afflicted by each of the above diseases were discovered. However, despite being
statistically significant, only low correlations were found between patient disease character-
istics and biomarkers determined. Nevertheless, the metabolic profiles displayed relatively
higher levels of the majority of the biomarkers identified in all three cancers when com-
pared to those of PD and healthy control participants, and this observation indicated that
cancer-specific patterns were enrooted within salivary metabolite profiles. Indeed, three
individual ‘pools’ of salivary biomarkers found to be valuable for distinguishing between



Metabolites 2022, 12, 778 11 of 40

oral cancer patients and healthy controls consisted of (1) pyrroline hydroxycarboxylate,
leucine/isoleucine, choline, tryptophan, valine, threonine, histidine, pipecolate, glutamate,
carnitine, alanine, piperidine and taurine, plus two further metabolites; (2) piperidine,
α-aminobutyrate, phenylalanine and another (unidentified) metabolite; and (3) betaine,
serine, tyrosine, glutamine, β-alanine and cadaverine, along with two further metabolites.
However, tests of the statistical significance of these discriminatory pools were largely lim-
ited to a non-parametric univariate test (the Steel–Dwass test, p < 0.001, <0.01 and <0.05 for
pools (1), (2) and (3) respectively), and it also appears that precautions for FDR corrections
were not taken. A similar approach yielded 28, 48 and 27 discriminatory metabolites for
breast cancer, pancreatic cancer and PD, respectively (however, the p value obtained for
such differences was only <0.05).

Additionally, multiple logistic regression models applied gave a high area under
the receiver-operating characteristic curves (AUROCs) for the distinction of each disease
category from the healthy control group; these values were 0.865, 0.973 and 0.993 for oral,
breast and pancreatic cancers, respectively, along with 0.969 for PDs.

Qualitative pathway topological analysis (MetaboAnalyst 5.0, https://www.metaboanalyst.
ca, (accessed on 19 August 2022), University of Alberta, Edmonton, Canada) performed on
each of these three pools of biomarkers by the authors of the current study revealed that only
the first set tested with 14 named biomolecules and the very highest level of significance
(p < 0.001) implicated only the branched-chain amino acid (BCAA) catabolism and histidine
metabolism pathways as being perturbed in oral cancer patients; however, although the
raw p values for these pathways were highly significant (4.76 and 8.46 × 10−3, respectively),
they did not remain so following FDR correction (p = 0.13 and 0.18, respectively).

Interestingly, downregulated concentrations of all three BCAAs, together with that of
alanine, have been demonstrated in pancreatic cancer tissue biopsies using solid-state 1H
MAS NMR analysis [22]. Similarly, low contents of these BCAAs and that of lysine have
been found in breast cancer tissue biopsies [19]. These lowered amino acid concentrations
may arise from an accelerated level of energy metabolism, or an enhancement of their
biosynthetic pathways, along with the mandatory proliferation of cells in cancer tissues.
Nevertheless, in Ref. [21], the saliva levels of these amino acids were higher in a series
of cancer patient groups than they were in healthy controls. Therefore, there appears to
be a major dysregulation in salivary-blood-cancer tissue equilibria and distribution for
these amino acids. The authors of the results presented surmised that this observation
was ascribable to the heterogeneous systems responsible for the salivary gland transport
of amino acids from blood to saliva; for example, differences in the rate of transfer, or
the influence of small ions, e.g., Na+ and K+ [23], the concentrations of which may be
modified in view of the passage of water via the paracellular course [24], or channels
featured [25]. Nevertheless, salivary gland metabolism may also significantly contribute
towards differences observed between the salivary and blood or salivary and cancer tissue
biopsy metabolomes. As noted in Ref. [1], such comparisons are markedly complicated
by the prominence of a major principal component ascribable to microbial metabolism,
in addition to one arising from the host alone. Therefore, as noted above, additional
validation of these observations made by seeking further inter-relationships between the
metabolic profiles of saliva with those of blood and afflicted tissue samples is required
in order to further our understanding of these differences. Of further relevance, in 2007
Yang et al. [26] reported a new approach for comparative metabolome analysis with a
view to gaining key information regarding the involvement of metabolite pools and fluxes
related to essential metabolic pathways in both model healthy and cancer disease mammary
epithelial cell lines. This study involved the tracking of the 13C label in 13C-labelled glucose
using 2D NMR and GC-MS analysis featuring an isotopomer modelling strategy. These
researchers found significant differences between the two cell lines which were concordant
with previously documented effects, including upregulations in the biosynthesis of FAs.
Additional modifications were also observed, and these, according to the authors, for the
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first time revealed an astounding mileux of ‘global metabolic rewiring’ in the cancer cell
line evaluated.

4. Oral Cancers

Oral cancers (OCs) are classified as oral cavity malignant tumours and represent the
sixth most common forms of cancers globally, with an incidence of 400,000 new cases per
annum, which account for 4% of cancer conditions in men, and 2% of those in women. A
series of potentially malignant oral conditions (PMOCs) usually precedes OC onset. These
comprise oral submucous fibrosis (OSMF), oral leukoplakia (OLK) and oral lichen planus
(OLP); malignant conversion of these PMOCs to OC has incidences ranging from 2 to
30% [27,28].

Very recently, Patil and More [29] conducted a systematic review of 10 publications
(38 excluded) for the use of salivary metabolomics for diagnosing OC and its preconditions.
From this review, metabolic biomarkers found included 1-methylhistidine, 2-oxoarginine,
norcocaine nitroxide l-isoleucine and γ-aminobutyryl-lysine l-homocysteate, polyamines
(amino acid metabolism); sphinganine-1-phosphate and galactosphingosine (sphingolipid
metabolism); 2-phosphoglycerate (carbohydrate metabolism); pseudouridine (nucleotide
biosynthesis pathway); 4-nitroquinoline-1-oxide, ubiquinone and reduced glutathione (ox-
idative stress pathway); estrone-3-glucuronide and estradiol valerate (estrogen metabolism);
inositol-1,3,4-triphosphate (electron transport chain); choline, S-adenosylmethionine and
methionine (quaternary amine metabolism); BCAAs (TCA cycle, BCAA degradation);
urea (urea cycle); and the ketone bodies 3-D-hydroxybutyrate and hydroxy-isovalerate
(lipid metabolism).

Although all are 1H NMR-detectable, only some of these agents are quantifiable in
WMSS specimens using this technique (specifically BCAAs, 2-methylhistidine, specific
polyamines, choline, methionine, urea and selected ketone bodies) because of some re-
strictive sensitivity limits, although this fraction of the above biomarker analytes may
indeed be sufficient for diagnostic purposes using metabolomics technologies. The authors
of Ref. [29] concluded that the salivary biomarkers found arose from perturbations to
pathways involved in the metabolism of amino acids, proteins, carbohydrates and nucleic
acids throughout multistage carcinogenesis developments. Indeed, literature data available
were found to identify apparently ‘unique’ metabolite signatures characteristic of OC and
PMOCs. However, as is nearly always the case, differences observed between the inves-
tigative techniques employed in the studies evaluated served to complicate this systematic
review, i.e., there were at least some major inconsistencies in the methods employed, and
therefore a common metabolic pattern remains unrecognised.

In 2019, Chen and Yu [30] conducted a summative assessment of the latest progress
made with the recognition of disease-specific metabolic patterns observed in saliva, in
addition to serum and tumour tissues, in cases or oral cancer. Indeed, they concluded that
future studies of these conditions should be focused on the establishment of a regimen
for the metabolomics profiling of intracellular metabolites in order to characterise any
abnormal patterns of such biomolecules present in tumour cells, and also to explore the
potential metabolic effects of administered chemotherapeutic agents thereon.

An additional investigation [31] explored the capacities of the neural networks, lo-
gistic regression, and stochastic gradient descent techniques coupled with ten-fold cross-
validation approaches to distinguish between the salivary metabolic profiles of periodontitis
and oral cancer patients. Overall, this study featured data mining, metabolic pathway
analysis, and the investigation of metabolite–gene interaction networks, and the researchers
involved discovered that a deep-learning neural network model linked with the TensorFlow
program generated the best results, with an accuracy of nearly 80%. Hence, such methods
were valuable for the recognition of biomolecular differences found between oral cancer
and periodontitis patients.

One quite unusual study by Supawat et al. [32] was focused on characterisation of
the biomolecular profiles of whole unstimulated saliva samples collected from oral cancer
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and healthy control participants using fluorescence, electronic absorption and 1H NMR
spectroscopies, and to the best of our knowledge, this is one of the first times that simple
spectrophotometric analysis has been utilised in a salivary metabolomics context. The
1H NMR aspect of this research demonstrated that salivary trimethylamine N-oxide and
glycine concentrations were significantly higher in oral cancer patients than in healthy
controls. Moreover, the autofluorescence emission and synchronous absorption spectra
of saliva were found to differentiate between oral cancer patients and heathy controls (a
total of six fluorophores were detectable in human saliva samples). Indeed, significant
differences found between the electronic absorption spectra of saliva samples were found
to be concordant in terms of zero-order intensities, and the 1st- and 2nd-derivative spectral
profiles acquired. However, Lohavanichbutr et al. [33] found that the salivary concentration
of glycine, and also proline, were significantly downregulated in saliva samples collected
from OSCC patients.

4.1. Oral Squamous Cell Carcinoma

Oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma
(OPC) are amongst the most common cancers worldwide and are associated with high
mortality and morbidity. This area is indeed a very active area of research and represents
90% of all oral malignant neoplasms. These disorders were investigated by Alves et al.
in 2021 [34], and for this purpose, the salivary metabolic profiles of 27 OSCC patients
and 41 healthy controls were investigated using a GC-MS technique. Overall, they found
24 metabolites with AUROC values >0.80, and with a threshold limit of 0.90, malate,
maltose, protocatechuate, lactose and 2-ketoadipate, along with catechol metabolites, were
expressed as significant biomarkers for this condition. From these results, disturbances
to the malate–aspartate shuttle, β-alanine metabolism and the Warburg effect pathways
were identified. As noted by the authors of this report, additional research investigations
featuring larger populations should be conducted in order to verify these results.

