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Real-world clinical multi-omics analyses
reveal bifurcation of ER-independent and ER-
dependent drug resistance to CDK4/6
inhibitors

Zhengyan Kan 1 , Ji Wen 1, Vinicius Bonato2, Jennifer Webster3,
Wenjing Yang1, Vladimir Ivanov4, Kimberly Hyunjung Kim1, Whijae Roh 1,
Chaoting Liu1, Xinmeng Jasmine Mu1, Jennifer Lapira-Miller1, Jon Oyer1,
Todd VanArsdale1, Paul A. Rejto1 & Jadwiga Bienkowska1

To better understand drug resistance mechanisms to CDK4/6 inhibitors and
inform precisionmedicine, we analyze real-worldmulti-omics data from 400
HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors
plus endocrine therapies, including 200 pre-treatment and 227 post-
progression samples. The prevalences of ESR1 and RB1 alterations sig-
nificantly increase in post-progression samples. Integrative clustering ana-
lysis identifies three subgroups harboring different resistance mechanisms:
ER driven, ER co-driven and ER independent. The ER independent subgroup,
growing from 5% pre-treatment to 21% post-progression, is characterized by
down-regulated estrogen signaling and enrichment of resistance markers
including TP53 mutations, CCNE1 over-expression and Her2/Basal subtypes.
Trajectory inference analyses identify a pseudotime variable strongly cor-
related with ER independence and disease progression; and revealed bifur-
cated evolutionary trajectories for ER-independent vs. ER-dependent
drug resistance mechanisms. Machine learning models predict therapeutic
dependency on ESR1 and CDK4 among ER-dependent tumors and CDK2
dependency among ER-independent tumors, confirmed by experimental
validation.

The hormone receptor-positive (HR+), human epidermal growth fac-
tor receptor 2-negative (HER2-) subtype accounts for over 70% of
breast cancer diagnoses1. Among those patients ~30% progress to
metastatic disease and ~6% present with metastatic disease at
diagnosis2. Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) such
as palbociclib, ribociclib and abemaciclib have significantly improved
clinical outcomes forHR+, HER2- locally advanced ormetastatic breast
cancer (mBC) when combined with endocrine therapies (ET)3.

However, intrinsic or acquired resistance to CDK4/6i plus ET repre-
sents a major unmet medical need. Since the FDA approval of Palbo-
ciclib in 2015, many clinical and pre-clinical studies have shed light on
the molecular mechanisms driving CDK4/6i resistance and informed
new drug development. Comparing themolecular profiles of tumor or
liquid biopsies taken at pre-treatment and post-progression provides
direct insights into drug resistance mechanisms in patients. However,
tumor biopsy studies conducted to-date have been limited by the
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number of samples, especially those collected post-progression. On
the other hand, liquid biopsy studies such as sequencing of circulating
tumor DNA (ctDNA) have been limited by the number of genes
investigated and lower assay sensitivity compared to tumor biopsies.
Nevertheless, the collective scientific effort has identified several
potential drivers of resistance contributing to mBC progression on
CDK4/6i plus ET in the clinical setting4.

Sequencing of ctDNA from patients after progression on riboci-
clib plus ET has identified FGFR1 amplifications or activatingmutations
in 41% of cases5. ctDNA analysis of paired liquid-biopsy samples from
the PALOMA-3 trial found that new PIK3CA and ESR1 driver mutations
frequently emerged after treatment in both the treatment arm (pal-
bociclib plus fulvestrant) and the control arm (fulvestrant only). In
contrast, RB1 LOF mutations were detected only in the treatment arm
in 4.7% of the patients6. Gene-panel sequencing of a cohort of real-
world tumor-biopsies confirmed that PIK3CA and ESR1 mutations are
most enrichedpost CDK4/6plus ETprogression7, withRB1LOF in5%of
post-progression samples. A whole-exome sequencing (WES) study
revealed eight distinct mechanisms of resistance to CDK4/6i including
RB1 loss, activating alterations inAKT1,RAS,AURKA,CCNE2, ERBB2, and
FGFR2, and loss of estrogen receptor expression8. A large-panel gene
expression analysis of tumor samples from the PALOMA-3 trial found
that high CCNE1 mRNA expression was associated with relative resis-
tance to palbociclib9. A prospective study of palbociclib-treated
patients revealed that post-treatment tumors were enriched in APO-
BEC mutation signatures, and many switched to aggressive molecular
subtypes with estrogen-independent characteristics. Upon disease
progression, mutation frequency increased in RB1, ESR1, PTEN, and
KMT2C10. In addition, CDK4 or CDK6 overexpression has been reported
as a putative driver of CDK4/6i resistance in preclinical studies11.
Recent studies are increasingly adopting the multi-omics and inte-
grative approaches towards studying CDK4/6i resistance and identi-
fying correlates of drug response12,13. However, prior studies mainly
focused on univariate approaches that preclude combined tumor
molecular attributes, hampering the development of precision medi-
cine approaches tailored for patientswhoprogress onCDK4/6i plus ET
due to different resistance mechanisms.

