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Abstract: Methods of artificial evolution such as SELEX and in vitro selection have made it possible
to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries.
Once the primary sequence of a functional motif is known, the sequence space around it can be
comprehensively explored using a combination of random mutagenesis and selection. However,
methods to explore the sequence space of a secondary structure are not as well characterized. Here
we address this question by describing a method to construct libraries in a single synthesis which
are enriched for sequences with the potential to form a specific secondary structure, such as that
of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be
encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability
that two positions will have the potential to pair by biasing the nucleotide composition at these
positions. Here we show how to maximize this probability for each of the possible ways to encode a
pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized
coding schemes to calculate the number of different variants of model stems and secondary structures
expected to occur in a library for a series of structures in which the number of pairs and the extent
of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff
between maximizing the probability of forming a pair and maximizing the number of possible
variants of a desired secondary structure that can occur in the library. They also indicate that the
optimal coding strategy for a library depends on the complexity of the motif being characterized.
Because this approach provides a simple way to generate libraries enriched for sequences with
the potential to form a specific secondary structure, we anticipate that it should be useful for the
optimization and structural characterization of functional nucleic acid motifs.

Keywords: SELEX; in vitro selection; aptamer; deoxyribozyme; ribozyme; artificial evolution; syn-
thetic biology; DNA; RNA; nucleic acids; secondary structure

1. Introduction

The development and application of methods of artificial evolution such as SELEX
and in vitro selection has led to the discovery of myriad RNA and DNA molecules with
interesting and useful properties [1–5]. For instance, aptamers have been identified that
bind diverse classes of ligands, often with affinities in the nanomolar to picomolar range [6].
Ribozymes and deoxyribozymes that enhance reaction rates by factors of more than 106-
fold (and sometimes much more) have also been described [7]. Because nucleic acids
(especially DNA molecules) are relatively inexpensive to synthesize and easy to work with,
for some applications they represent promising alternatives to proteins. Examples include
the use of aptamers as artificial antibodies [8], allosterically regulated ribozymes and
deoxyribozymes as sensors [9,10], fluorescent aptamers as genetic reporters [11–13], and
RNA-cleaving ribozymes and deoxyribozymes that recognize substrates by base pairing as
artificial nucleases [14].
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Functional RNA and DNA motifs are typically identified by synthesizing libraries
containing ~1015 random sequences and purifying rare variants with a desired biochemical
function by iterative cycles of selection and amplification (Figure 1A). Most selection
experiments use libraries containing at least 40 randomized positions. The number of
possible RNA or DNA sequences of this length is many orders of magnitude larger than 1015.
For example, the number of possible variants of a 40-nucleotide sequence is 440 = 1.2 × 1024.
This means that functional sequences identified in an initial selection experiment are
unlikely to include the most active variants of the motif. More efficient variants can
typically be identified by generating a second library by randomly mutating a single
example of the motif (usually at a rate of 15% to 25% per position) and performing another
selection experiment (Figure 1A) [15,16]. However, such variants are still unlikely to
represent global optima, because only a small fraction of the possible sequences with the
secondary structure of the motif will have been present in either the initial random sequence
library or the library used in the reselection. One way to appreciate this point is to consider
the probability of obtaining variants of a secondary structure in a randomly mutagenized
library in which all base pairs differ from those present in the starting sequence (see
also [16,17]). For instance, in a library generated by randomly mutating a single variant of a
motif made up of canonical base pairs (A-U, U-A, C-G, or G-C) at a standard rate of 20% per
position, the probability of obtaining a canonical pair that differs from that present in the
starting sequence is 0.013. For a secondary structure with 15 canonical pairs, the probability
of obtaining a variant in which each of these pairs has changed to another canonical pair is
therefore 0.01315 = 7.5 × 10−29. When the original base pairs can also change to G.U or U.G
wobble pairs, this probability is 0.07115 = 6.0 × 10−18, which is considerably higher but still
extremely low. These probabilities indicate that the 315 = 1.4 × 107 possible variants of the
secondary structure in which each of the 15 base pairs present in the original variant has
changed to a different canonical pair, or the 515 = 3.1 × 1010 possible variants in which the
original pair has changed to either a canonical or wobble pair, will be poorly represented,
even in large randomly mutagenized libraries.

Motivated by this limitation, here we describe a simple method to synthesize libraries
enriched for sequences with the potential to form a secondary structure of interest, such as
that of an aptamer, ribozyme, or deoxyribozyme (Figure 1B). Our approach does not use
folding algorithms, so it can in principle be applied to any motif for which the sequence
requirements are known. A library synthesized in such a way will contain a larger number
of unique sequences with the potential to form a desired secondary structure than one gen-
erated by random mutagenesis, which should increase the probability of finding variants
with improved or altered functions. In addition, analysis of the active variants of a motif
in such a library by comparative sequence analysis can yield valuable information about
interactions in the secondary and tertiary structure of the motif [16,18–20]. A secondary
structure library as described in Figure 1 cannot be generated in a single synthesis using
current methods of solid-phase synthesis. By using biased nucleotide ratios, however,
it is possible to modulate the probability that two positions in the library will have the
potential to form an interaction such as a base pair [21]. To further explore this idea, here
we describe the possible ways a base pair can be encoded using degenerate positions, and
show that different coding schemes involve a tradeoff between maximizing the probability
of forming a base pair and maximizing the number of different types of base pairs that
can occur in the library. We then determine the optimal coding scheme (which maximizes
the number of unique sequences in a library with the potential to form a given secondary
structure) for a range of model stems in which the number of base pairs is systematically
varied. We also describe a split-and-pool strategy that can be used in combination with
degenerate bases to synthesize secondary structure libraries. This can increase the fraction
of library members with the potential to form a desired stem or secondary structure, but
requires multiple oligonucleotides to be synthesized for each library. Finally, we propose
designs for secondary structure libraries based on three functional motifs of increasing
complexity from the literature: a 29-nucleotide streptavidin aptamer made of DNA [22], a
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40-nucleotide ATP aptamer made of RNA [23–25], and a 50-nucleotide kinase ribozyme
that thiophosphorylates itself using GTPγS as a substrate [19,20]. Our calculations indicate
that these libraries contain up to 676-fold more unique sequences with the potential to
form the desired secondary structure than libraries generated by random mutagenesis. We
anticipate that secondary structure libraries of the type described here will facilitate the
optimization and structural characterization of functional nucleic acids by significantly
increasing the number of variants of a motif that can be sampled in a single artificial
evolution experiment. In some cases, such libraries could also provide access to sequences
that represent global maxima with respect to a given secondary structure and biochemical
function (note that this is not necessarily the global maximum with respect to all possible
sequences of a given length).