In one further key metabolomics study, aqueous 1H NMR analysis at an operating
frequency of 800 MHz was employed in conjunction with targeted aqueous LC-MS/MS,
and global aqueous and lipidomics platforms using LC-Q-TOF techniques to identify
biomolecules with the capacity to discriminate between patients with OCC/OPC and
healthy controls, and also to potentially differentiate between OCC patients with and
without nodal metastasis [33]. However, these researchers employed ordinary linear
regression analysis in order to adjust for demographic variables such as age and race,
and experimental batches. This procedure is not to be recommended unless it is clear
that there are at least relatively strong linear relationships between such variables, and no
evidence for this was presented. Indeed, in many clinical and biological studies, many
possible relationships between all variables incorporated into studies may be curvilinear,
quadratic or even sigmoidal, rather than linear. However, use of the log2-transformation as
employed by the authors of this paper may serve to convert some non-linear relationships
to linearity. Irrespective of such complications, these researchers found that that both
proline and glycine differed ‘significantly’ between the OCC and healthy control groups
for discovery and validation datasets (although p values were only <0.10 after employing
an FDR correction). However, no significant differences in mean salivary levels between
these test groups, nor between OCC participants with and without nodal metastasis, were
discovered. Nevertheless, glycine, citrulline, proline and ornithine concentrations were
found to be related to the early-stage OCC condition, although the authors concluded that
further investigations were required to confirm these observations for the development of
reliable salivary biomarkers for this disease.

Very recently, Costa et al. [35] explored means of seeking combinations of biomarkers
for the diagnosis of OSCC using a novel data mining approach, and which purported
to be one of the very first studies to employ advanced data mining techniques for the
diagnosis of this malignant neoplasm. However, for this purpose they used a random forest
(RF) classification algorithm system, which is actually well known to many metabolomics
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researchers, including those focused on multicomponent salivary analyses, e.g., [1]. More-
over, ‘state-of-the-art’ computational intelligence/data mining strategies have already been
applied to the diagnosis of human diseases, as reported in [36]. Results acquired from
this study revealed that glucuronate, malate and, strangely, butyl alcohol were effective
in classifying OSSC disease, with a MV area under the curve (AUROC) parameter of 0.91.
The authors concluded that the methodology applied was valuable for the discovery of
diagnostic biomarkers for diseases other than OSCC and could therefore provide valuable
chemopathological and monitoring information for healthcare professionals.

In 2016, Mikkonen et al. [37] conducted a systematic review to explore how the capacity
of salivary metabolic profiles may furnish researchers with valuable chemopathological
data regarding an early diagnostic overview of metabolic dysfunctions linked to either OC
or PDs. For this purpose, a MEDLINE search using “salivary metabolomics” as a keyword
generated a total of 23 results, of which 7 of these were excluded since they were reviews or
published as ‘letters to the Editor’. The remainder served as valuable contributions towards
this review. Notwithstanding, although already apparent to many researchers, this study
discovered a range of experimental challenges, such as those regarding an insufficient
understanding of complex metabolic pathways associated with the differing classes of oral
diseases investigated. The authors concluded that the salivary metabolomics approach
may serve to yield important information regarding the identification of both local and
systemic disorders, the former including oral cancers, and may also facilitate the design and
refinement of suitable therapeutic strategies. This review also discussed clinical viewpoints
on the future potential of salivary metabolomics.

In a further study, Ishikawa et al. [38] studied the influence of period limits follow-
ing meal consumption for the collection of saliva samples for the identification of oral
cancer with metabolomics approaches. Saliva was collected from oral cancer patients
(n = 22) either 12 h. following a dinner meal, and at 1.5 and 3.5 h. subsequent to breakfast,
whereas healthy control subjects (n = 44) fasted for >1.5 h. before sample collection. Capil-
lary electrophoresis coupled with a mass spectrometric detection system was employed
for the determination of hydrophobic metabolites. Overall, it was found that a total of
51 biomolecules differed significantly between these two classification groups at the 12 h.
fasting time-point (p < 0.05); however, only 15 and 10 metabolites were significantly dif-
ferent at the 1.5 and 3.5 h. time-points, respectively. As expected, AUROC values for this
discrimination were found to be highest at the 12 h. fasting time point. From this work, the
authors involved concluded that the 12 h. after dinner fasting time-point was optimal for
saliva sample collection, and we fully agree that such lengthier or prolonged fasting/oral
abstention periods, and perhaps further controls, are absolutely necessary in order to
achieve unbiased evaluations of cancer biomarkers, and hence reliable, interference-free
estimates of their salivary concentrations.

These results are fully consistent with our previous investigations [1], which have
reported the stringent requirement for the establishment of a minimum abstention period
from all possible interfering oral activities before WMS samples are collected, most espe-
cially meal consumption. Strikingly, our experiments confirmed that an absolute minimum
of 2–4 h. was required to circumvent problems arising from the interference of dietary
agents, and this was in marked contrast to recommendations made in other reports that
a duration of only 1.0 h. was adequate for this purpose [39]. This is clearly explicable by
dietary constituents, e.g., carbohydrates, lipids and organic acids/anions such as citrate,
acetate and succinate, etc., clearly persisting in WMSS samples well beyond this 1.0 h. time
limit. Additionally, substantial increases in the salivary concentrations of lactate, acetate
and other fermentation products were food-induced immediately after eating. Perhaps
the application of even more sensitive bioanalytical methods and techniques will establish
that this 2–4 h. time restriction should be extended further, for example up to 8–12 h.,
a duration which our research group now commonly utilises for salivary metabolomics
investigations. However, it should be noted that we find that current high-resolution 1H
NMR spectrometers can extend to the detection of sub-micromolar quantities of salivary
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biomolecules (Figure 3), and signal-to-noise (STN) ratios of 10 are achievable at analyte
concentrations of ≤1 µmol./L for selected analytes, particularly those with proportionately
prominent singlet (or doublet) resonances arising from biomolecule -CH3 groups, e.g., those
of choline, acetone and dimethylsulphone, and a little less so for acetate and creatinine, etc.
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Figure 3. Sensitivity of 1H NMR Analysis for Salivary Metabolomics Experiments. Partial (3.06–
3.56 ppm regions of) 600 MHz 1H NMR spectra acquired on phosphate-buffered (10.00 mmol./L,
pH 7.00) aqueous solutions of choline chloride (only 100, 200 and 500 nmol./L). Spectra were acquired
on a Jeol JNM-ECZ600R/S1 600 MHz spectrometer operating at a frequency of 600.17 MHz for 1H,
with a probe operating temperature of 25 ◦C. Solutions also contained 10% (v/v) 2H2O, 330 µmol./L
TSP as a chemical shift reference and quantitative internal standard, and 0.03% (w/v) sodium azide
as a microbicide. Spectra were acquired at an operating frequency of 600.17 MHz and 298 K, and
with suppression of the very intense H2O/HOD resonance (δ = 4.80 ppm) by use of the WASTED-II
pulse sequence. Pulsing conditions were: sweep width 11,218 Hz; 16,384 datapoints; acquisition time
1.81 s; relaxation delay 1.00 s; and 1024 transients. STN values for each spectrum were estimated
using Jeol Delta-5 software.

Indeed, Figure 3 shows that for choline’s -N+(CH3)3 head group signal at pH 7.00,
a STN ratio of 10 is achievable at a concentration of 500 nmol./L, whereas a value of 5.0
was obtained at a level of only 100 nmol./L; these parameters were determined from
spectra acquired with 1024 scans using the WASTED-II pulse sequence, and are very
impressive indeed. On consideration of the numbers of protons giving rise to these signals,
in principle we may extrapolate and deduce corresponding sensitivity criteria and STN
values for three-proton methyl groups which have singlet resonances, e.g., STN ratios of
10 should be achieved in, for example, acetate and pyruvate metabolites, when present at
analytical concentrations of only 1.50 µmol./L. So that readers are aware, in our laboratory,
we set STN values of 3 and 10 for detection and quantification threshold limits for 1H
NMR analysis, and therefore a STN value of ≥10 is sufficient for quantification purposes,
albeit those ranging from 3–10 are acceptable for signal detection, but not for quantitative
NMR analysis. Increases in the sensitivity of this technique are expected with substantial
enhancements of the number of scans made within each spectral acquisition, where the STN
ratio increases proportionally with the square root of the number of scans made, although
one disadvantage of this approach is the quite lengthy acquisitional duration.

Panneeselvam et al. [40] provided a narrative review of the development and imple-
mentation of screening tests for the early detection of cancer using approaches which are
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of minimal invasiveness. This review outlined the development and potential of salivary
metabolomics for the discovery and validation of biomarkers for oral cancer diagnosis. In
addition to currently available screening technologies in both India and Japan, the preva-
lence and epidemiologic attributes of and risk factors for oral cancers were considered in
detail. Results acquired indicated that the development of biomarkers by itself, per se, is
not sufficient for cancer detection and diagnosis.

Since investigations focused on the applications of metabolomics, NMR-based or
otherwise, for the detection of OC using saliva as a biomarker base, it is, of course, necessary
to achieve rigorous clinical validation, along with the implementation of standard operating
procedures (SOPs) for testing programmes conducted with this biofluid. However, it was
suggested that optimal screening programmes should involve a combination of both
conventional and newly developed technologies.

Previously, it was demonstrated that an opportunistic screening system for OC was
more successful for the diagnosis of precancer and cancer patients than that involving
a counter-measure screening protocol [41]. Moreover, a quite recent systematic review
performed with accompanying meta-analysis found that the diagnostic accuracies of com-
monly employed OC screening tests, including standard oral examination, vital rinsing,
light-based detection and mouth self-examination, together with remote and biomarker-
based screenings, was not reliable for the efficient detection of OC [42]. Furthermore, the
design and development of novel technologies for objective evaluations of OC risk is now
considered to be critical, most especially because screening conducted by trained dentists
and oncology specialists is very costly indeed. To date, a number of machine learning-
based data processing and analysis strategies have been established, and these include OC
identification, automated disease progress staging, and the application of image processing
to distinguish between cancerous and precancerous cells [43,44].

5. Extra-Oral (Systemic) Cancers

In contrast to oral cancers, breast and pancreatic tumours are physically located
remotely from the oral cavity, and therefore one key question is: why exactly should
salivary biomolecules serve to indicate their divergent tumour metabolism? To date,
evidence is available that salivary biomolecule profiles may indeed provide valuable
information on both systemic and localised tumour status or progression, or their responses
to chemotherapeutic agents. For example, such methods for indirectly assessing lung and
breast cancers have been developed for some time now [21,45–49]. Blood and lymph fluids,
as systemic biofluids, serve as avenues which may avoid such tumours, and the salivary
gland acts to infiltrate saliva with a blood contaminant. Selected tumour tissue metabolites,
e.g., lactate (which arises from tumours exposed to excessive levels of hypoxia), have
been found to be upregulated in conditions associated either with or without metastasis
occurrence [50,51]. Notably, diminished blood plasma arginine concentrations have also
been observed in breast cancer patients. Moreover, abnormal arginine concentrations have
also been found in a pooled group of colonic and pancreatic cancer patients, both with and
without metastasis [52]. More recently, Hu et al. found an association of plasma arginine
concentrations with breast cancer molecular subtypes in women from a North-Eastern
Chinese province [53].