With the growing catalog of molecular markers associated with
CDK4/6i resistance, we aimed to address several inadequately
addressed questions: (1) Which of the previously identified markers
associate with resistance in the real-world treatment setting? (2)
What is the biomarker prevalence in real-world pre-treatment and
post-progression? (3) Do these biomarkers define tumor subgroups
driven by distinct resistance mechanisms? (4) How do these resis-
tance mechanisms evolve in patients’ tumors? To address these
questions, we assembled a real-world clinical genomic dataset from a
cohort of HR+/HER2- metastatic BC patients who developed pro-
gressive disease (PD) under CDK4/6i plus ET from the de-identified
Tempus database. We then retrospectively analyzed the multi-omics
profiling data derived from pre-treatment and post-progression
tumor biopsies taken from these 400 patients. Our analysis of
genetic drivers and transcriptional programs provided a compre-
hensive list of biomarkers associated with resistance to CDK4/6i plus
ET and estimated prevalence of these markers post-progression.
Integrative machine-learning analysis classified tumors into mole-
cularly distinct subgroups, including a subset of the most aggressive
tumors driven by estrogen receptor (ER) independent mechanisms.
Our analyses suggest distinct drivers of CDK4/6i resistance and
actionable therapeutic strategies for the patient subgroups sup-
ported by real-world evidence.

Results
Overview of cohort and dataset
Our cohort consisted of 400 patients diagnosed with HR+/HER2-
metastatic breast cancers who were treated by CDK4/6 inhibitors

(CDK4/6i) plus endocrine therapies (ET) and developed progressive
disease (PD). Pre-treatment (Pre) biopsies were taken from 200
patients within one year before starting the CDK4/6i treatment and
post-progression (Post) biopsies from 227 patients were taken within
one year following PD (Fig. 1a). Targeted DNA sequencing and RNA-
Seq, using the Tempus xT and RS solid tumor assays, were performed
on 427 tumor samples (200 Pre, 227 Post) including 27 longitudinal
Pre/Post pairs.

The median age of the patients was 57 years old (interquartile
range (IQR): 47–64) andmedian progression free survival (PFS) is 379
days (95% confidence interval: 341–433) (Table 1). All patients
received CDK4/6i plus ET in themetastatic setting, with 80.2%, 21.8%,
and 11.0% of patients receiving palbociclib, abemaciclib, and riboci-
clib respectively. The CDK4/6i were combined with letrozole, ful-
vestrant, and anastrozole as endocrine therapies for 38%, 24.5%, and
8% of patients. Most patients (58%) did not receive any prior treat-
ment in the adjuvant or neoadjuvant settings. Only 39.2% of patients
received prior treatment in the metastatic setting, including 26.8%
who received prior endocrine therapies and 11.8% who received prior
chemotherapies. The median duration between pre-treatment
biopsy to the start of CDK4/6i treatment is 29 days (IQR: 17–54).
The median duration between the end of CDK4/6i treatment to post-
treatment biopsy is 31 days (IQR: 9.5–99.5). Among all biopsies, the
most common tissue sites are liver (32.1%), breast (27.6%), and lymph
nodes (10.1%).

Systematic identification of molecular features associated with
disease progression
We analyzed the multi-omics profiling data to derive three types of
molecular features—genomic alteration frequencies, gene expression
signatures, and analyticalmolecular features—to characterize different
aspects of tumor intrinsic biology as well as tumor microenvironment
(Fig. 1b). We then applied two systematic approaches, Pre/Post com-
parison, and baseline PFS association, to identify features associated
with intrinsic and acquired drug resistance mechanisms that drive
disease progression. Building upon these initial analyses, we per-
formed exploratory analyses such as integrative clustering and tra-
jectory inference to glean biological insights pertaining to patient
stratification and disease progression.

We applied a suite of bioinformatics methods to calculate 63
analytically derived molecular features (See “Methods”) (Supple-
mentary Data 1). Pre/Post comparison analyses found 13 of these
features to be significantly enriched post-progression after FDR
correction (p < 0.05 and q < 5%) (Supplementary Data 2) and 4 fea-
tures significantly associated with shorter PFS at baseline (p < 0.05
and q < 5%) (Supplementary Data 3, Supplementary Fig. 1a). Since
molecular mechanisms that drive disease progression could be more
confidently detected as having association with both intrinsic and
acquired resistance, we examined the convergence between sig-
nificant hits from the two analyses. We found that 4 features were
significant in both analyses: proliferative index, PAM50 correlation
score for Her2 subtype and two latent expression factors identified
by non-negative matrix factorization (NMF) analyses—Paloma3 MYC/
E2F activation factor (F1) and de novo NMF proliferation factor (F11)
(Fig. 1c). We also calculated expression signature scores for 50
Hallmark pathways to represent specific biological states or pro-
cesses implicated in tumor biology14 and identified 33 signatures
significantly increased from Pre to Post (p < 0.05 and q < 5%) (Sup-
plementary Data 4). PFS association analysis found that 7 signatures
were significantly associated with shorter PFS (Supplementary
Data 3, Supplementary Fig. 1b). These seven signatures, related to
tumor metabolism (glycolysis, PI3K/AKT/mTOR signaling, UV
response up), cell cycle regulation (G2M checkpoint, MYC targets)
and unfolded protein response pathways, were significant hits from
both analyses (Fig. 1d).
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Fig. 1 | Molecular features associated with disease progression. Schematic
overviewsof studydesign (a) anddata analysis strategy (b). Volcanoplots highlighting
molecular features (c) and Hallmark gene signatures (d) significantly up regulated
from Pre to Post and associated with shorter PFS at baseline. The y-axis shows the
signed log10(p) representing the statistical significance of the change in feature value
between Pre and Post, estimated by two-sided linearmixed-effects regression (LMER).
% Change: percentage change in feature value in Post vs. Pre. Coef: effect size mea-
sured by regression coefficient from LMER analysis. The vertical dashed lines indicate