Figure 1. Concept and design of a secondary structure library. (A) Typical workflow to identify
and optimize a functional nucleic acid motif. The starting library usually contains ~1015 random
sequences flanked by primer binding sites. After identifying functional motifs by selection, a second
library is prepared by randomly mutagenizing a single sequence corresponding to one of the most
active variants at a rate of 15% to 25% per position. Additional rounds of selection are performed to
identify active variants of this sequence, most of which will adopt the same fold. Information from
these variants can be used to design a secondary structure library, which is the topic of this paper. (B)
Design of a secondary structure library. In this hypothetical example, variants 1–3 are three variants
of a functional RNA motif from the “active variants” step of the workflow in panel a. A secondary
structure library combining information from these three variants is shown on the right. Nucleotides
that differ from variant 1 are shown in purple. X1-X2 = A-U, U-A, C-G, G-C, G.U, or U.G; R = A or G;
W = A or U; Y = C or U; K = G or U.

2. Results
2.1. Maximizing the Probability that Two Positions in a Library Will Form a Base Pair

The likelihood of obtaining an improved variant of a functional motif in an artificial
evolution experiment is expected to be related to the number of unique variants of the
motif in the library. For a motif with known sequence requirements, one way to maximize
this number is to only incorporate mutations known or likely to be compatible with the
function of the motif into the library. In the case of independent positions, this can be
accomplished using degenerate bases. For instance, a position at which only A or G can
occur can be encoded by R (50% A and 50% G). We previously used this approach to encode
variation in a library of kinase ribozymes, and a selection using this library yielded variants
with improved catalytic efficiencies [20]. However, in the case of interacting positions such
as those which form base pairs, such variation cannot be encoded using a conventional
DNA synthesizer. This is because the nucleotide incorporated during synthesis of the
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first position in a base pair will be independent of the nucleotide incorporated at the
second position in the base pair. One possible solution to this problem is to use different
combinations of degenerate positions to encode base pairs [21]. To further explore this
idea, we first considered each of the ways a pair could be encoded using a standard DNA
synthesizer (here we define a pair to include canonical A-U, U-A, C-G, and G-C base
pairs as well as G.U and U.G wobble pairs). Ten architectures are possible: 1-1 (only one
nucleotide can occur at the first position and only one can occur at the second position), 1-2
or 2-1 (only one nucleotide can occur at the first position while two can occur at the second
position, or vice versa), 1-3 or 3-1, 1-4 or 4-1, 2-2, 2-3 or 3-2, 2-4 or 4-2, 3-3, 3-4 or 4-3, and
4-4 (Figure 2A). For most of these architectures, different coding schemes are also possible.
For instance, in the 1-1 architecture, 16 possible schemes are possible, some of which form
pairs (such as A at one position and U at the other) and some of which do not (such as A at
both positions).

Figure 2. Encoding base pairs with degenerate positions. (A) The ten possible architectures for
encoding base pairs by solid-phase synthesis. The number of possible nucleotides at each position
in the base pair in each architecture is shown on the left, and an example is shown on the right. (B)
Tradeoff between the number of possible pairs that can be encoded in each of the ten architectures (x
axis) and the maximum probability of forming a pair in the architecture (y axis). Y = C or U; R = A or
G; K = G or U; B = C, G, or U; D = A, G, or U; N = A, C, G, or U.

After calculating the probability of obtaining a pair for each architecture and cod-
ing scheme, we next determined the scheme that maximized this probability for each
architecture (Figure 2B). Schemes that allowed one or two of the six pairs to occur could
be designed in such a way that mismatches never occurred (Figure 2B). For instance, by
synthesizing an oligonucleotide containing G at one position in the base pair and C at the
other, the probability of obtaining a pair is 1, although only one of the six possible pairs
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will be present in the library. Similarly, by synthesizing an oligonucleotide containing G
at one position and Y (C or U) at the second, the probability of obtaining a pair is still 1,
and two of the six possible pairs will be present in the library. Additional increases in
pair diversity, however, come at a cost (Figure 2B). For a position in which three of the
six pairs can occur, the probability of obtaining a pair decreases to 0.75. When four pairs
can occur, this probability decreases to 0.5. When five pairs can occur, this probability
drops to 0.417. And when six pairs can occur (which can be accomplished by randomizing
both positions in the pair), this probability decreases to 0.375. These calculations show
how degenerate positions can be used to modulate the probability that two positions in
a library will form a canonical or wobble pair. They also highlight the tradeoff between
maximizing the probability of obtaining a pair and maximizing the number of different
pairs represented in the library.

2.2. Maximizing the Number of Unique Sequences in a Library that Form a Specific Stem

We next investigated how these coding schemes can be used to maximize the number
of unique sequences in a library with the potential to form a specific stem structure. Our
initial calculations focused on a 20 base pair stem with an arbitrary sequence (Figure 3A).
As is the case when considering individual base pairs, different coding schemes involve a
tradeoff between the number of possible stem sequences in the library and the probability
that a library member will have the potential to form all of the pairs in the stem. For
example, when an N-N scheme is used to encode pairs, all possible variants of the stem
can occur in the library (Figure 3B). However, the probability that a sequence in the library
will have the potential to form all pairs in the stem is low (Figure 3C). Conversely, when an
R-Y scheme is used to encode base pairs, only a small fraction of the possible stems will be
present in the library (Figure 3D). This is because only three of the six possible pairs can
occur. However, the probability that a sequence in the library will have the potential to
form all pairs in the stem is significantly higher (Figure 3E).