Furthermore, in OSCC patients without primary tumour metastasis, characteristic
cancer-induced modifications to blood serum and salivary mRNA levels have been discov-
ered [54,55], along with alterations to the blood metabolome [56,57]. However, this does
not prove that disturbances to the salivary metabolite balance arise from a tumour located
remotely. Notably, some previous investigations have revealed upregulations in in blood
choline metabolites in a range of cancerous conditions, and in oral cancer patients, elevations
in such choline metabolites provided evidence that their passage from blood to saliva through
the salivary gland route was low, despite the detection of high blood levels. However, diffu-
sion of choline metabolites from the oral tumour to the salivary gland through an alternative
mechanism remains a possibility. Although previous studies have followed metabolomics
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and data mining protocols to determine whether changes to the salivary metabolome fea-
tured cancer-specific characteristics, future investigations should be targeted on comparisons
of the complete metabolic profiles of blood plasma/serum and cancer malignancy biopsies
with that of saliva in order to recognise any biomolecular associations, including those from
cancer-induced metabolic pathway imbalances or malfunctions.

Notwithstanding, the potential value of salivary biomarkers for the diagnosis and
severity monitoring of systemic diseases has been somewhat undermined in view of the
lack of physiological and mechanistic reasoning regarding why exactly diseases based at
locations remote from the oral cavity could give rise to the development and detection
of distinguishing biomarkers in human saliva. In this section, such developments and
reasonings are explored further.

5.1. Head and Neck Squamous Cell Carcinoma

A recent study [58] explored the ability of salivary NMR analysis for the detection of
metabolic modifications putatively arising from the impact of head and neck squamous cell
carcinoma (HNSCC). Unstimulated whole-mouth saliva samples collected from HNSCC
patients with primary tumours located either in the oral cavity or the larynx, and corre-
sponding healthy controls, donated WMS samples for 1H NMR evaluations. Univariate
analysis revealed that salivary fucose and propane-1,2-diol were both significantly upregu-
lated in HNSCC patients, whereas the amino acid proline was found to be downregulated.
However, it should be noted that propane-1,2-diol is a common exogenous agent present
in toothpastes, medications, cosmetics, foods and even cigarette smoke, and therefore an
external source of it may be responsible for its detection in WMS and cannot be ruled
out. According to the authors, WMS was collected according to a ‘standardised technique’
described in Ref. [59], but no further details were made available on this process, and hence
we are unable to deduce whether satisfactory periods of fasting or oral habit abstention
were instigated by the researchers involved in this study. MV analysis, however, provided
evidence that a composite of four salivary metabolites (fucose, glycine, methanol and
proline) was required to achieve a maximal level of distinction between the HNSCC and
healthy control cohorts (correct classification rate 92%, sensitivity 87.5% and specificity
93%). Interestingly, fucose has been implicated as a blood serum biomarker for the early
detection of various cancers [60,61]. From this work, it was concluded that the human
salivary metabolome was significantly responsive to metabolic modifications induced by
HNSCC disease. Notwithstanding, exogenous sources of salivary methanol, such as diet
and tobacco smoking, remain a complication, and hence further experiments should be
conducted to confirm its role as a significant biomarker, along with potentially exogenous
sources of propane-1,2-diol.

More recently, the salivary metabolic profiles of n = 10 head and neck cancer (HNC)
patients and 9 primary Sjorgen’s syndrome (pSS) patients, together with 10 healthy control
participants were evaluated with a high-performance liquid chromatography-high resolution
mass spectrometry (HPLC-HRMS)-based metabolomics technique, as reported by Hynne
et al. [62]. From this study, PCA confirmed differential metabolic profiles between these
groups, with both HNC and pSS groups showing upregulated ratios of selected pyrimidine
nucleotides and nucleosides over those of the corresponding controls; these results suggested
that in dry mouth disorders, purinergic signalling may play a key role. Moreover, these
researchers also revealed a dysregulation in amino acid metabolism between the groups
compared. Indeed, higher salivary concentrations of DL-3-aminoisobutyrate, which is both a
terminal purine and BCAA catabolite, were found in both the HNC and pSS groups. Therefore,
such metabolic differences found by these researchers should be further explored.

5.2. Lung Cancer

Unfortunately, lung cancer has a high incidence rate. Mutations identified in the EGF
receptor (EGFR) represent tumour-specific biomarkers for non-small cell lung carcinoma
(NSCLC). One previously noted study performed [63] utilised a novel core technology
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known as electric field-induced release and measurement, which involves a multiplexible
electrochemical sensor, for the detection of EGFR mutations in human saliva, and this
approach was shown to be effective, accurate, rapid and cost-effective for the detection
of EGFR mutations in this biofluid collected from patients with NSCLC. Additionally,
in this study Xiao et al. [63] discovered 16 candidate proteins that had the ability to
distinguish lung cancer patients from healthy control participants, and which serve as
useful biomarkers for lung cancer with high levels of both specificity and sensitivity.
This study revealed that effective proteomic biomarkers can be sought and found in
human saliva for the early detection and prognostic screening of lung cancer. In 2012, this
group were also successful in establishing a lung cancer-specific transcriptomic biomarker
signature in this biofluid [64].

Furthermore, Li et al. [65] performed an analysis of human saliva samples collected
from 21 lung cancer patients and 20 healthy controls using surface-enhanced Raman spec-
troscopy (SERS), and they found that many of the Raman band intensities observed were
decreased in the former group. These bands were assignable to proteins and nucleic acids,
data which suggested decreases in the salivary concentrations of such agents, although
clearly the technique utilised offered only a limited level of molecular selectivity and speci-
ficity (although the authors specified that ‘some’ of the bands observed were assigned to
certain structural units present in these biomacromolecules). However, PCA and linear
discriminant analysis LDA achieved a modicum of success in distinguishing between these
two groups, although the accuracy of this application was only 80%.

One additional study [66] focused on distinguishing between the salivary metabolic
profiles of patients with lung cancer and those with benign lung lesions (BLLs), and for
this purpose 41 and 21 saliva samples, were collected from these groups, respectively,
which were analysed using capillary electrophoresis-mass spectrometry (CE-MS). Data
were analysed using a multiple logistic regression (MLR) model. These researchers found
that a total of ten salivary metabolites substantially differed between these two groups,
with tryptophan concentrations being significantly lower in lung cancer patients. However,
overall, the AUROC value for this model was only 0.66 (95% CI 0.52–0.81), so it was only
barely statistically significant (p = 0.036). Further information provided by the researchers
involved was that lysine, tyrosine, diethanolamine and cytosine were selected as significant
biomarkers when using a back-selection regression option of the MLR analysis; notably,
the discriminatory model developed from only these four metabolites yielded an AUROC
value of 0.73 (95% CI 0.60–0.86) with a p value of 0.003, so this alternative system offered
an improved discriminatory potential. In conclusion, the authors suggested that the above
four salivary metabolites may find value as potential non-invasive, pivotal biomarkers for
discriminating between lung cancer and BLL patients.

A combination of high-performance anion-exchange chromatography with pulsed-
amperometric detection (HPAEC-PAD) was employed by Ragusa et al. [67] to investigate
the salivary metabolic profiles of patients with lung and breast cancers (n = 68 patients in
total), and how these were differentiated from those of a healthy control group (n = 34).
Interestingly, this study involved hydrolysis of the salivary glycoprotein fraction followed
by quantification of the free sugars arising therefrom, specifically fucose, galactosamine,
galactose, glucosamine and mannose, by an HPLC-anion method featuring pulsed ampero-
metric detection (HPAEC-PAD). The resulting glycosidic profiles were then evaluated and
compared using MV and ROC curve analyses. This approach yielded valuable data con-
cerning differential patterns of these sugars between both groups, and which, according to
the authors, was sufficient to discriminate between the healthy and cancer-positive groups.

These observations are potentially of much importance, since glycans are critically
involved in signalling, cell–cell adhesion and recognition processes in vivo, and abnormal
protein glycosylation patterns have been discovered in a range of pathological mechanisms,
including tumour development and progression. Indeed, a number of highly glycosylated
proteins such as CA125, CA19–9 and PSA are currently employed as cancer biomarkers in
clinical practice.
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5.3. Breast Cancer

In 2017, Porto-Mascarenhas et al. [68] performed a systematic review focused on the
detection and quantification of salivary biomarkers that may be valuable for the charac-
terisation of breast cancer. Of 567 relevant investigations, only 13 satisfied the inclusion
criteria of assessing the diagnostic potential or related distinguishing attributes of salivary
biomarkers for this condition. Moreover, such biomarkers were classified in relation to their
possible clinical applications. As expected, strategies employing composite biomarkers
for this purpose offered a much-improved capacity to diagnose or predict breast cancer
rather than single ones. Agents found to be particularly useful as single markers were the
amino acids proline, taurine and valine, which were apparently able to assist diagnosis at
the early and advanced stages of breast cancer, the latter showing promising diagnostic
test accuracy. Interestingly, all these metabolites are readily detectable in the high-field 1H
NMR profiles of human saliva [1,2,69], and therefore in principle, this technology could
easily be employed for breast cancer screening sessions since it simultaneously monitors
these biomarkers. However, only a limited number of such investigations reported the
essential bioanalytical criteria of sensitivity and specificity, which were both found to
markedly fluctuate, specifically from 50–100% and 51–97%, respectively, and therefore
further investigations are required for the approval of these amino acids as pre-validated
biomarkers. Overall, these researchers concluded that at the time of their report, there
was only a restricted level of evidence available to establish the execution of the above
salivary amino acids as diagnostic biomarker probes for breast cancer conditions. Of the
studies surveyed, only seven investigations explored and reported specificity and sensitiv-
ity [70–76]. Notably, the salivary biomarkers selected were found to detect the later breast
cancer phases more reliably than the earlier ones. Hence, the overall conclusions made in
Ref. [68] were that there was only a limited amount of evidence available to confirm the po-
tential satisfactory execution of salivary biomarkers as valuable indicators of breast cancer
conditions, although this review did offer some new research directives for consideration.