the cutoffs >10% or <−10%. The horizontal dashed line indicates the cutoff for p
value <0.05. Each signature is colored based on its statistical significance, with red
indicating that both cutoffs aremet andblue and green indicating that only one of the
cutoffs is met. −Log10 P: statistical significance. NS: not significant. e Systematic Pre
vs. Post Comparison of Genomic Alteration Frequencies identified 7 genes with one-
tailed fisher exact test p<0.05 and alteration frequency in Post >5% and covered in all
sequencing panels. Source data are provided as a Source Data file.
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ESR1 and RB1 genomic alterations represent major mechanisms
of acquired drug resistance
We compared genomic alteration frequencies (GAF) between pre-
treatment and post-progression sub-cohorts for 611 genes and iden-
tified 7 genes with significant increases of GAF post-progression
(p < 0.05, Fisher Exact Test—FET) (Supplementary Data 5, Fig. 1e). ESR1
had themost significant increase in GAF between Pre and Post (15% vs.
41.9%, p = 5.41e-10). RB1 was ranked second with GAF increased from
3% pre-treatment to 13.2% post-progression (p = 8.5e-05 FET). Only
ESR1 and RB1 remained significant after FDR adjustment, with
q = 4.48e-07 and q =0.035 respectively. We calculated baseline PFS
associations for 140 gene-level mutations, 41 copy number amplifica-
tions, and 14 deletions (Supplementary Data 3). After FDR adjustment,
only TP53 mutation remained significant (q = 3.7e-3, HR = 2.12) (Sup-
plementary Fig. 1c). RB1 and ESR1 mutations showed a non-significant
trend towards association with shorter PFS with p = 5.4-e2 (q =0.22,
HR = 2.53) and p =0.35 (q = 0.51, HR = 1.31) respectively (Supplemen-
tary Fig. 1d-e).

An acquired genomic alteration, defined as a somatic alteration
detected in the post-progression samples but not in any pre-treatment
samples from the same patient, could be selected through tumor
clonal evolution due to its functional contribution to drug resistance.

We ranked the gene-level frequencies of acquired genomic alterations
for 26 longitudinally paired samples and found that ESR1 and RB1were
among the top 10 genes ranked by acquired GAF, strengthening the
evidence implicating these two genes in conferring resistance to
CDK4/6i plus ET (Supplementary Fig. 2a). Compared to RB1 and TP53
mutations, ESR1 mutations are more strongly associated with up-
regulation of estrogen response signature, consistent with the
understanding that ESR1 mutations activate the estrogen signaling
pathways (Supplementary Fig. 2b). On the other hand, RB1 and TP53
mutations aremore strongly associatedwithmarkers of tumor growth
and proliferation such as proliferation index and cyclin E1 gene
expression (Supplementary Fig. 2c, d). Post-progression ESR1 muta-
tions are enriched in the ligand-binding domain (LBD) consisting of
multiple hotspot mutations, such as Y537S, Y537N, D538G, known to
mediate constitutive signaling (Supplementary Fig. 3a). RB1 and TP53
mutations are enriched in protein-truncating alterations, such as fra-
meshift, nonsense or splice-site changes that tend to result in loss-of-
function (LOF) (Supplementary Fig. 3b, c). Echoing previous observa-
tions such as the PALOMA-3 ctDNA study6, our results indicate that
ESR1 and RB1 genomic alterations are two major mechanisms of
acquired resistance to CDK4/6i plus ET6.

Cell cycle de-regulation and decreased ER signaling strongly
associated with disease progression
Cell cycle dysregulation through genetic alteration of cell cycle reg-
ulators such as RB1 and TP53 is a key mechanism for conferring CDK4/
6i resistance4. Our analyses revealed various evidence suggesting that
aggressive tumor growth and proliferation due to abnormal regulation
of cell cycle is strongly linked to disease progression. While RB1 was
oneof the top geneswith increasedGAFpost-progression, GAFofTP53
also increased from 28.5% to 37% (p = 3.9e-02, FET) (Fig. 1e). In addi-
tion, both RB1 and TP53 mutations were significantly associated with
increased proliferation index (RB1: p = 6e-04,Wilcoxon rank sum test—
WRST; TP53: p = 8.1e-06, WRST) and CCNE1 gene expression (RB1:
p = 3e-08, WRST; TP53: p = 2.4e-04, WRST) (Supplementary Fig. 2c, d).