To better understand this tradeoff, we calculated the number of different variants of a
series of stems of different lengths (made up of both canonical A-U, U-A, C-G, and G-C
pairs and G.U and U.G wobble pairs) expected to occur in a library of 1015 sequences for
each of the optimized coding strategies described in Figure 2 (Equations (1) and (2)). Our
calculations took into account the probability of obtaining a sequence with the potential to
form each of the pairs in the stem. This probability decreases exponentially as the number
of pairs in the stem increases, and decreases more quickly when the probability of forming
a pair is lower (Figure 4, green curves). They also considered the number of distinct
sequences with the potential to form a given stem that are possible for different coding
schemes. This number increases exponentially as the number of pairs in the stem increases,
and increases more quickly when the number of pairs allowed by the coding scheme is
higher (Figure 4, blue curves). These calculations demonstrate that the optimal coding
scheme depends on both the number of pairs in the stem and the number of sequences
in the starting library (Figure 4 and Figures S1–S3). For short stems and large libraries,
using a scheme in which each of the six possible pairs can occur maximizes the number
of unique sequences with the potential to form all of the pairs in the stem. In the case of
libraries containing 1015 sequences, for example, such a strategy is best for stems containing
up to 13 pairs (Figure 4A). As the number of pairs in the stem increases, however, the
optimal strategy is to use a coding scheme that allows fewer pairs to occur but increases
the probability that a pair can form. For stems containing 14 or 15 pairs, a coding scheme
in which 5 pairs can occur is optimal (Figure 4B). For stems containing 16 to 19 pairs, a
coding scheme in which 4 pairs can occur is best (Figure 4C). For stems containing 20 to
35 pairs, a coding scheme in which 3 pairs can occur is ideal (Figure 4D). And for stems
containing more than 35 pairs, the best strategy is to use a scheme in which the probability
of forming a pair is one and the number of possible pairs is two (for example, by encoding
G at one position in the pair and Y at the other) (Figure 4E).
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Figure 3. Encoding stems with degenerate positions. (A) A hypothetical stem made up of 20 base
pairs. The sequence is arbitrary and does not affect the calculations in this panel. (B) Number of
variants of this stem (including canonical A-U, U-A, C-G, and G-C base pairs as well as G.U and
U.G wobble pairs) at various mutational distances from the starting sequence in a library in which
base pairs are encoded by N-N. The total number of possible stem variants is 620 = 3.7 × 1015. (C)
Probability distribution of sequences in a library based on this stem in which base pairs are encoded
by N-N (N = A, C, G, or U; probability of forming a pair = 0.375). The y axis indicates the probability
that a sequence in the library will have the potential to form each of the 20 base pairs in the stem. (D)
Same as panel B, but for a library in which base pairs are encoded by R-Y (R = A or G; Y = C or U;
probability of forming a pair = 0.75). Because only three of the six possible pairs can occur with this
coding scheme, the number of possible stem variants is 320 = 3.5 × 109. (E) Same as panel C, but for a
library in which base pairs are encoded by R-Y.

To compare these results to those expected from randomly mutagenized libraries, we
first determined the rate of random mutagenesis that maximizes the number of different
variants in a library of 1015 sequences that can form each of the pairs in a series of stems
of different lengths (Equations (3)–(9), (12) and (13)). These calculations used stems that
contained only canonical base pairs as a starting point, and allowed stem variants to contain
canonical (A-U, U-A, C-G, and G-C) or wobble (G.U and U.G) pairs. We then compared
the number of different variants of each stem that could be generated using the optimal
rate of random mutagenesis with the number generated using the optimal coding scheme
for pairs for a stem of the same length (Figure 5). The two methods gave similar results for
stems of up to 12 pairs. Note that, for stems of this size, complete sampling is possible in
both secondary structure libraries and randomly mutagenized libraries.
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Figure 4. Maximizing the number of unique sequences that form a specific stem in libraries of 1015

sequences. The graphs showing the relationship between the number of base pairs in a stem, the
number of possible variants of the stem for the indicated coding scheme (blue curves), and the
expected number of variants in a library of 1015 sequences with the potential to form all of the pairs
in the stem (green curves) for the indicated coding scheme. The number of unique variants in the
library at each point on the x axis is indicated by the curve with the lower value, and the average
copy number of library members is greater than one to the left of each intersection point and less
than one to the right of each intersection point. (A) Coding scheme in which 6 pairs can occur. An
example is N (A, C, G, or U) and N. The probability of forming a pair is 0.375. (B) Coding scheme
in which 5 pairs can occur. An example is D (A, G, or U) and N (A, C, G, or U). The probability of
forming a pair is 0.417. (C) Coding scheme in which 4 pairs can occur. An example is K (G or U) and
N (A, C, G, or U). The probability of forming a pair is 0.5. (D) Coding scheme in which 3 pairs can
occur. An example is R (A or G) and Y (C or U). The probability of forming a pair is 0.75. (E) Coding
scheme in which 2 pairs can occur. An example is G and Y (C or U). The probability of forming a pair
is 1. (F) Coding scheme in which 1 pair can occur. An example is G and C. The probability of forming
a base pair is 1.

For stems containing more than 12 pairs, however, secondary structure libraries
contained a larger number of distinct variants with the potential to form all pairs in
the stem than did randomly mutagenized libraries. The advantage of using a secondary
structure library also became more pronounced as the number of pairs in the stem increased.
For example, for a stem containing 30 pairs, the optimal secondary library contained 500
times more variants with the potential to form all of the pairs in the structure than did
the optimal randomly mutagenized library. For a stem containing 40 pairs, this number
increased to 4092. And for a stem containing 50 pairs, this number increased to more
than 106. This enrichment was also observed in smaller libraries (Figure S4). Taken
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together, these calculations show that secondary structure libraries can contain significantly
more sequences with the potential to form each of the pairs in a stem than randomly
mutagenized libraries. They also indicate that such libraries are likely to be more useful
for the optimization of larger and more complex structures than for the optimization of
simpler folds.