A detailed meta-analysis targeted on investigating differences between the salivary
metabolic profiles of breast cancer patients and healthy controls was conducted by Koopaie
et al. [77] in order to evaluate the diagnostic potential of biomarkers identified. Following
consideration of a rigorous inclusion and exclusion criteria, and quality thresholds, this
study featured 14 publications containing 121 study units, with a grand total of more than
4000 participants in both the breast cancer-positive and healthy control groups. Analysis
was performed using specificity and sensitivity, negative and positive likelihood ratios
(NLR and PLR, respectively) and diagnostic odds ratio (DOR), along with AUROC and
summary ROC plots and assessments. Clinical utility was determined from Fagan’s
nomogram. Overall, results obtained in this study were favourable, with significant
AUROC values, and post-test Fagan’s nomogram probabilities of 28 and 72% for negative
and positive outcomes, respectively. Furthermore, subgroup analysis was conducted to
determine the significance and importance of specificity, sensitivity, DOR, PLR and NLR
values linked to mean participant ages (< or >52 years old), type of saliva sample (stimulated
versus unstimulated) and biomarker class (i.e., metabolomics-, proteomics-, transcriptomics-
/proteomics- and biophotonic reagent free-based), along with nations sampled from. In
conclusion, saliva was found to contain non-invasive biomarkers which offered much
promise for accurately distinguishing breast cancer from healthy control populations.

5.4. Pancreatic Cancer

In 2013, Lau et al. [78] explored the hypothesis that pancreatic tumour-derived ex-
osomes are mechanistically associated with the evolution of discriminatory cancer tran-
scriptomic biomarkers present in human saliva; exosomes represent extracellular vesicles
produced by all cell types; exosomes are extracellular vesicles produced by all cells, and
serve as advocates of both near- and far-distant cellular communications (typically they
convey nucleic acids, proteins, lipids and further metabolites). For this purpose, they
developed a mouse model of pancreatic cancer that, through the implantation of a mouse
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pancreatic cancer cell line (Panc02) into the pancreas of the C57BL/6 syngeneic host, gen-
erated distinguishing salivary biomarkers. Intriguingly, inhibition of exosome biogenesis
gave rise to the removal of such salivary biomarkers. Hence, results acquired provided
evidence that tumour-derived exosomes provide an explicable mechanism by which the
evolution of salivary biomarkers for pancreatic cancer can be observed, and perhaps also
additional distant systemic diseases also of diagnostic importance.

5.5. Prostate Cancer

The circulating oncomiRs from body fluids, MiR-141 and miR-21, serve as two tumour
biomarkers [79]. Expression of MiR-141 is significantly upregulated in patients with
advanced-stage prostate cancer, although miR-21 is overexpressed during early-stage
prostate cancer. Hizir et al. [80] have shown that both these biomarkers are indeed expressed
in human saliva, and these may be detected using a nano-graphene oxide-based analysis.
Therefore, this development offers potential as a minimally-invasive strategy for the early-
stage diagnosis of prostate cancer.

5.6. Colon Cancer

Intriguingly, a further 1H NMR-based investigation [81] showcased a case report
focussed on 1H NMR-based metabolomics analysis of biomolecules detectable in parotid
saliva (PS) samples collected from a single colon cancer patient, both prior and subsequent
to chemotherapy treatment for a one-year duration, this involving XELOX: capecitabine
plus oxaliplatin. This analysis was supported by concomitant measurements of blood
test cancer antigens, along with that for the thyroid peroxidase antibody (TPOAb). This
study provided evidence that 1H NMR signals for FAs, acetate, citrate, lactate, formate,
N-acetylsugars, tyrosine and saccharide species in PS significantly decreased following
chemotherapy, whereas blood TPOAb levels significantly increased, and this latter effect
mirrored modifications in the 1.0–3.5 ppm 1H NMR spectral region. From the changes
observed, the researchers involved concluded that these altered metabolic profiles may pro-
vide biomarkers for the clinical diagnosis and prognostic monitoring of human colon cancer.

6. Oral Mucositis as a Response to Radiation Therapy

Since one of the most commonly observed adverse effects of radiation therapy applied
to patients with head and neck cancer (HNC) is oral mucositis (OM), Yatsuoka et al. [82]
surmised that an objective assessment of this condition is an urgent requirement for early
and timely interventional treatments. For this purpose, these investigators explored the
time-course of salivary metabolite profiles in such patients during radiation therapy, and
how they may be altered by the severity of OM. A total of n = 9 patients were investigated
in this manner. Prior to commencing radiation therapy, OM severity grade (low or high)
was differentiated by the salivary amino acids histidine and tyrosine. Additionally, pre-
treatment salivary levels of γ-aminobutyrate and 2-aminobutyrate were found to be higher
in the high-grade severity OM group. Despite major requirements for validatory studies,
this investigation indicated that selected salivary biomolecules were associated with the
highest radiotherapy-associated OM grades observed in HNC patients.

Of especial interest to this area, exposure of healthy or rheumatoid human blood
serum to γ-Radiolysis (5.00 kGy) in an atmospheric O2 environment was found to generate
reproducible increases in the levels of 1H NMR-detectable acetate, which were mainly
attributable to the sequential hydroxyl radical (•OH)-mediated oxidation of lactate to pyru-
vate, which was followed by the oxidative decarboxylation of pyruvate by radiolytically-
generated hydrogen peroxide (H2O2) and/or further •OH radical [83]. Also detectable were
γ-radiolysis-mediated elevations in the serum concentrations of non-biopolymer-bound,
low-molecular-mass biomolecules, e.g., citrate and glutamine; this observation may arise
from their mobilisation from protein binding sites by the attack of •OH radicals, superoxide
anions (O2

•−) and/or H2O2 at such molecular locations. Moreover, substantial radiolyti-
cally mediated elevations in the concentration of serum formate were also observed, and
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these predominantly arise from the attack of •OH radicals on biofluid carbohydrates, most
especially glucose. Hence, in principle, upregulations in the salivary concentrations of
products derived from the oxidative activities of radiolytically generated reactive oxygen
species (ROS) towards endogenous biomolecules, for example, acetate and formate, may, at
least in principle, be observed in samples collected from cancer patients exposed to such
radiotherapy treatment in the oral, head and neck body regions.

7. Case Study: An 1H NMR Evaluation of Acute-Phase Glycoproteins in WMSS
Samples and Their Possible Applications as Biomarkers for Cancers and Inflammatory
Disorders: Potential Interferences from 13C Satellites, Low-Molecular-Mass
Biomolecules and Salivary Hyaluronate

In blood plasma or serum, N-acetylated glycoproteins, which are part of the large
group of acute-phase proteins (APPs), are directly associated with and characteristic of
inflammatory conditions such as inflammatory joint and bowel diseases, amongst many
other disorders [1]. Importantly, abnormal glycosylation patterns of proteins represent a
hallmark of tumourigenesis, and therefore they have the ability to offer valuable biomarker
information for the identification and diagnosis of cancerous conditions. Indeed, aberrant
protein glycosylation has been linked to disease progression in breast [84], prostate [85],
ovarian [86], lung [87] and hepatocellular carcinomas (HCC) [88]. Moreover, particularly
notable is the knowledge that human saliva has been postulated to serve as a valuable
source of these species in view of the known high proportion of glycosylated proteins in
this biofluid [89,90], which also represent quite a high fraction of those within the salivary
proteome. Indeed, in the study reported in Ref. [90], a grand total of 156 N-glycosylated
peptides, characteristic of 77 distinctive N-glycoproteins, were detected in all salivary
fluids examined, i.e., WMS, and parotid, submandibular and sublingual fluids, with 62
being found in WMS. A quite high proportion of these N-acetylated glycoproteins (40%)
were expounded as extracellular protein species. Since alterations in the glycation patterns
of these proteins and their concentrations have the capacity to exert significant cellular
modifications, both integral and functional, in a range of diseases, research investigations in
this field are markedly expanding. Hence, biofluid APPs offer much potential as diagnostic
biomarkers, e.g., [91] and [92], but to date their detection and quantitative monitoring in
human saliva remains somewhat limited.

Indeed, this research area is not without its complications. As noted for the glycopro-
teome analysis of human plasma or serum, such investigations tend to be more intricate
than proteome analysis, since glycan oligosaccharides and polysaccharides are constituted
from a wide range of both linear- and branched-chain sugar residues, a phenomenon
which complicates the molecular structures of such glycoproteins [92]. These carbohydrate
side chains are covalently bonded to APP asparagine residues through primary chain
N-acetylglucosamine residues. Hence, glycoprotein analysis presents a major challenge,
even with the availability of ‘state-of-the-art’ bioanalytical facilities. However, in view of its
ready application to the elucidation of problems concerning the solution status, structures,
molecular mobilities and dynamics of macromolecules in aqueous solution, in addition to
low-molecular-mass metabolites, high-resolution 1H NMR analysis serves as a potential
means of overcoming these hurdles.

Although fraught with at least some superimposition problems with other resonances,
albeit less-visible sharper ones (Figure 4a), the generalised pattern of acetamido-CH3 func-
tion glycoprotein resonances in human plasma or serum largely, but not exclusively, com-
prises two major broad signals, the first a composite of those of N-acetylglucosamine and
N-acetylgalactosamine (now commonly known as GlycA) [93,94], centred at δ = 2.04 ppm,
whilst the second, which is located at δ = 2.08 ppm, and known as GlycB, represents
terminal N-acetylneuraminate residues only [95]. However, further useful functional in-
formation on these detectable acute-phase reactants is provided by the ratios H/W GlycA
and H/W GlycB, where H depicts signal height, which is related to analyte concentration,
and W signal width, which reflects the flexibilities, aggregation status and molecular mo-
bilities of the biomacromolecules giving rise to these distinctive resonances. Notably, both
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higher and less broad resonances have been associated with the pathologies of a number of
inflammatory conditions [95].

Overall, the GlycA signal defined for human plasma or serum reflects the integrated
levels of the glycosylated forms of circulating acute-phase reactants, largely α1-acid glyco-
protein (α1-AG), haptoglobin, α1-antitrypsin, α1-antichymotrypsin and transferrin [95], but
predominantly α1-AG. These, in turn, are mediated by multiple cytokine secretions from acti-
vated neutrophils [90,91]. With the exception of transferrin, the circulating concentrations of
the proteins that constitute the GlycA signal increase during the acute-phase response [96].

Fuertes-Martín et al.’s recently-conducted systematic review [94] concluded that the
GlycA acetamido-CH3 group resonance(s) acts as a reliable marker of systemic inflamma-
tion. Indeed, results acquired have indicated that this GlycA marker captures systemic
inflammation more effectively than the more classical and widely employed C-reactive
protein (CRP) marker. The authors concluded that GlycA potentially served as a key
marker for many human diseases, e.g., cardiovascular and metabolic disorders, and cancer,
along with a range of chronic inflammatory diseases. In fact, an upregulated level of the
GlcNAc-branching status of N-glycans has been found in tumour and cancer patients [94].