The proliferative index, an 11-gene signature representing tumor
growth and proliferation, significantly increased post-progression
among all samples (p = 1.2e-4, WRST) and was significantly associated
with shorter PFS (p = 3.1e-3, q =0.04, HR = 1.3, CPH) (Supplementary
Fig. 4a, b). In addition, aggressive PAM50 subtypes such asHer2 (2% to
12.3%, p = 2.96e-5, Fisher Exact Test—FET) and Basal (1.5% to 7.1%,
p = 8.0e-3, FET) increased from Pre to Post. In contrast, the less
aggressive Luminal A subtype decreased from 70.5% Pre to 47.1% Post
(p = 1.31e-06, FET) (Supplementary Fig. 4c). PAM50 correlation scores
for Her2 (p = 4.1e-5, q = 2.2e-03, HR = 1.41, CPH) and Basal (p = 1.4e-2,
q =0.10, HR = 1.27, CPH) subtypes are also significantly associatedwith
shorter PFS (Supplementary Fig. 4d, e). On the other hand, PAM50-
score for Luminal A was associated with longer PFS (p = 7.7e-05,
q = 2.8e-03, HR =0.71, CPH) (Supplementary Fig. 4f).

Cyclin E1 is a key cell cycle regulator of CDKs and the G1/S tran-
sition and CCNE1 expression has been previously reported to be a
predictive marker of CDK4/6 resistance by the PALOMA-3 clinical
study9. NMF analysis of the PALOMA-3 gene expression data also
identified theMYC/E2F Activation Factor (F1) as a predictive marker of
CDK4/6i resistance15. In our cohort, CCNE1 expression is significantly
up-regulatedpost-progression (p = 2.5e-05,WRST) and associatedwith
shorter PFS at baseline (p = 2.5e-3, HR = 1.29, CPH) (Supplementary
Fig. 5a, b). Moreover, the MYC/E2F Activation factor significantly
increased post-treatment in all samples (p = 6.9e-06, WRST) with a
marginally significant increase among paired samples (p =0.052,
paired WRST) (Supplementary Fig. 5c). This factor is also significantly
associated with shorter PFS (p = 1.1e-5, q = 5.0e-04, HR = 1.49, CPH)
(Supplementary Fig. 5d). Consistently, Hallmark signatures for E2F
targets and MYC targets are also significantly up-regulated post-pro-
gression and associated with shorter PFS at baseline (Supplementary

Table 1 | Summary of cohort characteristics

Pre (n = 200) Post
(n = 227)

All (n = 400)

Patient age, median (s.d.)

Age at PD 59 (12.0) 55 (12.1) 57 (12.2)

CDK4/6 treatment, n (%)

Palbociclib 156 (78.0%) 185 (81.5%) 321 (80.2%)

Abemaciclib 48 (24.0%) 47 (20.7%) 87 (21.8%)

Ribociclib 24 (12.0%) 24 (10.6%) 44 (11.0%)

Endocrine therapy, n (%)

Letrozole 95 (47.5%) 95 (41.9%) 178 (44.5%)

Fulvestrant 65 (32.5%) 77 (33.9%) 134 (33.5%)

Anastrozole 19 (9.5%) 25 (11.0%) 40 (10.0%)

Exemestane 10 (5.0%) 9 (4.0%) 17 (4.2%)

Leuprolide 9 (4.5%) 15 (6.6%) 21 (5.2%)

Goserelin 6 (3.0%) 10 (4.4%) 15 (3.8%)

Tamoxifen 5 (2.5%) 13 (5.7%) 17 (4.2%)

Prior treatment in adjuvant or
neoadjuvant settings, n (%)

Chemotherapy 46 (23.0%) 61 (26.9%) 100 (25.0%)

Endocrine therapy 57 (28.5%) 87 (38.3%) 132 (33.0%)

All prior treatment 76 (38.0%) 105 (46.3%) 168 (42.0%)

Prior treatment in metastatic
setting, n (%)

Prior chemotherapy 21 (10.5%) 32 (14.1%) 47 (11.8%)

Prior endocrine therapy 55 (27.5%) 61 (26.9%) 107 (26.8%)

All prior treatment 76 (38.0%) 97 (42.7%) 157 (39.2%)

Biopsy site, n (%)

Breast 83 (41.5%) 35 (15.4%) 118 (27.6%)

Liver 32 (16.0%) 105 (46.3%) 137 (32.1%)

Lymph node 25 (12.5%) 18 (7.9%) 43 (10.1%)

Bone 22 (11.0%) 14 (6.2%) 36 (8.4%)

Thorax 11 (5.5%) 10 (4.4%) 21 (4.9%)

Skin 7 (3.5%) 11 (4.8%) 18 (4.2%)

Lung 6 (3.0%) 6 (2.6%) 12 (2.8%)

Pleura 4 (2.0%) 8 (3.5%) 12 (2.8%)

Others 10 (5.0%) 20 (8.8%) 30 (7.0%)
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Fig. 5e–h). Taken together, these results suggest that de-regulation of
cell cycle manifesting in aggressive tumor growth and proliferation
confers drug resistance.