Figure 5. Enrichment of stem variants in secondary structure libraries relative to randomly mu-
tagenized libraries. The optimal coding strategy for base pairs and the optimal rate of random
mutagenesis was determined for a series of stems containing 10 to 50 base pairs. Enrichment of
distinct variants of the stem in the secondary structure library (y axis) was calculated by dividing the
number of different variants of the stem expected to occur in a secondary structure library (generated
using the optimal coding strategy for base pairs) by the number expected to occur in a randomly
mutagenized library (generated using the optimal rate of mutagenesis). Calculations were performed
for a library of 1015 sequences. The breakpoints in this graph are due to changes in the maximum
number of mutations a sequence can contain to be present in the library.

2.3. Synthesis of Secondary Structure Libraries Using a Split-and-Pool Approach

A way to increase the probability of forming pairs in a secondary structure library
without reducing pair diversity is to synthesize each possible combination of pairs in the
secondary structure separately and mix these oligonucleotides to generate the final library.
However, because the number of possibilities increases exponentially with the number of
pairs in the structure, this approach is not practical even for simple motifs. For instance, 63

= 216 different oligonucleotides would be needed to encode a hairpin structure containing
three pairs. By encoding pairs using degenerate positions, this problem can be minimized
to some extent (Figure 6).

Figure 6. Synthesis of secondary structure libraries using a split-and-pool approach. In this example,
a library containing all possible variants of a stem is constructed by synthesizing eight different
oligonucleotides in which base pairs are encoded by different combinations of R-Y and Y-R. These
oligonucleotides are mixed to generate the final library containing 512 different sequences, including
each of the 216 possible stem sequences. Z1-Z2 = R-Y or Y-R.
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For example, by synthesizing one oligonucleotide containing A at one position in a
pair and U at the second, a second oligonucleotide containing U at one position in the pair
and A at the second, a third oligonucleotide containing G at one position in the pair and Y
(C or U) at the second, and a fourth oligonucleotide containing Y (C or U) at one position
in the pair and G at the second, it is possible to reduce the number of oligonucleotides
needed to encode all variants of the stem in this hairpin from 63 = 216 to 43 = 64 without
reducing base pair diversity. Permitting mismatches can further reduce these numbers. For
instance, by synthesizing one oligonucleotide containing R (A or G) at one position in a
pair and Y (C or U) at the second, and a second oligonucleotide containing Y (C or U) at
one position in a pair and R (A or G) at the second, it is possible to reduce the number of
oligonucleotides needed from 63 = 216 to 23 = 8 (Figure 6). However, as the number of base
pairs (N) in the secondary structure increases, even 2N possibilities will eventually become
limiting. For instance, in the case of the fifteen base pair self-thiophosphorylating ribozyme
discussed in the introduction, this would require synthesis of 215 = 32,768 oligonucleotides.
An advantage of a split-and-pool approach, especially when used in combination with
degenerate positions, is that it can increase the probability of obtaining pairs relative
to strategies in which the secondary structure library is generated in a single synthesis.
However, a disadvantage is that a large number of oligonucleotides are required even for
modestly-sized structures.

2.4. Secondary Structure Libraries Based on Known Motifs

To show how these ideas can be applied, here we describe designs for secondary
structure libraries based on three functional motifs from the literature (Figure 7). These
designs use coding strategies that maximize the number of different sequences in the
library with the potential to make each of the pairs in the structure. However, unlike the
case for our previous calculations using stems, these designs also incorporate information
about the sequence requirements of unpaired positions in the motif. Unpaired positions
are encoded using degenerate bases such that mutations present in active variants of the
motif (identified in experiments like those described in Figure 1A) can occur but other
mutations cannot. These mutations are shuffled during the synthesis [20] so that every
possible combination is encoded by the secondary structure library. Therefore, these
libraries encode all possible variants of the stems in the secondary structure of the motif,
and each possible stem can occur with each of the possible combinations of mutations
in unpaired positions. As described below, the extent to which the number of possible
variants encoded by the design will be present in the library depends on the complexity of
the motif and the number of sequences in the library (in this study 1015, but see Figures
S1–S7 for calculations for smaller libraries).

The first of our libraries is based on a 29-nucleotide DNA aptamer that binds strep-
tavidin (Figure 7A,B) [22]. This aptamer contains 9 base pairs, corresponding to 69 = 107

possible stem sequences. It also contains 32 possible combinations of mutations in unpaired
positions, for a total of 3.2 × 108 possible variants in the secondary structure library if each
of the six possible pairs (A-T, T-A, C-G, G-C, G.T, or T.G) can occur. By encoding base
pairs with N (A, C, G, or T) at both positions, and unpaired positions with degenerate
bases consistent with its sequence requirements, each of these variants can be generated in
a single synthesis. A library containing almost as many (5.5-fold fewer) variants can be
generated by random mutagenesis using the optimal rate of 46% per position (Equations
(3)–(9), (12) and (13)). In addition, libraries containing the same number of variants as that
present in the secondary structure library can be generated by using a restricted random
mutagenesis strategy (in which invariant unpaired nucleotides are not mutated during
library synthesis; Equations (3)–(9), (12) and (13)) or a smart random mutagenesis strategy
(in which only nucleotides known to be compatible with function can occur at unpaired
positions during library synthesis, Equations (10)–(13)). When smaller libraries were used
for the calculations, the advantage of using a secondary structure library became more
pronounced (Figures S5–S7). In addition, the optimal coding scheme for base pairs changed
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(Figures S5–S7). This example shows that, for simple motifs and large pools, secondary
structure libraries are not significantly enriched for the secondary structure of interest
relative to randomly mutagenized libraries.

Figure 7. Secondary structure libraries based on known motifs for library sizes of 1015 sequences. (A)
Expected number of unique variants with the potential to form the secondary structure of a DNA
aptamer that binds streptavidin [22] in a library of 1015 sequences using different coding strategies
to encode base pairs. The column labeled “Ran” indicates the number for a library generated at
the optimal rate of random mutagenesis using the method described in Section 4.3. (B) Possible
secondary structure library for this motif. (C,D), the same, but for an RNA aptamer that binds
ATP [23–25]. (E,F). the same, but for a kinase ribozyme that thiophosphorylates itself using GTPγS
as a substrate [19,20]. Y = C or T (U); R = A or G; K = G or T (U); W = A or T (U); S = C or G; D = A, G,
or T (U); H = A, C, or T (U); V = A, C, or G; N = A, C, G, or T (U).