Interestingly, in 2017 Kianoush et al. [97] explored differences between 1H NMR-
detectable blood serum GlycA concentrations in former and current tobacco smoking
participant groups, along with a never-smoking control cohort, as part of the very extensive
Multi-Ethnic Study of Atherosclerosis (MESA), and the Brazilian Longitudinal Study of
Adult Health (ELSA-Brasil). The relationship of levels of this NMR-unique biomarker to
those of high-sensitivity C-reactive protein were also evaluated. These researchers found
that mean serum GlycA levels for current and former smokers (414 and 393 µmol./L)
were significantly higher than that for never smokers (391 µmol./L respectively) when
the adjusted mean values were tested in an MV analysis model. However, in a univariate
context, it should be noted that these differences were actually only 5.9 and 0.3% higher than
the never smoker control value, and conceivably these increases observed may indeed be
within the remits of experimental error, or more specifically ‘within- and/or between-assay’
analytical reproducibilities, most especially the latter one. Significant dependencies of all
forms of smoking behaviour on logarithmically-transformed GlycA and high-sensitivity
C-reactive protein levels were also found.

Figure 4. Cont.
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Figure 4. 1H NMR Analysis of APP Side-Chain N-Acetylsugar Residues Present in Human Saliva
and Blood Plasma. (a) Expanded 1.65–2.30 ppm region of the 1H NMR WASTED-II spectral profile
of healthy human blood plasma, showing potential interferences with the quantification of macro-
molecular GlycA and GlycB species arising from the free amino acids proline and glutamate, and
low-molecular-mass N-acetylsugar and possible N-acetylamino acid metabolites. The red vertical
line indicates the chemical shift value of free N-acetylglucosamine at δ = 2.044 ppm, which is very
similar to that of the much broader GlycA signal. (b) Expanded 1.65–2.27 ppm regions of the 1H NMR
WASTED-II spectra of human blood plasma (top) and WMSS (bottom) samples collected from healthy
human participants to allow comparative evaluations of their acetamido-CH3 resonances, which arise
from both low- and high-molecular-mass biomolecules in these biofluids. Typical spectra are shown.
Spectra were recorded on a Jeol JNM-ECZ600R/S1 600 MHz spectrometer operating at frequency of
600.17 MHz for 1H, at a probe operating temperature of 25 ◦C. Assignment abbreviations: As Table 1,
with Lys-1 and -2, lysine-γ- and β-CH2 groups, respectively; Pro-1 and -2, proline-γ- and β-CH2

groups, respectively; Glu-1 and -2, glutamate-β-CH2 resonances; Hpro, hydroxyproline-β-CH2; Gln,
glutamine-β-CH2; Met, methionine-S-CH3; Ace, acetone-CH3; Nan-CH3, N-acetylneuraminate-CH3;
S, S1, U and U1, unidentified resonances, those in the plasma profile shown in (a) may being ascrib-
able to further 1H NMR-distinguishable -NHCOCH3 functions, with S1 possibly representing an
N-acetylneuraminate signal in a molecular environment differing from that/those of GlycB; Arg,
arginine-β-CH2; Leu, leucine-β-CH2 and γ-CH resonances.

Figure 4b shows the expanded 1.65–2.27 ppm regions of the 600 MHz WASTED-II
pulse-sequence 1H NMR profiles of typical healthy WMSS and blood plasma samples to
enable readers to make comparative evaluations between resonance patterns therein. How-
ever, for human WMSS samples, these broader APP resonances are less well defined than
in blood plasma/serum, and it appears that only the GlycA signal centred at δ = 2.04 ppm
is visible in the single-pulse spectra acquired (Figure 1). At high operating frequencies,
the 1H NMR profiles of human salivary supernatants always contain a series of sharper
acetamido function (-NHCOCH3) resonances within the 1.90–2.10 ppm spectral region,
and these typically overlay much broader resonances arising from this functional group in
N-acetylsugars located within the molecularly-mobile carbohydrate side chains of APPs.
Indeed, these broader resonances remain clearly visible in spectra acquired using spin-echo
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Carr-Purcell-Meiboom-Gill (CPMG) or the WASTED-II [98] pulse sequence applied here to
the 1H NMR analysis of human saliva in aqueous media (Figure 1), since these are much
more molecularly mobile than their corresponding native apoprotein moieties. However,
our factor analysis conducted in Ref. [1] indicates that these glycoprotein species, along
with ‘free’ low-molecular-mass N-acetylsugar species, which are also 1H NMR-detectable
in this spectral range, arise from the host and not salivary microbiome sources in this
biofluid. Moreover, the investigations performed by Gardner et al. [99] largely confirm this,
since the 1H NMR spectral profiles of matched parotid saliva also contain these acetamido
function signals (both broad and sharper). Indeed, digital subtraction of the spectra of
matched parotid saliva specimens from those of corresponding WMSS samples [99] was
found to give rise to the complete removal of these resonances from the spectral profiles.
The glycosylation process critically features protein folding and stabilisation, which gives
rise to changes in cellular adhesion, antigen recognition, and cell signalling phenomena.
Therefore, these resonances may reflect recognised inflammatory states, since their heights,
linewidths and overall intensities provide valuable information on not only biofluid levels,
but also structural diversifications of their acute phase reactant identities. Of the three (or
more) sharper resonances detected in WMSS spectra acquired, that located at δ = 2.028 ppm
is clearly assignable to the 13C satellite resonance of acetate’s -CH3 group, the intensity
of which is 0.54% of that of the major, spectrally dominating main 1H singlet signal of
this metabolite located at δ = 1.92 ppm; the corresponding higher field 13C satellite at
δ = 1.80 ppm is also clearly discernible in all single-pulse noesy-presat spectra acquired
(Figure 1). Fortunately, application of the WET pulse sequence effectively extinguishes
13C satellites in 1H spectra [100], and, as expected, these were eliminated from the spectral
profiles when this sequence was applied (Figure 1c,d).

Of particular interest, mean acetate concentrations in WMSS samples collected from a se-
ries of human participants vary markedly, and range from 31 to as much as >300 mmol./L [2],
with an overall average value of 108.2 mmol./L. Therefore, the mean intensity of each of
its 13C satellites, which is 0.54%, would be equivalent to a singlet ‘resonance’ of a -CH3
group-containing molecule of salivary concentration 0.58 mmol./L, which is certainly more
than high enough to interfere with any determinations of GlycA made. Moreover, if the
salivary acetate concentration was only 10.0 mmol./L, this satellite signal would contribute
an equivalent level of 54 µmol./L to the ‘apparent’ GlycA signal, again a significantly
interfering quantity.

From Figure 4, it can be observed that resonances arising from the low-molecular-mass
forms of glutamate and proline may serve to superimpose on the GlycA resonance of blood
plasma, and hence perhaps significantly interfere with its 1H NMR determination, and also
its width at half-height and height parameters employed for indicating its molecular param-
eters in the plasma solution state. Nevertheless, proline, and to a lesser extent, glutamine
signals, may significantly impact on concentration and molecular mobilisation measure-
ments made from the GlycB resonance intensities and linewidths, respectively. Likewise,
these resonances may also interfere with the identification and/or determinations of GlycA,
and any GlycB species, which are 1H NMR-detectable in the WMSS spectra acquired.

Figure 5 shows a software-based spectral deconvolution of the δ = 1.90–2.10 ppm
region of the nosey-presat 1H NMR spectrum of a typical human WMSS sample, which
clearly reveals four overlapping signals therein, the most predominant being a broad one
(∆v1/2 = 15 Hz) comprising 77.4% of the entire resonance magnitude in this spectral region.
The chemical shift value of this signal, along with its width at half-height and height
parameters, are very similar to those of the GlycA resonance commonly found in human
plasma (Figure 4a,b). The singlet signals at δ = 2.042 and 2.059 ppm certainly appear to
be ascribable to the ‘free’ N-acetylsugars N-acetylglucosamine and N-acetylneuraminate,
respectively. Resonances presumably attributable to free N-acetylneuraminate and free
N-acetylglucosamine, and acetate’s 13C satellite, accounted for 15.44, 3.09 and 4.11% of
the intensities, respectively, of all detectable signals within this region. Also notable is
the possible superimposition of unsaturated FA (triacylglycerol or otherwise) allylic-CH2-
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CH=CH- signal(s) at the higher-field region (ca. δ = 2.02 ppm), but this interference was
found to be very small when compared with that observed in human blood plasma [93].
Intriguingly, only eight scans were required to acquire these data at an operating frequency
of 600 MHz.

Figure 5. Deconvolution of the 1H NMR Resonances of Salivary APP Side-Chain N-Acetylsugar
Residues. Deconvolution line-fit of the signals present within the 1.99–2.10 ppm acetamido-CH3

group region of the 600 MHz 1H NMR profile of a typical human WMSS sample, which was achieved
using Jeol Delta-5 software modelling. This deconvolution approach yielded a single major broad
resonance (δ = 2.046 ppm) presumably ascribable the GlycA signal detectable in human blood plasma,
and three sharper ones located at 2.059, 2.042 and 2.028 ppm (labelled 1, 2 and 3, respectively), which
are assignable to free N-acetylneuraminate- and N-acetylglucosamine-NHCOCH3 group resonances,
and the dominant acetate-CH3 group’s lower field 13C satellite (confirmed through the acquisition of
13C decoupling WET spectra (Figure 1c,d), respectively. The WMSS spectrum was acquired with a
Jeol JNM-ECZ600R/S1 600 MHz spectrometer operating at frequency of 600.17 MHz for 1H, and at
a probe operating temperature of 25 ◦C, using the noesy-presat pulse sequence, although only eight
scans were required for this.