While ER loss has been associated with CDK4/6i resistance8, its
mechanism and correlation with other markers of CDK4/6i resistance
remains poorly understood. Our analysis revealed that markers of
decreased ER signaling are strongly associated with disease progres-
sion. The estrogen receptor-α (ESR1) gene expression is down-
regulated after disease progression (p = 7.2e-13, WRST) and
significantly associated with longer PFS pre-treatment (p = 2.6e-2,
HR =0.80, CPH) (Supplementary Fig. 6a, b). Progesterone receptor
(PGR), a marker of estrogen signaling, is significantly down-regulated
post-treatment (p = 9e-11, WRST) and associated with longer PFS pre-
treatment (p = 4.7e-5, HR =0.7, CPH) (Supplementary Fig. 6c, d). In
addition, the estrogen response factor (F10) identified by PALOMA-3
data analysis significantly decreased in all samples (p = 5.4e-09, WRST)
and paired samples (p =0.00021, paired WRST) (Supplementary
Fig. 6e). Moreover, the estrogen response factor is significantly asso-
ciated with longer PFS (p = 6.9e-7, q = 1.3e-04, HR =0.61, CPH) (Sup-
plementary Fig. 6f). Thus, decreased ER signaling could indicate a loss
of dependence on ER signaling as the oncogenic driver which would
confer resistance to endocrine treatments.

Integrative multi-omics pattern clustering analysis identified
molecularly distinct subgroups
A meta-analysis of six independent cohorts has reported mutual
exclusivity of ESR1 and TP53 mutations in endocrine resistant, ER+
metastatic breast cancer16. In our cohort, TP53 and ESR1 mutations
are significantly mutually exclusive in Post (p = 3.78e-4, logistic
regression—LR), but were not detected as mutually exclusive in Pre
(p = 0.299). Interestingly, TP53 mutations are also mutually exclu-
sive with GATA3 mutations in both Pre (p = 1.8e-2, LR) and Post
(p = 2.4e-4, LR). ESR1 and RB1 mutations showed a non-significant
trend of mutual exclusivity among post-progression samples
(p = 0.126, LR).

To explore the possibility that patients may be stratified into
segments whose cancers are driven by distinct drug resistance
mechanisms, we performed integrative clustering analysis on selected
multi-omics features using iClusterPlus17 (see “Methods”). This analysis
revealed five integrative clusters IC1-5 with distinct molecular features
consisting of 13.35% (n = 57), 29.7% (n = 127), 22.7% (n = 97), 25.1%
(n = 107) and 9.1% (n = 39) of the cohort samples respectively (Fig. 2a,
Supplementary Data 6). IC1 is significantly associated with shorter PFS
(p = 3.43e-05, HR = 4.47) and increased from5%pre-treatment to 20.7%
post-progression (FET: p = 1.38e-06). In contrast, IC4 is marginally
associatedwith longer PFS (p = 8.5e-02,HR =0.68) anddecreased from
30% pre-treatment to 20.7% post-progression (FET: p = 3.3e-02)
(Fig. 2b, c). The PAM50 subtypes are differentially distributed vs. the
integrative clusters. The non-luminal subtypes, Basal andHer2-like, are
strongly enriched in IC1, of which 35.1% (20/57) was classified as Her2,
33.3% (19/57) was classified as Basal, and 22.8% (13/57) was classified as
Luminal B. On the other hand, IC4 and IC5 are predominantly classified
as Luminal A while IC2 and IC3 are predominantly classified as Luminal
A or Luminal B (Supplementary Fig. 7a). IC3 is differentiated from IC2
in that it is enriched in liver as the tissue site of biopsy (52.6% vs. 31.7%)
and has higher tumor purity than other clusters (Supplementary
Fig. 7b, c). IC5 exhibits a distinctive tissue site distributioncompared to
IC4 and other clusters with an enrichment in pleura and lymph.
(Supplementary Figs. 7b, c).

Notably, IC1 is differentiated from other clusters by significant
down-regulation of estrogen signaling markers such as estrogen
receptor (ESR1) andprogesterone receptor (PGR1) expression (Fig. 2d).
IC1 is also strongly associated with markers linked to cell cycle pro-
gression and CDK4/6i resistance, including cyclin E1 up-regulation
(Fig. 2d), increased PALOMA-3 NMF factor F1 (MYC/E2F activation)

factor, decreased F10 (Estrogen response) factor (Supplementary
Fig. 7d), increased Hallmark E2F/MYC targets and decreased estrogen
response signatures (Supplementary Fig. 7e). Furthermore, these five
clusters of tumors harbored distinct pattern of genomic alterations
suggesting that different oncogenic drivers contributed to their dis-
easedevelopment.TP53mutation is significantly enriched in IC1 (75.4%
vs. 24.6%, FET: p = 1.32e-12) whereas ESR1 mutation prevalence is sig-
nificantly lower in IC1 compared to other clusters (8.8% vs. 25.4%, FET:
p =0.004) (Fig. 2e).RB1mutation is enriched in IC1 (12.3% vs. 6.2%, FET:
p =0.1) but under-represented in IC4 (2.8% vs. 8.4%, FET: p =0.05).
Likewise, MYC amplification is enriched in IC1 (21.1% vs. 7.6%, FET:
p =0.003) but under-represented in IC4 (4.7% vs. 10.9%, FET:p =0.057)
(Fig. 2f). Hence, the mutual exclusivity patterns among mutations of
TP53, ESR1, RB1, and GATA3 could be attributed to tumor stratification
that result from distinctive drug resistance mechanisms mediated by
these cancer genes.