Our second design is based on a slightly more complex 40-nucleotide RNA aptamer
that binds ATP (Figure 7C,D) [23–25]. This aptamer contains 12 base pairs, corresponding to
612 = 2.2 × 109 possible stem sequences. It also contains 1.5 × 105 possible combinations of
mutations in unpaired positions, for a total of 3.2 × 1014 possible variants in the secondary
structure library. By encoding base pairs with N (A, C, G, or U) at one position and K
(G or U) at the other, and unpaired positions with degenerate bases consistent with its
sequence requirements, a library containing 2.4 × 1011 of the 3.2 × 1014 possible variants
in the secondary structure library can be generated in a single synthesis. In comparison, a
library generated using the optimal level of random mutagenesis (26% per position) would
contain 119-fold fewer unique variants of the motif than the number in the secondary
structure library, while a library synthesized using restricted mutagenesis would contain
32-fold fewer sequences and a library generated using smart mutagenesis would contain
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12-fold fewer sequences. As before, the advantage of using a secondary structure library
was more pronounced for smaller libraries, and the optimal coding scheme for base pairs
also changed based on the library size (Figures S5–S7).

Our third design is based on an even more complex 50-nucleotide kinase ribozyme that
transfers a thiophosphate from GTPγS to an internal 2′ hydroxyl group (Figure 7E,F) [19,20].
This motif contains 15 base pairs, corresponding to 615 = 4.7× 1011 possible stem sequences.
It also contains 3.1 × 104 possible combinations of mutations in unpaired positions, for
a total of 1.5 × 1016 possible variants in the secondary structure library. A library that
maximizes the number of variants consistent with this secondary structure can be generated
by encoding base pairs with Y (C or U) at one position and R (A or G) at the other. A library
made in this way would contain 4.5 × 1011 of the 1.5 × 1016 possible variants encoded
by the secondary structure library. In comparison, a library generated using the optimal
level of random mutagenesis (19% per position) would contain 676-fold fewer unique
variants of the motif than the number in the secondary structure library, while a library
synthesized using restricted mutagenesis would contain 154-fold fewer sequences and a
library generated using smart mutagenesis would contain 40-fold fewer sequences. As
for the other motifs, the advantage of using a secondary structure library was generally
more pronounced for smaller libraries, and the optimal coding strategy depended on the
library size (Figures S5–S7). This example highlights that, for complex structures, only a
small fraction of the sequence space of the secondary structure library can be sampled even
using the methods described here.

3. Discussion

DNA and RNA motifs with a range of functions have been identified in artificial
evolution experiments [1–5]. In most cases these motifs are initially isolated from random
sequence libraries containing ~1015 different sequences. Once the sequence of a functional
motif is known, the sequence space around it is explored using a second library generated
by randomly mutating a single variant of the motif at a rate of 15% to 25% per position. This
library is usually generated by solid-phase synthesis, although mutagenic PCR can also be
used when lower rates of mutagenesis (on the order of 1% per position) are desired [26].
The synthetic protocol can also be modified in various ways to incorporate deletions [27,28].
Selections using such libraries often yield variants with improved biochemical properties,
and also provide valuable information about the sequence requirements and secondary
structure of the motif [15,16,19,20]. However, such experiments are unlikely to identify the
most active variant of the motif. This is due to incomplete sampling: sequence space is vast,
and only a tiny fraction of the possible variants of a given secondary structure are likely to
be present in the neighborhood of a single sequence. Here we describe a method to more
effectively explore the sequence space of a secondary structure of interest. Our method
uses biased nucleotide frequencies to increase the probability that paired positions in the
secondary structure of the motif will also have the potential to form pairs in sequences
in the library. It also uses information about the sequence requirements of the motif to
determine which mutations can occur in unpaired regions [20]. By increasing the number
of different variants of the secondary structure of a functional motif in the library, the
likelihood of finding variants with improved properties should also increase.

The benefit of our approach depends on the complexity of the motif. For a motif of 24
nucleotides or less, such an approach is not necessary: all possible sequences (including all
possible variants of the motif) can be sampled by simply generating a random sequence
library of the length of the motif containing at least 1015 sequences. As the complexity
of the motif increases, however, our calculations show that secondary structure libraries
will contain significantly more unique sequences with the potential to form the secondary
structure than either random sequence libraries or randomly mutagenized libraries based
on a single example of a motif. They also indicate that the optimal coding strategy for
pairs (in this study defined as canonical A-U, U-A, C-G, and G-C base pairs as well as
G.U and U.G wobble pairs) depends on the complexity of the motif (Figure 8). For less
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complex motifs such as the streptavidin aptamer, N-N (six possible pairs and a 0.375
probability of forming a base pair) is the optimal strategy. As the complexity of the motif
increases, coverage can be maximized by encoding pairs with combinations of nucleotides
that maximize the probability of obtaining a viable pair, although this comes at a cost of
reducing the number of pairs that can occur. For instance, base pairs in a 40-nucleotide
ATP aptamer can be optimally encoded using K-N (four possible pairs and a probability
of 0.5 of forming a pair), while those in a 50-nucleotide kinase ribozyme are best encoded
by R-Y (three possible pairs and a probability of 0.75 of forming a base pair). For more
complex motifs, such as the 119-nucleotide b1-207 variant of the Class I ligase ribozyme
(made up of 33 base pairs, 16 invariant unpaired positions, 10 unpaired positions at
which two nucleotides are possible, 13 unpaired positions at which three nucleotides are
possible, 8 positions at which four nucleotides are possible, and a six-nucleotide substrate
binding site that was left constant for these calculations) [16,29,30], the optimal coding
strategy is one in which the probability of obtaining a pair in one and two pairs is possible.
This could be achieved by encoding C-G (and U.G) pairs by Y-G, G-C (and G.U) pairs
by G-Y, A-U pairs by R-U, and U-A pairs by U-R (note that this coding scheme also
ensures that the starting sequence will be present in the library). Every variant in a library
made in this way would have the potential to form each of the 33 pairs in the secondary
structure of the ribozyme, and ~1015 different variants of the secondary structure would
be represented. In comparison, 62,707-fold fewer unique sequences consistent with the
constraints of the secondary structure would be present in a library generated by randomly
mutagenizing this ribozyme at an optimal rate of 6% per position. A library synthesized
using restricted mutagenesis would also contain 62,707-fold fewer sequences (the same
coverage is reachable by normal random mutagenesis), while a library generated using
smart mutagenesis would contain 22,129-fold fewer sequences.