Table 2 shows results from our own literature review survey of all known 1H NMR
resonances, including those of potentially interfering endogenous metabolites, appearing
within the APP regions of spectra acquired on healthy human blood plasma and WMSS
samples. Also provided are estimates of their concentrations in each biofluid from Ref. [101].
These results demonstrate that in addition to the broad unsaturated FA allylic-CH2-CH=CH-
resonance, which is known to be at least partially superimposed with the GlycA signal in
blood plasma [93–95], and hence complicates its measurement without the application of
acceptable deconvolution techniques, there are also a series of further interferants naturally
available in both biofluids. These interferants include the amino acids glutamate and
proline. Interestingly, salivary levels of ‘free’ N-acetylneuraminate are quite substantially
higher in human saliva than they are in blood plasma, and this may reflect its more ready
or rapid release and mobilisation from APP molecularly mobile carbohydrate side chains
in the oral environment.
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Table 2. Scientific literature mean concentrations of biomolecules with 1H NMR resonances located
in or close to the APP (1.96–2.10 ppm) regions of high-resolution spectra of human blood and
saliva (Figure 4). a Ranges of mean values obtained from healthy control data were obtained from
the Human Metabolome Database [101]. b Total N-acetylneuraminate level, including both APP and
low-molecular-mass forms. Abbreviations: n-av, data not available.

Metabolite Blood a Saliva a

‘Free’ N-Acetylneuraminate 0.6–2.0 µmol./L 12.5–41.0 µmol./L
Total N-Acetylneuraminate b 1.25–2.50 mmol./L n-av
‘Free’ N-Acetylglucosamine 108 ± 67 nmol./L n-av

Glutamate 24–177 µmol./L 12–14 µmol./L
Glutamine 390–905 µmol./L 5–42 µmol./L

Proline 111–259 µmol./L 6–158 µmol./L
Hydroxyproline 13–40 µmol./L 0.4–1.5 µmol./L

Lysine 105–441 µmol./L 2–59 µmol./L

Since currently there are no available scientific literature data on the salivary con-
centrations of ‘free’ N-acetylneuraminate and N-acetylglucosamine, deconvolution of
their acetamido-NH-CO-CH3 signal patterns in WMSS sample spectra, as demonstrated
here, may indeed provide a valuable means for determining their concentrations in this
biofluid medium.

Predominately, the 1H NMR resonances of the glycoprotein carbohydrate side chain
sugar ring protons are unfortunately not readily discernible in blood plasma spectral
profiles in view of a substantial level of superimposition with the more intense signals
within the 3.00–4.00 ppm regions, notably those arising from relatively high levels of
glucose in this biofluid [102]. However, although there remain many metabolite signals
in this region of the 1H NMR profiles of WMSS samples, resonance ‘crowding’ therein is
somewhat less marked than it is in that of plasma. Indeed, one further, albeit tentative,
assignment made in the 1H NMR salivary profile shown in Figure 1 is that for the -C4H
proton of free N-acetylneuraminate (m, δ = 4.02 ppm). This corresponds to the more intense
sharp singlet resonance assignable to the -NHCOCH3 group of its ‘free’ form located at
δ = 2.06 ppm.

However, in addition to mucin-glycoproteins, this acetamido function spectral range of
WMSSs may also contain some 1H NMR contributions from hyaluronate, a high-molecular-
mass glycosaminoglycan with linear repeating glucuronate/N-acetylglucosamine disaccha-
ride units (it comprises between 200–10,000 of these units, and normal tissue molecular
masses of it may exceed 106) [103]. These contributions may be ascribable to hyaluronate
itself (broad resonance(s)), and/or low-molecular-mass oligosaccharide/saccharide species
arising from its depolymerisation by bacterial hyaluronidase [2], or alternatively, through
the actions of pathologically mediated ROS such as the aggressively reactive hydroxyl
radical (•OH) [83,104]. Notwithstanding, mean salivary hyaluronate concentrations in
unstimulated whole human saliva (459 ng/mL) are actually very low. Further studies have
found that it is present in unstimulated human saliva within the range 148–1270 ng per
milligram of protein in unstimulated whole saliva [105,106]. This marked variation appears
to be attributable to a wide range of factors, including diet, oral hygiene and anatomy,
health and disease status, genetics, plus further explanations.

From the relative molecular masses of glucuronate and N-acetylglucosamine, if we as-
sume that 53% of this level represents the latter sugar, then its salivary concentration would
be only ca. 1.0 µmol./L, and therefore this glycosaminoglycan as a whole certainly would
not be expected to contribute towards the broader APP signals observed in this biofluid.
However, higher, more significant concentrations of N-acetylglucosamine itself may arise
from its accumulation through continued depolymerisation or fragmentation processes.

A further experiment conducted by our group involved the treatment of human WMSS
samples with the enzyme hyaluronidase in order to determine if any of the broader 1.96–
2.10 ppm range signals (and consequently, perhaps one or more of the sharper saccharide
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sugar/fragment resonances) arose from hyaluronate. As expected, performance of this
reaction on authentic hyaluronate samples in aqueous solution at pH 6.50 generated a
very intense sharp acetamido-CH3 group signal ascribable to free N-acetylglucosamine
(δ = 2.044 ppm, data not shown); this sharp resonance has also been shown to arise from the
fragmentation of authentic hyaluronate, or in hyaluronate-containing inflammatory human
synovial fluid, by radiolytically generated •OH radical [104]. However, equilibration of
human WMSS samples with this enzyme under the same experimental conditions failed to
liberate any low-molecular-mass N-acetylsugar species, and no sharp resonances within
the above spectral range were generated from this process (Figure 6). Therefore, in addition
to the above concentration considerations, we conclude that the broader N-acetylsugar-
NHCOCH3 function signals detectable in WMSSs did not appear to encompass any of
those arising from hyaluronate.
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Figure 6. 1H NMR Evaluation of the Treatment of WMSS Samples with the Enzyme Hyaluronidase.
Partial (1.50–2.26 ppm regions of) 600 MHz WASTED-II 1H NMR spectra of (a) an aqueous solution
containing a commercially available hyaluronidase enzyme preparation (4167 units/mL in aqueous
solution containing 8.33% (v/v) 22H2O); (b) a typical untreated WMSS specimen; (c), as (b), but
treated with 4167 units/mL of the hyaluronidase preparation (both control and hyaluronidase-treated
saliva samples also contained 8.33% (v/v) 22H2O). Both untreated and treated saliva samples were
equilibrated for a duration of 8.00 h. at pH 6.50 and 25 ◦C prior to 1H NMR analysis. Assign-
ment abbreviations: as Table 1. The arrows in (c) indicate resonances arising from 1H NMR-active
contaminants introduced from the added enzyme preparation. Spectra were recorded on a Jeol JNM-
ECZ600R/S1 600 MHz spectrometer operating at frequency of 600.17 MHz for 1H (probe operating
temperature 25 ◦C).

Further valuable reports available in the fields of APPs, their NMR-mobile carbohy-
drate side chains, and oligosaccharide and/or monomeric sugar residues derived therefrom,
include (1) the distinction of glycoprotein 1H NMR resonance patterns in rat blood plasma
from those of humans, specifically the detection of both O-acetyl- and N-acetylsugar chain
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residues in rat plasma APP carbohydrates, but only the latter sugars in those of human
plasma, a paper which clearly established the species-dependence of the molecular nature
of APP sugar chain residues [107]; and (2) the use of high-resolution 1H NMR analysis to
identify and monitor urinary N-acetylated metabolites, comprising amino acid, mono- and
oligosaccharide species, in order to provide valuable biomarker evidence for the monitoring
of patients with a variety of inborn errors of metabolism, including Niemann-Pick type C1
and Canavan’s diseases [108].

8. Clinical Implications of the 1H NMR-Based Metabolomics Analysis of Human
Saliva for Cancer Detection and Monitoring

Potentially valuable diagnostic and prognostic disease monitoring criteria arising from
these investigations may provide opportunities for the development of novel biosensor
devices operational in a multianalyte format which will achieve the simultaneous deter-
mination of, for example, up to five of the most diagnostically significant biomarkers
selected by NMR-based metabolomics platforms. This may indeed yield an invaluable
method for the MV evaluation of oral or systemic cancers using saliva as a test matrix at
patient points-of-contact (health clinics and medical practitioner practices, etc.). Indeed,
such a hand-held biochip reaction platform could realistically incorporate combinations of
appropriate immobilised enzymes and reagents required for this multi-analytical process,
which jointly serve as detector systems for the quantification of each individual biomarker.
Data acquired therefrom can be easily exported to a PC with appropriate chemometrics
software for this purpose, if required. Such readily portable hand-held devices will serve
as a major diagnostic and perhaps status monitoring benefit for clinicians and supporting
healthcare staff.

Similarly, novel NMR-linked metabolomics-network enrichment ratio/topological
pathway analysis has the potential to provide a wealth of information regarding (1) the
major roles of featured genes/proteins in oral and/or systemic cancers and their drug-
targeting; (2) cellular processes that are likely to be influenced by the inhibition or activation
of a target protein, and which of these are therapeutically significant or alternatively give
rise to deleterious health effects (specifically the nature of upstream activators or down-
stream targets for key proteins identified); (3) the ability of multi-bioanalyte 1H NMR
datasets to inform us of modifications to cellular functions and pathways, together with
potential intervention sites for drug actions; (4) the nature and potential activities of key
metabolites and pathways involved in human cancer conditions; and (5) the identification
and validation of identified biomarkers, which may also be employed for the assessment
of drug actions and efficacies. Such clinically important information is clearly of much
economic importance to health authorities (and further researchers) in view of the selec-
tion and longevity of possible treatments and/or treatment regimens for these diseases.
However, as suggested in Ref. [40], the optimisation of drug screening experiments should
ideally involve a comparative evaluation of both currently-available and newly-developed
NMR-based metabolomics technologies, since this report indicated that the availability of
metabolomics data alone may be insufficient for reliable diagnostic purposes.

It is also anticipated that the above research protocol will readily promote the passage of
NMR analysis, both high-resolution and conceivably benchtop spectrometers, into the realm
of routine chemical pathology investigations for patients afflicted with cancer conditions.

9. Routes to Therapeutic Options and Drug Discovery
9.1. Recognition of Drug Targets

In addition to their abilities to successfully evaluate the significance and impact of
alterations in metabolite concentration variables engendered by the development, progress
and perhaps severity of human cancer conditions (at an extensive multidimensional level),
MV metabolomics analysis protocols also offer the ability to reliably build networks for
the seeking and identification of suitable drug targets, and also for the detection and crit-
ical analysis of drug action pathways [109]. Indeed, composites of such metabolomics
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and network enrichment analysis strategies allow the confirmation of potential target
protein(s)/enzyme(s), a process enabling researchers to design, develop, characterise and
apply (primarily in cell culture and animal model system experiments) novel therapeutic
agents or measures which have the ability to exert powerful inhibitory (or other thera-
peutically relevant) activities towards them. The augmentation of predictive models of
therapeutic efficacies for drugs with yet unknown or only speculative mechanisms of
action can also be facilitated by this strategy. Once established, drug target validation
involving determinations of their potentials as critical destination sites for drug action
may then be applied. Follow-up validation studies then often involve the performance of
additional screening processes to assess and further explore any drug ‘hits’ to the target(s)
identified. Moreover, the detection of metabolic modifications arising from progressing
disease activities may serve to identify biomolecular perturbations that are pivotal to the
pathogenic cascades of cancers, or other diseases, related or otherwise. If targeted in this
set-up, particular drug destination sites that are predicted to offer maximal clinical benefits
may be identified.