To investigate whether IC1 tumors had lower ER levels prior to
treatment or lost ER signaling during the course of treatment, we
curated immunohistochemistry (IHC) results in an independent set of
tumor specimens taken frompatients in our cohort.We then evaluated
the longitudinal change in ER levels over three clinical settings—pri-
mary tumor (Primary), metastatic & pre-treatment (MetPre) and
metastatic & post-treatment (MetPost)—while grouping patients by
integrative clusters or PAM50 subtypes based on tumor expression
profiles of their Post samples (Supplementary Fig. 8a, b). A significant
longitudinal loss of ER was only observed among patients whose
tumorswere classified asHER2 (p = 4e-04, KruskalWallis test - KWT) or
IC1 (p = 5.4e-02, KWT) after disease progression, suggesting that
treatment induced ER loss in these subsets of patients.

IC1 tumors are characterized by both loss of ER signaling anddrug
resistancemarkers such as cyclin E1 over-expression that are indicative
of aggressive tumor growth and proliferation. Thus, we hypothesize
that IC1 represents a molecular state that is “ER-independent”, indi-
cating loss of dependence on ER signaling as the oncogenic driver with
increasing reliance on alternative mechanisms such as cell cycle de-
regulation through RB1 loss-of-function (LOF) (Fig. 2g). Thismolecular
state is likely to be resistant to both CDK4/6i and endocrine therapies.
In contrast, IC4 and IC5 seem to be driven by ER signaling, coined as
“ER-driven”, based on higher estrogen response signatures, frequent
ESR1 gain-of-function (GOF) mutations along with a lack of RB1 muta-
tions relative to IC1. It is noteworthy that tumors classified as IC2 or
IC3 share molecular characteristics with both ER-independent tumors,
such as RB1 LOF mutation, and ER-dependent tumors, such as ER GOF
mutations and high estrogen response signatures. Hence, we hypo-
thesize that IC2/3 tumors are “ER co-driven”, driven by both ER sig-
naling and alternate mechanisms such as cell cycle de-regulation. The
main distinction between IC2 and IC3 appears to be tumor external
factors since IC3 is enriched in liver biopsies with relatively high tumor
purity compared to IC2. This observation promoted us to further
delineate molecular heterogeneity by focusing on tumor intrinsic
factors.

ER-independent tumors harbored heterogeneous tumor intrin-
sic mechanisms implicated in drug resistance
To investigate the biologicalmechanisms that uniquely contributed to
ER-independence and associated drug resistance, we performed sys-
tematic differential expression (DE) analyses to compare integrative
clusters IC1-5 and PAM50 subtypes (Supplementary Data 7). We
deconvoluted bulk tumor expression profiles using BayesPrism18 to
derive cancer-specific expression (CSE) profiles and gene signature
scores for delineating differences in tumor intrinsic biology. Bulk
tumor expression analyses had linked increased cell cycle regulatory
and tumor metabolic signatures and decreased estrogen response
markers to disease progression (Supplementary Fig. 3). Consistently,
CSE analysis revealed that IC1 has strongly decreased estrogen
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response signature and increased cell cycle regulatory signatures such
as E2F targets andMYC targets and tumormetabolic signatures such as
glycolysis andmTORC1 signaling compared to IC2-5, affirming that IC1
is the most aggressive of the four clusters. Moreover, CSE analysis
revealed that tumor intrinsic inflammatory response, JAK/STAT, and
epithelial-mesenchymal-transition (EMT) signatures are up-regulated
in IC1 (Fig. 3a, b). EMT enables cancer cells to acquire stem cell-like

phenotype and is believed to confer resistance to various therapeutic
agents in multiple cancers19. JAK/STAT and inflammatory signaling
were found to drive lineage plasticity and antiandrogen resistance in
castration-resistant prostate cancer20. Taken together, up-regulation
of these tumor intrinsic signatures in IC1 (IC1-UP) indicated that ER-
independent tumors harbored heterogeneous tumor intrinsic mole-
cular mechanisms that contributed to drug resistance, including cell
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cycle dysregulation4, metabolic reprogramming21,22, EMT19, and
inflammatory signaling20.

Non-luminal PAM50 subtypes such as Her2-like and Basal-like are
typically associated with HER2-positive and triple negative breast
cancers. These non-Luminal subtypes only accounted for 11.9% (51/
427) of our HR+/HER2- cohort but are significantly associated with
disease progression (Supplementary Fig. 4c, e) and strongly enriched
in the ER-independent tumors (Supplementary Fig. 7b). In a long-
itudinal study of Palbociclib resistance, we have previously reported
that tumors frequently switched from Luminal subtypes at baseline to
Her2-like subtype post-treatment along with decreased expression of
estrogen-response genes10. Lineage plasticity is known to cause drug
resistance by enabling tumor conversion into a different subtype and
loss of dependency on the original oncogenic driver23. Loss of luminal
lineage factors along with ER expression has been linked to endocrine
resistance in ER+ breast cancers24. A recent study has demonstrated
that cell plasticity enables a distinct subset of luminal breast tumors
expressing lower levels of ER to evolve and gain basal-like features25.
Echoing these findings, we also observed in our cohort that Basal-like
tumors are down-regulated in luminal lineage markers such as FOXA1,
SPDEF, and KRT18 while up-regulating basal lineage markers including
KRT5, KRT14, and KRT17 (Supplementary Fig. 9a-b). In addition, Her2-
like tumors are strongly up-regulated in ERBB2 signaling along with
higher ERBB2 gene expression when compared to other subtypes
(Supplementary Fig. 9c, d). The non-Luminal tumors are characterized
byhigher levels of IC1-UPdrug resistance signatures and lower levelsof
tumor intrinsic estrogen response signature when compared to
Luminal tumors. Tumor metabolic signatures are higher in both Her2
and Basal to a similar extent while inflammatory and EMT signatures
are significantly higher in Basal than in Her2 (Fig. 3c).