Figure 8. Relationship between the complexity of the secondary structure and the optimal coding
scheme for base pairs in secondary structure libraries. Y = C or U (T); R = A or G; K = G or U (T); D =
A, G, or U (T); N = A, C, G, or U (T).

Although our approach can be used to achieve complete coverage of the sequence
space of simple secondary structures, for complex motifs this is not possible. An important
question in such cases is the choice of base pairs which can occur at specific positions in the
library. This can have implications for motif optimization because, in the context of certain
types of tertiary interactions such as base triples [31–33], the identity of the base pair in a
helix is constrained. For example, encoding the base pair in a C-G:G triple in a purine-motif
triple helix with Y-R would be compatible with triple formation while encoding it with R-Y
would not. For this reason, we recommend that secondary structure libraries be designed
in such a way that the sequence of the initial isolate of the motif is represented in the
library. We also note that information about high-order constraints can be incorporated
into the design of a secondary structure library when it is available. However, the sequence
requirements of tertiary interactions are in general not well understood, and for this reason
cannot always be easily encoded in a library.

An important difference between secondary structure libraries and those generated
by random mutagenesis is the distribution of sequences relative to the sequence used to
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generate the library. Random mutagenesis strongly favors variants similar to the starting
sequence, so (for example) the original base pair is much more likely to occur than a
mutated version. This is not the case, however, for secondary structure libraries. For
example, if a coding scheme is used in which three different base pairs can occur, each of
them will appear at a given position with a probability of one third, and the probability that
a sequence will contain any combination of mutated base pairs (including combinations in
which all base pairs are mutated) is the same as the probability that it will contain only the
original base pairs. For this reason, secondary structure libraries should be particularly
useful with respect to the discovery of variants with the same biochemical function and
secondary structure but distinct sequences. Such variants can provide important structural
information for molecular modeling. In addition, we envision that such variants could be
used in combination with standard crystallographic screens to increase the likelihood of
finding sequences that form well-ordered crystals.

The advantages of exploring secondary structure space are becoming more appre-
ciated, and several methods to do this more efficiently have recently been described
(reviewed in [34,35]). One uses information such as that shown in Figure 1 to identify
all possible sequences consistent with the sequence requirements of a motif. These are
synthesized individually and used to construct a DNA microarray [36]. An advantage of
this approach is that, once the microarray has been manufactured, sequences can be rapidly
tested for activity. However, it requires synthesis of thousands of oligonucleotides and is
limited to libraries of ~106 sequences. In comparison, our approach can be used to generate
libraries of ~1015 sequences in a single synthesis. Another approach uses an algorithm to
determine a mixing matrix (the nucleotide composition of degenerate positions) that can
be used to synthesize a library which maximizes the fraction of sequences predicted to
form a target structure [37–39]. Because this approach uses an RNA folding algorithm to
evaluate library quality, it cannot be applied to motifs which contain structural elements
that cannot be effectively predicted, such as pseudoknots, triplexes, and G-quadruplexes.
In comparison, the approach described here can be applied to any structure for which the
sequence requirements have been determined.

In conclusion, we have described a simple method that can be used to generate
libraries enriched for sequences with the potential to form a desired secondary structure.
Because such libraries can significantly increase the number of variants of a motif that can
be sampled in a single artificial evolution experiment, we anticipate that they will useful
for the optimization and structural characterization of functional nucleic acid motifs such
as aptamers, ribozymes, and deoxyribozymes.

4. Materials and Methods
4.1. Secondary Structure Library Design

We will first consider the simple case in which the secondary structure contains a
stem, but no other types of position. Each library design has a defined probability p0 that a
particular base pair will have the potential to form. It also specifies the number of base pairs
nbp in the stem. If we want to calculate the number of unique sequences in the library with
the potential to form all base pairs in this stem, we have to consider two limits. The first one
is the number of unique sequences possible for a given library design. Not all sequences
with a given number of base pairs can be generated using each library architecture. For
example, if we use a 1-1 architecture, only 1 of the 6 possible pairs considered in this study
(A-U, U-A, C-G, G-C, G.U, or U.G) can occur. For a given stem length s this is the number
ns

bp. The second is the number of sequences in the library consistent with the model (note

that these sequences are not necessarily unique). This can be calculated as Pp
nbp
0 , where P

is the size of the library (in this study 1015) and p
nbp
0 is the probability that the sequence will

have the potential to form all of the pairs in the stem. Therefore, the maximum possible
number of unique sequences in the library with the potential to form all base pairs in the
stem is:

min
(

ns
bp, Pp

nbp
0

)
(1)
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The actual number of unique sequences with the potential to form all pairs in the stem
can be slightly lower, but this difference will be significant only if the average copy number
(i.e., the ratio between sequences consistent with the model in the library and the number
of distinct sequences which can be generated by the library design) is close to 1. However,
this is a rare case, and moreover it cannot decrease the number of unique sequences by
orders of magnitude.

Let us next consider a case in which the secondary structure model used for library
design contains, in addition to base pairs, unpaired positions as well. Those positions can
either be invariant or have a possibility to contain multiple nucleotides. In this case, we
need to consider one additional parameter: the number of possible versions of the unpaired
regions. This is straightforward to calculate. For example, consider a sequence with 10
unpaired positions, of which 3 are invariant, 2 have 2 possibilities, 1 has 3 possibilities,
and 4 has 4 possibilities. The number of possible versions of unpaired positions U for this
sequence is 13 · 22 · 31 · 44 = 3072. Given the library design, the sequence requirements
for each of these positions are maintained in the entire library, so that the probability
that all of the base pairs and all of the unpaired positions are maintained is Pp

nbp
0 . The

number of distinct sequences which can be generated in a given library design is now
Uns

bp, because each possible combination of unpaired positions can be combined with each
possible combination of base pairs. Therefore, the maximum possible number of unique
sequences in the library is:

min
(

Uns
bp, Pp

nbp
0

)
(2)

4.2. Random Mutagenesis

This section firstly contains brief descriptions of three different ways to implement
random mutagenesis and the calculations used for each of them. We then provide detailed
descriptions of the calculations for each implementation in which formulas are included.