9.2. Drug Discovery Programmes

Results arising from such studies can, at least in principle, also serve as a critical aspect
of future drug discovery programmes for human diseases. Furthermore, the successful
identification of such drug targets serves to inform researchers on the mechanism(s) of
action of newly developed prospective drugs, and also furnish them with a fully com-
prehensive understanding of their pharmacological role(s). Typically, the 1H NMR-based
metabolomics techniques outlined in the current study, along with the involvement of
further biochemical and bioanalytical methods, where required, may also have the capacity
to reconstruct regulatory networks, signalling cascades and/or metabolic pathways as
features of future drug development or treatment regimens for selected human diseases,
and potentially also for related or associated conditions.

Although to date proteomic network analyses have emerged as a key tool for probing
the nature, specific structural properties and physiological activities of potential drugs,
which also act to improve our understanding of the implications of drug-target interactions
at the precise molecular level [110], there is also much evidence available to suggest that 1H
NMR-linked metabolomics analysis strategies also provide much potential concerning the
delivery of valuable drug discovery information, together with that regarding mechanisms
for their therapeutic actions [111]. Network enrichment ratio and topological pathway
analyses are focused on the analysis of groups of metabolites which are involved in or
are related to specific metabolic pathways, and such approaches serve to determine the
probabilities of selected biomarkers arising from one or more of these sources, and hence
their likely involvement in any disease-associated dysregulated pathways, either as a single
metabolite disturbance, or more usually as groups of them. Likewise, the physiological lo-
cation (cellular and sub-cellular, organs, tissues, etc.) and suggested disease manifestations
of such imbalanced pathways may also be considered. The molecular nature, and cellular
locations of protein targets for potential drugs, serves as a critical primary knowledge re-
quirement regarding drug design and drug actions [112], and network enrichment analysis
is valuable for seeking and confirming these. Software employed for such purposes is
based on high-quality KEGG and metabolite set enrichment analysis (MSEA) metabolic
pathways as the backend knowledge base.

Recent developments in this area have provided a high level of guidance regarding
the identification of novel drug targets via either hypothesis-driven research, or expansive
screening protocols. In conjunction with bioinformatics and systems biology approaches,
genome sequencing and molecular pathology efforts are continuously refining our level
of understanding of exactly how disease-affected cells are ‘programmed’, and hence how
exactly they may serve as targets for single drug agents, or synchronously at two or more
target locations via drug combination strategies [113–115].
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Of much relevance to the current study, a large number of major advancements in the
molecularly-targeted drug discovery research area have featured those involving small
molecule anti-cancer drugs. Indeed, such developments have indeed given rise to an
increasing number of successful treatments that have substantially impacted upon the lives
of many cancer patients. Notably, the therapeutic administration of anti-oestrogens and
anti-androgens to treat hormone-driven breast and prostate cancers is now well established.
Additionally, the highly effective, curative therapeutic activity of all-trans retinoic acid for
treatment of a high proportion of patients with acute promyelocytic leukaemia who harbour
translocations in the retinoic acid receptor (RAR) α gene have, to date, implemented
validity of the perception of clinically-targeting pathogenic driver abnormalities with
small molecule therapeutic agents [116]. Moreover, the Abelson tyrosine kinase (ABL)
inhibitor imatinib is a ground-breaking drug that has most drastically validated the notion
of designing low-molecular-mass molecules as therapies available to treat pre-specified
patient populations, i.e., chronic myeloid leukaemia, in which the malignancy is driven by
the BCR-ABL translocation, and for which improvements in survival rates have been very
impressive indeed [117,118].

These resounding successes have been followed by the employment of further low-
molecular-mass drug molecules targeted at the suppression of critical cancer targets. These
include the epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and er-
lotinib, which strikingly inhibit this receptor in non-small cell lung cancer (NSCLC) patients;
the EGFR/ERBB2 inhibitor lapatinib for ERBB2-positive breast cancer; and the vascular
epidermal growth factor receptor (VEGFR) kinase inhibitor sorafenib for the treatment of
renal cancer [119].

Such examples provide a high level of evidence for the successes achieved with the
‘targeting’ of metabolic profile and pathway imbalances which have roles as pathogenic
‘drivers’ in human diseases. Of major interest to the current study, the ‘oncogene addiction’
process (also known as the ‘Achilles heel of cancer’) also readily provides an appropriate
rationale and justification for the use of molecular-targeted therapies for the treatment of
pre-selected cancers [120,121].

9.3. Potential Facilitation of Decisions to Be Made on Drug Treatments in Oncology (Untargeted or
Targeted) with Available Metabolomics Datasets

Hence, in principle, these approaches may play major roles in the design and develop-
ment of therapeutic agents for cancer treatment, either for local oral or distant systemic
cancers. Currently, chemotherapeutic agents most commonly utilised for oral cavity or
oropharyngeal cancers are cisplatin, carboplatin, 5-fluorouracil, paclitaxel, docetaxel and
hydroxyurea. However, all of these agents exhibit some quite serious adverse side effects,
especially when two or more of these agents are used in combination.

Nevertheless, in the context of clinical epidemiology (Section 1.3), ideally all such
chemotherapeutic agents should firstly be evaluated in terms of their interventional actions,
and therefore NMR-linked metabolomics analysis may serve to offer some clinical benefits
here, although any prior information on whether or not the mechanisms of action of these
drugs are known, and/or whether any known or potential drug targets for them have
already been elucidated and explored (for example, primarily DNA for cisplatin and carbo-
platin, but also RNA as a secondary target, along with a range of specific proteins [122]),
would facilitate decisions on drug selection and dose. Such considerations may also in-
volve a detailed critical analysis of the scientific and clinical literature (including systematic
reviews, MV meta-analyses conducted, etc.), so that the most efficient therapeutic options
may be evaluated. ‘State-of-the-art’ metabolomics technologies, including biomarker recog-
nition, may further facilitate these decisions through their abilities to seek and inform on
the therapeutic actions of these agents in relevant cell culture experiments, or alternatively
biofluids and/or tissues collected in animal model system investigations, and ultimately
those from cancer patients themselves before and after receiving these treatments. Such
studies should involve a full scrutiny of the actions of chemotherapeutic agents to clinically
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intercept pathological mechanisms of the diseases explored. However, the identification
of drug risk (side effect) factors, and also any prognostic and protective criteria, and drug
resistance issues, should also be critically considered.

Therefore, in principle, 1H NMR-linked metabolomics analysis of human saliva sam-
ples, particularly WMSSs, can also serve to provide much valuable information regarding
biomarker identification and validation, the pinpointing of dysregulated metabolic path-
ways and the recognition of potentially useful drug-targeting sites on malfunctioning
proteins/enzymes. Nevertheless, it is of much importance to note that unless the cancer
class is oral in locality, or it has the ability to indirectly but significantly influence the
salivary microbiome or metabolome from a remote source, then such proposed investiga-
tions may be severely limited for at least some systemic cancers. The most obvious reason
for this is the fact that many ‘regular’ biomarkers found in blood plasma are present in
saliva at much lower concentrations [1], and hence those found in the former biofluid may
not be readily quantifiable in the latter using this technique, although the use of more
sensitive, alternative bioanalytical techniques such as LC-MS may overcome this hurdle,
most especially if the analysis is targeted or semi-targeted. However, the authors are
strongly encouraged by the future prospects of newly-developed NMR spectrometers with
much-enhanced, operating frequency-dependent sensitivities over those currently known,
which are often misunderstood or underestimated. In view of the limited information
available on the sensitivity of 1H NMR analysis of biofluids for metabolomics assessments,
we have further explored this issue and possible associated limitations in Section 4.1 of
this report.

Overall, the authors of the current study recommend that key biomarkers discov-
ered through the use of NMR-based salivary metabolomics technologies should only be
applied for the diagnosis and/or prognostic monitoring of cancer conditions when fully
validated. However, full validation of such biomarkers may only be achieved once it is
proven that they have the ability to respond favourably to the therapeutic application of
already known or established drugs for cancer patients; unfortunately, this is certainly not
the case for many published reports focused on employment of metabolomics strategies
for the seeking of potential biomarkers. Moreover, it is also thoroughly recommended
that when first developed, validated and accepted, metabolomics technologies should be
used alongside other, more conventional and established methods for cancer diagnosis,
e.g., histopathology gradings and supporting clinical and microscopic examinations, etc.,
in order to allow researchers to establish significant correlations between the two ‘histor-
ical’ classes of diagnoses. Once it is accepted that such correlations or associations are
strong, then NMR-linked metabolomics techniques using WMSS may provide valuable
diagnostic or prognostic monitoring ‘snapshots’, which may provide indispensable sup-
porting biomolecular information; such approaches may then be employed clinically as
independent diagnostic methods.

10. Limitations of NMR-Based Metabolomics Investigations of Human Saliva for
Cancer Diagnosis and Its Prognostic Monitoring

In addition to problems arising from interferences with 1H NMR determinations of
salivary APPs as described in the Section 7 Case Study above, the applications of human
saliva as a medium for the detection, diagnosis and strategic monitoring of cancers is com-
plicated by a series of issues, most especially those concerning overall experimental design
(i.e., is it acceptable?), and sample collection, preparation and storage, as is evident from
many metabolomics investigations conducted to date. Moreover, problems associated with
the acquisition of NMR spectra, NMR pulse sequences and an acceptable understanding of
their applications and purposes, along with the interpretation of spectral profiles acquired,
both at higher and lower operating frequencies, should also be considered in detail prior
to researchers embarking on such studies; however, these problems are covered in detail
in Part 1 of this series of publications [1]. The adequate addressment of all these design
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and laboratory activity issues, and the enforcement of suitable precautionary measures by
researchers, will serve to reinforce the validity of the experimental models applied.

Further potential disadvantages of using saliva as a diagnostic matrix for cancers in-
clude: (1) some older or vulnerable adult participants or dental patients may require quite
long periods of time for the collection of samples (e.g., >20–30 min.); (2) the transfer of sali-
vary microbes and possible biomarker agents from one human sample to another via social
interactions is not impossible; (3) the presence of microbial urease, which metabolises urea
to ammonia and bicarbonate via a carbamate intermediate, may serve to bias metabolomics
results acquired [123]; and (4) xerostomia (dry mouth, with restricted saliva production)
may occur quite frequently in some cancer patients.