Pseudotime analysis identified a latent disease progression tra-
jectory associated with ER independence
We noticed the opposite trends of increasing drug resistance sig-
natures and decreasing estrogen response signatures from Luminal
subtypes associated with IC4-5 to non-luminal subtypes associated
with IC1, suggesting that drug resistance evolved through a series of
molecular states along with decreasing dependence on estrogen sig-
naling (Fig. 3b, c). To better delineate this latent process of disease
progression, we performed trajectory inference analyses which are
often used in single-cell transcriptomics to determine quantitative
variables that measure the relative progression of cells through a
dynamic biological process. We postulated that tumor expression
profiles from a large cohort of patients allow us to sample the land-
scape of possible molecular states of the disease that emerge and
evolve under treatment and model dynamic progression of drug
resistance. To explore the latent dimensions of disease progression,
we used Monocle 326 to define a pseudotime variable (PT) to measure
progression along a latent process for each tumor sample from theCSE
profiles (Supplementary Data 8, Supplementary Fig. 10a). We sepa-
rated the post-progression samples into two time points—during
treatment (During) and post treatment (Post) and saw that PT long-
itudinally increased from Pre, During to Post (p = 1.9e-08)

(Supplementary Fig. 10b, c). We also observed an increasing trend of
PT from Luminal A to Luminal B and then to Her2 and Basal (p =0.089,
Mann–Kendall Trend Test - MKT), consistent with the prior knowledge
that non-Luminal subtypes are more aggressive with worse clinical
outcome than Luminal subtypes (Supplementary Fig. 10d). Comparing
tumors classified into different integrative clusters, PT increased from
IC4 to IC2 and IC3 and reached the highest values in IC1 (p = 0.027),
consistentwith thehypothesis that IC1 represent a subgroupof tumors
that are aggressive and drug-resistant (Supplementary Fig. 11a). PTwas
also significantly anti-correlated with estrogen signaling markers
including ESR1 (Pearson correlation r = −0.42, p = 2e-12), PGR gene
expression (r = -0.4, p = 4.7e-10) and the Estrogen response factor F10
(r = −0.61, p < 2.2e-16) (Supplementary Fig. 11b–d). On the other hand,
PT was significantly correlated with cell growth and proliferation
markers including CCNE1 (r = 0.51, p < 2.2e-16) and MYC2/E2F activa-
tion factor (r = 0.53, p < 2.2e-16) (Supplementary Fig. 11e, f). Among the
50 Hallmark tumor intrinsic signatures, PT is significantly anti-
correlated with the tumor intrinsic estrogen response signature
(r = −0.36, p = 2.66e-10) and positively correlated with cell cycle reg-
ulation, tumor metabolism, inflammatory response and EMT-related
signatures that are enriched in ER independent tumors and implicated
in drug resistance (Fig. 4a). Finally, PT is significantly associated with
genomic alterations contributing to faster disease progression
including TP53mutation (p = 1.9e-07), RB1mutation (p = 6.8e-03), and
MYC amplification (p = 9.9e-03) (Supplementary Fig. 11g). These
observations support the hypothesis that the latent pseudotime vari-
able is a descriptor of the dynamic and continuous evolution of ER
independence as a drug resistance mechanism.

Trajectory inference analysis revealed bifurcation of ER driven
vs. ER independent trajectories towards drug resistance
To examine the possibility of multiple trajectories of disease pro-
gression, we used the elastic principal graph (EPG) algorithm27 and
inferred a topology comprised of 3 branches A-C and 21 nodes, where
each branch consists of multiple nodes that are mapped to individual
samples (Fig. 4b). We found that tumor samples mapped to branch C
are enriched in IC1 while those mapped to branches A and B are enri-
ched with IC4 and IC2-3 respectively (Fig. 4c). Like IC1, branch C is
enriched in Her2 and Basal subtypes. In addition, branch A is enriched
in Luminal A while branch B is enriched in Luminal B (Supplementary
Fig. 12a). BranchC increased from 13.8% Pre to 43.9% Post while branch
A decreased from 53.9% to 24.3% (Supplementary Fig. 12b). Branch C is
down regulated in ER signaling markers such as ESR1, PGR expression
(Fig. 4d), estrogen response signature (Supplementary Fig. 12c) and
the PALOMA3 estrogen response factor (Supplementary Fig. 12d). On
the other hand, branch C is up regulated in cell growth and prolifera-
tion markers including CCNE1 expression (Fig. 4d), E2F and MYC tar-
gets signatures (Supplementary Fig. 12c) and the PALOMA3 MYC/E2F
activation factor (Supplementary Fig. 12d). There is a trend of
increasing pseudotime across branches A, B and C (Supplementary
Fig. 12e). Branch C also resembles IC1 with an enrichment of TP53
mutations (61.8% vs. 24.6%, p = 9.25e-08, FET) and fewer ESR1 muta-
tions (7.4% vs. 18.3%, p =0.03, FET) (Fig. 4e). BranchA resembles IC4 in