We used three different types of random mutagenesis in this study. The first is
the simplest, and most commonly used approach: the entire sequence of the motif is
mutagenized at a constant rate. The second approach takes into account the fact that we
know from the secondary structure model that some positions are invariant. These positions
are kept constant and only variable positions are mutagenized. The third approach is
slightly more complicated and uses additional information from the secondary structure
model. The model usually contains positions which are variable but at which certain
nucleotides cannot occur. If we allow each of the four nucleotides to occur at such positions
during mutagenesis, a significant fraction of library members will be generated which
are not consistent with the secondary structure model. To avoid this, we can restrict
the nucleotides that occur at certain positions during library synthesis. For example, a
position which is A in a starting sequence but at which U can also occur would (for a
mutagenesis rate of 20%) stay unmutated during library synthesis with a probability of
80% and be mutated to U with a probability of 20%. Similarly, for a position at which 3
nucleotides can occur, we simply change the nucleotide ratios during the synthesis to 80%,
10%, and 10% (in this case the probability of obtaining a mutation is still 20%). This way,
we significantly increase the number of sequences consistent with the secondary structure
model in the library.

Calculations for a given rate of mutagenesis consist of two steps. The first is to
determine which types of sequences consistent with the secondary structure model will
be present in the mutagenized library. By sequence type, we mean a combination of types
of mutations. For example, one sequence type consists of variants containing one base
pair with two mutations (such as C-G to G-C) and two mutated positions at which three
nucleotides can occur. For the first two methods of mutagenesis, this is done by calculating
the maximum number of mutations a sequence in the library can contain. In the third
case, it must be done for each combination of mutations separately. This is because a
sequence containing (for example) 3 mutations at positions with 2 allowed nucleotides
has a different probability of being generated in the synthesis than a sequence with 3
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mutations at positions with 4 allowed nucleotides. Therefore, we have to calculate the
average number of copies of a sequence of a given sequence type in the library and compare
it to the presence limit l for each sequence type.

The second part of the calculation is to determine, for each sequence type, the number
of distinct sequences in the library consistent with the secondary structure model. To do
this we calculate the number of distinct sequences for each sequence type determined
to be present (by the calculations described in the previous paragraph) in the pool and
then sum up the numbers for all those sequence types. All calculations were performed
for rates of mutagenesis between 1% and 75% with 1% steps. The optimal rate was
defined as that which yielded the highest number of distinct sequences consistent with the
secondary structure model in a library of defined size (in this study 1015). For the first two
methods of mutagenesis, the rate with the highest number of allowed mutations is chosen
without limiting the number of possible mutations to a whole number. For example, if
we are comparing two rates and one allows a maximum of 5.0 mutations and the other
allows a maximum of 5.5 mutations, the same types of sequences will be present in libraries
generated at both rates. In the second case, however, the average copy number of sequences
containing 5 mutations will be higher, so this rate is considered to be better. For the third
method of mutagenesis, we compare results for rates which generate the highest number
of distinct sequences consistent with the model by comparing the average copy number of
sequences from the least abundant sequence type present in the library, and choose as the
optimal rate that at which this minimum is the largest. For example, if we are comparing
two rates for which the least abundant sequence type contains sequences with average
copy numbers of 2.2 and 2.8, then the second rate is better.

4.3. Normal Random Mutagenesis in Which the Entire Sequence Is Mutagenized

We want to determine the maximum number of mutations a sequence with N nu-
cleotides can contain to still be present in a library generated by random mutagenesis with
a mutagenesis rate of r. We will start by calculating the average copy number of a given
sequence in the library. The probability pn that a library member is a given sequence with
exactly n out of N unmutated nucleotides is:

pn = (1− r)n
(

r
t− 1

)N−n
(3)

where the first term is the probability that n nucleotides are unmutated and the second
term is the probability that the rest of the N nucleotides are mutated in one specific way,
where t is number of types of nucleotides (4 if not stated otherwise). The average number of
copies of this sequence in a library with P sequences is pnP and we define that a sequence
is considered to be present in the library if the average number of copies of this sequence is
larger than the presence limit l (in this study l = 1).

Next, we need to derive a formula for the smallest n which fulfills the condition:

pnP ≥ l (4)

with the limitation that the rate of mutagenesis is not bigger than 75% and not smaller than
1%, because we want to focus only on experimentally relevant cases. Therefore, we are
looking for an nmin which solves the equation:

pnmin =
l
P

(5)

We first substitute from Equation (3):

(1− r)nmin

(
r

t− 1

)N−nmin

=
l
P

(6)
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the next step is rearranging terms:(
(1− r)(t− 1)

r

)nmin

=
l(t− 1)N

PrN (7)

Now we can use the logarithm to determine nmin:

nmin = log
( (1−r)(t−1)

r )

(
l(t− 1)N

PrN

)
=

log
(

l(t−1)N

PrN

)
log
(
(1−r)(t−1)

r

) (8)

and finally, we use rules for logarithms to simplify the formula:

nmin =
log
(

l
P

)
+ N log(t− 1)− N log(r)

log(t− 1) + log(1− r)− log(r)
(9)

and the maximal number of mutations is N − nmin.

4.4. Restricted Random Mutagenesis

This case differs from the previous one in only one detail. Instead of using the length
of the full sequence N, we use the number of positions at which two or more types of
nucleotides are allowed according to the secondary structure model. All calculations are
then the same, and we can use Formula (9) to calculate nmin. This approach allows us to
reach sequences at a slightly higher mutational distance from the original sequence than
those accessed using the first approach. It can therefore increase the number of distinct
sequences consistent with the secondary structure model in the mutagenized library.