One previously reported major limitation of salivary diagnostics for cancer and other
conditions, especially those of non-oral origin, has been the lower levels of putative biomark-
ers present when expressed relative to those in blood plasma or serum, or whole blood
(often 100-fold lower or less [1]). Fortunately, with the quite recent advent and further
development of bioanalytical detection platforms with enhanced sensitivities, now includ-
ing that of 1H NMR analysis, the use of saliva as a medium for such purposes is likely
to represent a future advance for the screening, identification and monitoring of cancer
conditions [124]. As an example, the quantitative analysis of metabolites in WMSS samples
by 1H NMR spectroscopy can be achieved at levels of less than only a few µmol./L in
at least some cases. For example, for the metabolites specified in Section 4.1, along with
Figure 3 featured therein.

Finally, as noted in Ref. [125], a further potential limitation is problems with the
use of enrichment ratios for the determination of metabolic pathway activities in order
to evaluate perturbed or adversely activated biosynthetic routes in cancers and other
conditions, and which employ either qualitative or quantitative metabolite set enrichment
analysis (the latter abbreviated as QMSEA). Unfortunately, these strategies fail to take into
account uncertainties or errors associated with assigning metabolites to specified pathways.
Indeed, a hypothetical example noted in Ref. [126], which involved the attribution of
three biomolecules to a single pathway with a total of eight metabolites, gave rise to
a quite large enrichment ratio (3/8 = 0.375). Notwithstanding, it was noted that if all
three of these pathway-associated metabolites are also active in other pathways, as indeed
many are, then credence in the chemopathological involvement of that pathway from
MV metabolomics datasets may be compromised, perhaps highly so. Full details of this
limitation are considered further in Ref. [127].

11. Key Concluding Remarks and Future Perspectives

To date, a widespread range of research effort in the metabolomics field has been
focused on the development and establishment of cancer-specific biomarkers, and ad-
vantageously, many of these tend to be based on MV ‘omics’ patterns rather than single
biomolecules. Indeed, as noted above in Section 8, the instigation of characteristic, perhaps
metabolic pathway-linked, ‘signatures’ of say five or more biomolecules (any of which may
be significantly up- or downregulated) is generally a much more reliable and accurate ap-
proach than the use of a single one. Indeed, in general, whole patterns of such dysregulated
biofluid metabolite concentrations are more easily validated for clinical use than a single
biomarker [128]. Nevertheless, currently only a very small number of cancer biomarkers
have been adopted for routine use, and even less have been fully approved and validated
for large-scale population screening or diagnosis.

Also particularly notable is the knowledge that cancer disease symptoms are often
not clearly specific until the advanced stages of the diseases explored have been reached.
Therefore, the development of novel, high-throughput, rapid and reliable probes for the
screening and early diagnosis of cancers is urgently required, with some attention paid
to non- or virtually non-invasive technologies. To date, blood plasma has predominantly
been the biofluid medium of choice for such assessments, but saliva is now becoming
increasingly important as a diagnostic matrix for the seeking of cancer-linked biomarkers.
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In addition to metabolites biosynthesised in the salivary glands, saliva also includes
contributions from gingival crevicular fluid (GCF), serum transudate, epithelial cells, leuko-
cytes and a very wide range of differential microorganisms. It should also be noted that GCF
is an oral mucosa-generated serum transudate or inflammatory exudate, which courses
into the oral cavity to contribute towards human saliva [129].

As documented in Ref. [1], numerous biomolecules gain entry into human saliva from
blood through passive diffusion, active transport or extracellular ultrafiltration phenomena,
as an essential part of the endocrine messenger portal system [130]. This passive diffusion
route depends on the size and electronic charge of the molecules involved, at least in part,
and this diffusion occurs from the capillaries encompassing salivary glands to acinus cells;
the active transport of proteins occurs via ligand-receptor binding mechanisms; and an
ultrafiltration process allowing molecules of molecular mass lower than 1900 Da to migrate
through spaces located between acinus and ductal cells (transference through gap junctions
between secretory elements) [131].

Hence, circulating biomolecules linked to the pathogenesis of diseases such as cancers,
and which therefore serve as discriminatory biomarkers for them, can be transferred from
the bloodstream into the salivary glands [132–134]. Therefore, saliva represents a diagnostic
biofluid which, at least in principle, can ‘mirror’ the physiological and pathological status
of the whole human body, and in principle can respond to biomolecular changes occurring
in remote organ and tissue environments, despite the involvement of some likely bioan-
alyte concentration and sensitivity limitations. In order to confirm this, examinations of
hypotheses that remote tumour-derived biomarkers, or for that matter exosomes, are mech-
anistically involved in the development of cancer-discriminatory salivary transcriptomic
biomarkers are of critical importance for future metabolomics experiments.

In this study, we have reported an extensive and highly up-to-date review of the
employment of human saliva samples for metabolomics testing strategies designed for the
diagnosis and severity monitoring of human cancer conditions, and these have included
both oral and systemic diseases. These were predominantly, but not exclusively, based on
the applications of high-resolution, high-field 1H NMR spectroscopy for multicomponent
salivary analysis, and linked metabolomics strategies for determining differential, diag-
nostically relevant disease classifications for these samples. Of particular note, it is further
stressed here that essential precautions and measures are taken to avoid the interference
of exogenous agents, which unfortunately may severely confound biomarker tracking for
the purpose of diagnosis and severity sub-class determinations in patients afflicted with
these disorders. Although not commonly considered, one of the most common reasons for
the ‘contamination’ of whole mouth saliva samples is the frequent adoption of insufficient
or inappropriate fasting delay time periods prior to sample collection episodes, which are
often only 1.0 h. or lower, with an average value of 1.50 h. estimated in a systematic review
conducted as part of our previous study [1]. A further important precaution includes the
immediate or near-immediate laboratory pre-treatment of samples with sufficient levels of
a microbicidal agent in order to curtail the continued fermentation of salivary metabolites
by bacteria therein during periods of sample preparation, transport and storage, and their
auto-sampling analysis, by NMR or other techniques; indeed, for typical NMR analysis
runs, some samples placed towards the end of autosampler runs may remain unanalysed
at ambient temperature for periods of several hours or longer. An additional precautionary
measure is the assurance that samples should not be stored for any longer durations than
those commonly recommended in the scientific literature.

In a bioanalytical context, all samples should also preferably be analysed as replicates
in order to ensure consistency between analytical results acquired, and one reliable strategy
to assess this is the performance of a PCA technique in order to check that multivariate
analytical results from the same replicate samples cluster tightly together, and remain
remote from those of other samples tested.

For a single, or preferably a pathway- or other source-linked series of ‘omics’ biomark-
ers to be successful, their salivary concentrations should be sufficiently different and remain
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remote from those of corresponding normal healthy populations, preferentially during
the early disease phases, and should hopefully also be useful for disease severity grading
purposes. However, it should be noted that the diversified complexities of the chemopatho-
logical status of differential forms of cancers present many challenging and substantial
expositions for the successful clinical employment of new ‘omics’-type biomarkers. Indeed,
the broad spectrum of omics biotechnologies available still require the satisfaction of a series
of technical provisions, such as bioanalytical reproducibility and precision. For example,
the quite high false positive rates commonly encountered in the ‘omics’ diagnosis of cancers
and other conditions serve as design barriers which have to be commonly addressed and
surmounted by researchers.

The association of determined salivary cancer biomarkers with metabolic pathways
which are likely to be dysregulated in cancer cells and associated tumour biopsy tissues,
and away from their normal ‘healthy’ and balanced functions, is a phenomenon of key
importance in salivary metabolomics studies. However, to date, there remain investigations
which do not even consider the ramifications of such pathway imbalances, and more
commonly, nor do they attempt to relate or inter-relate patterns of up- or downregulated
metabolites, i.e., those serving as biomarkers, for them.

Of particular note, cancer cells consume glucose at a faster rate than their healthy
counterparts, and convert glucose to lactate regardless of oxygen availability and acces-
sibility (known as the Warburg effect) [17] via glycolysis. Moreover, a series of many cell
culture experiments confirmed that glucose and amino acids, most especially glutamine
for the latter, were essential requirements for cancer cell fuel purposes. Carbohydrate
metabolism is of much importance since cell proliferation represents a hallmark of cancer
cells, involving an enhanced level of glycolysis. Further metabolic pathways considered to
be important in cancer cell homeostasis and proliferation include amino acid metabolism,
notably BCAA degradation and diminished urea levels, polyamine synthesis from or-
nithine, lipid metabolism, oestrogen pathways, folate metabolism, nucleotide biosynthesis
and last, but not least, the mitochondrial electron transport chain [29]. Indeed, the modified
mitochondrial oxidative phosphorylation rate found in cancer cells is considered to be
of much importance in cancer pathophysiology [134], since mitochondria serve as potent
sources of ROS, which, through their aggressive chemical reactivity, exert highly salient
actions regarding cancer cell apoptosis.

Additionally, in recent years, there has been an increasing level of interest in the
characterisation of glycoproteins through 1H-NMR analysis in order to search for reliable
and robust biomarkers of diseases, including cancerous conditions. For this purpose,
high-resolution 1H NMR analysis may at least serve to partially characterise circulating
glycoproteins in WMSS samples, in addition to blood plasma or serum. However, our
investigation of these analytes in the Case Study featured herein demonstrated that the
1H NMR resonances of at least several metabolites may also contribute to the intensity of
electronically integrated APP signals in the 1.96–2.10 ppm regions of WMSS spectra ac-
quired (specifically the GlycA one, which apparently provides diagnostic information when
monitored in blood plasma). Hence, these interferants, particularly proline and glutamate,
together with free N-acetylsugars or oligosaccharide species, may easily confound such
measurements made on WMSS samples, as indeed does a 13C satellite resonance arising
from the salivary-domineering acetate-CH3 signal. However, salivary hyaluronate was
ruled out as a possible interferant in the current study.

Overall, future prospects for the expanded use of easily collectable human saliva for
the early detection of cancers, and their clinical implications and significance, are currently
looking very positive. Indeed, advancements to translational and personalised medicine
represent further possible options for this field. Ideally, the preliminary scientific validation
of salivary metabolomics-based diagnostic markers for the identification of specific cancers
should involve their correlations with clinical diagnosis criteria and histological gradings
of disease severities, if indeed possible.
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