4.5. Smart Random Mutagenesis

From the secondary structure model of the motif, we know the number of unpaired
positions N2, N3, and N4 at which 2, 3, or 4 nucleotides are allowed. Positions which form
base pairs are also classified as positions at which 4 nucleotides are allowed. The total
number of nucleotides which are randomly mutagenized is N = N2 + N3 + N4. If we look
again at formula (3) we see that it cannot be used directly in this case, because t is different
for positions at which different numbers of nucleotides are allowed. For this reason, we
have to write separate terms for sequence groups with constant t:

pn2,n3,n4 = (1− r)n2 rN2−n2(1− r)n3
( r

2

)N3−n3
(1− r)n4

( r
3

)N4−n4
(10)

where n2 is the number of mutated positions at which two nucleotides are allowed, n3
is the number of mutated positions at which three nucleotides are allowed, and n4 is the
number of mutated positions at which four nucleotides are allowed. It can be simplified by
rearranging terms:

pn2,n3,n4 = (1− r)n2+n3+n4 rN2−n2
( r

2

)N3−n3
( r

3

)N4−n4
(11)

Again, we consider a sequence to be present in the library if it fulfills condition (4).
Now, there is no general way to calculate the maximum possible number of mutations.

Instead, we must check, for each sequence type defined by n2, n3, and n4, if condition (4)
is fulfilled. If all positions in the model have same t, we can do the same calculation as for
normal random mutagenesis and determine the maximum number of mutations. This is
the case for model structures made up of stems but not unpaired regions. The results are
therefore the same for smart random mutagenesis and restricted random mutagenesis.
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4.6. Calculating the Number of Unique Sequences in a Library

We have shown how to determine whether a given sequence type is present in the
library, and now show how to determine the number of distinct sequences which belong
to a given sequence type. A sequence type is described by 5 numbers: the number of
mutated positions at which 2 nucleotides can occur n2 out of N2, the number of mutated
positions at which 3 nucleotides can occur n3 out of N3, the number of mutated positions at
which 4 nucleotides can occur n4 out of N4 (positions forming base pairs are in this case not
counted in this group), the number of base pairs with a single mutation n5 out of Nbp, and
the number of base pairs with a double mutation n6 out of Nbp. We only consider cases in
which each of the six possible pairs (A-U, U-A, C-G, G-C, G.U, or U.G) can occur at paired
positions.

We wish to first determine the number of different ways in which the mutated posi-
tions can occur for different values of n2, . . . , n6 and N2, . . . , Nbp. If we want to choose n2

positions out of N2 positions, this can happen in
(

N2
n2

)
different ways. Therefore, if we

are choosing all 5 types of mutations at once, the number of ways in which they can occur
is the product of 5 such terms:(

N2
n2

)(
N3
n3

)(
N4
n4

)(
Nbp
n5

)(
Nbp − n5

n6

)
(12)

where the number of mutated positions of a given type has to be less than or equal to
the number of such positions in the secondary structure model. Note that base pairs
containing two mutations (such as C-G to G-C) are chosen from all base pairs minus base
pairs containing a single mutation (such as C-G to U.G), not from all base pairs.

Next, we need to determine the number of ways in which these mutations can occur
such that they are consistent with the secondary structure model. For mutations at positions
at which 2 nucleotides are allowed, this is simple. They can only change to another mutation
consistent with the sequence requirements of the motif in one way, so the number of ways to
realize n2 of such mutations at defined positions is 1. Positions with 3 allowed nucleotides
have 2 possible active mutations, so the number of ways to realize n3 of such mutations
at defined positions is 2n3 . Positions with 4 allowed nucleotides have 3 possible active
mutations, so the number of ways to realize n4 of such mutations at defined positions
is 3n4 .

In the case of base pairs, we start with sequences containing only canonical pairs and
consider mutations to be consistent with the sequence requirements of the motif if they
generate a canonical base pair or a G.U or U.G wobble pair. A canonical base pair has 6
possible single mutant variants, only 1 of which is active (the one to a G.U or U.G wobble
pair), so the number of ways to realize n5 of such mutations at defined positions is 1. The
number of possible double mutants is 9, of which 4 are consistent with pairing (one to a
wobble pair and three to canonical base pairs), so the number of ways to realize n6 of such
mutations at defined positions is 4n6 .

The total number of distinct sequences consistent with the secondary structure model
for the given numbers of mutations is the product of Formula (12) and the number of ways
to realize each type of mutation at the given positions:(

N2
n2

)(
N3
n3

)(
N4
n4

)(
Nbp
n5

)(
Nbp − n5

n6

)
2n33n44n6 (13)

5. Conclusions

In this report we describe a simple method to generate nucleic acid libraries enriched
for a desired secondary structure. The method uses degenerate positions to encode both
base pairs and unpaired positions in the motif. Libraries can be generated in a single
synthesis, although split-and-pool approaches can be used to increase the fraction of
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library members with the potential to form the desired structure. This approach does not
use folding algorithms, which means that it can in principle be applied to any motif for
which the sequence requirements are known. Libraries constructed using this method will
contain more sequences with the potential to form a desired secondary structure than those
generated by random mutagenesis, and the advantage is larger for more complex structures.
Because this method of library construction can significantly increase the number of distinct
variants of a motif that can be sampled in a single artificial evolution experiment, we
anticipate that it will be useful for the optimization and structural characterization of
functional nucleic acid motifs such as aptamers, ribozymes, and deoxyribozymes.

Supplementary Materials: The following are available online, Figure S1: Maximizing the number
of unique sequences that form a specific stem in libraries of 1012 sequences, Figure S2: Maximizing
the number of unique sequences that form a specific stem in libraries of 109 sequences, Figure S3:
Maximizing the number of unique sequences that form a specific stem in libraries of 106 sequences,
Figure S4: Enrichment of stem variants in secondary structure libraries relative to randomly mutage-
nized libraries, Figure S5: Secondary structure libraries based on known motifs for library sizes of
1012 sequences, Figure S6: Secondary structure libraries based on known motifs for library sizes of
109 sequences., Figure S7: Secondary structure libraries based on known motifs for library sizes of
106 sequences.
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