Fig. 2 | Integrative clustering analysis identified molecularly distinct sub-
groups. a Heatmap showing distinct patterns of molecular features of five inte-
grative clusters IC1-5. Panels of selected multi-omics features include gene
expressions, hallmark signatures (GSVA), PAM50 subtype scores, ESTIMATE scores
for tumor microenvironment, projection to Paloma3 NMF factors, gene-level
genomic alteration status and other tumor characteristics. icluster: integrative
cluster. Cyt score: cytolytic activity score. TMB: tumormutationburden. Treatment
status: Pre/Post. b KM plot comparing the PFS of patients classified into the five IC
clusters. c Changes in the prevalence of IC clusters Pre vs. Post. d Distributions of
ESR1, PGR andCCNE1 gene expressions vs. IC clusters, with sample sizes n = 57 (IC1),
127 (IC2), 97 (IC3), 107 (IC4), and 39 (IC5). Statistical significance was determined

using two-sided Wilcoxon rank sum test. Distributions of TP53, ESR1, RB1, GATA3
mutation statuses (e) and MYC, CCND1 and FGFR1 amplification statuses (f) vs. IC
clusters. g Diagram illustrating the hypothesis of stratifying HR+/HER2- mBC
patients into three segments differentiated by the dependency on ER signaling as
the oncogenic mechanism. The dotted line indicates that the ER co-driven tumor
segment shares some characteristics with the ER independent segment, such as
harboring higher RB1 mutation frequency than ER-driven tumors. For all box-and-
whisker plots, the box is bounded by the first and third quartile with a horizontal
line at the median and whiskers extend to the maximum and minimum value.
Source data are provided as a Source Data file.
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having a lower prevalence of RB1mutations (1.9% vs. 11.3%, p = 3.4e-03,
FET). Branch B harbored more frequent ESR1 (22.9% vs. 11.9%, p = 2.7e-
02, FET) andGATA3mutations (30.1% vs. 13.6%,p = 2.2e-03, FET),which
are enriched in the ER driven and co-driven clusters. It also harbored
frequent oncogenic amplifications, including CCND1 (31.3% vs. 16.4%,
p = 8.9e-03, FET), MYC (18.1% vs. 8.5%, p = 3.6e-02, FET), and FGFR1
(22.9% vs. 8.0%, p = 1.3e-03, FET) (Fig. 4f). Based on these molecular

association patterns, we assigned EPG branches A-C to three distinct
molecular states of ER dependence - branch A to ER driven, B to ER co-
driven and C to ER-independent (Fig. 4b). If branch A is considered the
root of the tree corresponding to the ER driven and relatively drug
sensitive molecular state, then the bifurcated branches B and C
represent two alternative mechanisms of drug resistance states where
tumors in branch B frequently enhanced ER signaling through ESR1
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gain-of-function mutations while tumors in branch C bypassed ER
signaling as oncogenic driver.

Defining a trajectory as a sequential ordering of nodes, two dis-
tinct trajectories emerge through EPG analysis with one spanning
branches A to B (A-B) and another one spanning branches A and C (A-
C) (Fig. 4b). Echoing the trendof increasingpseudotime frombranches
A to C (Supplementary Fig. 12e), we observed increasing fractions of
post-progression samples (During or Post) across the nodes spanned
by trajectories A-B and A-C (Supplementary Fig. 13a, b). We also
observed increasing fractions of ER co-driven (IC2-3) samples along
trajectory A-B compared to increasing fractions of ER independent
(IC1) samples along trajectory A-C (Supplementary Fig. 13c, d). More-
over, PT exhibited significant trends continuously increasing across
the nodes spanned by both trajectories (A-B: p = 1.7e-4, A-C: p = 2.0e-5,
MKT), suggesting that both trajectories represent disease progression
(Supplementary Fig. 13e, f). On the other hand, there is a significant
decreasing trend of ESR1 expression (p = 5.1e-5, MKT) through trajec-
tory A-C whereas no significant change of ESR1 expression was
observed along trajectory A-B (p =0.92, MKT) (Supplementary
Fig. 13g, h), suggesting distinctivemolecular dynamics in these tumors
during disease progression.

We evaluated the statistical significance of the monotonic trends
for various CSE signatures along the two trajectories (Supplementary
Data 8). Among IC1 up-regulated signatures, tumor growth and pro-
liferation signatures such asMYC targets exhibited an increasing trend
in both trajectories (Supplementary Fig. 14a). On the other hand,
tumor metabolic (glycolysis), inflammatory (JAK/STAT) and KRAS
signaling signatures only increased along the trajectory A-C (Supple-
mentary Fig. 14b–d). Furthermore, we observed strong increasing
trends from branches A to C for stem cell division and HIPPO/YAP
pathway signatures in contrast to a decreasing trend from branches A
to B, implicating cellular reprogramming and dedifferentiation in the
transition into ER independence (Supplementary Fig. 14e, f).

Machine learning models predicted changes in target gene
dependencies in ER-independent tumors
Integrative clustering analyses classified 77.0% (161/209) of post-
progression tumors as ER driven or ER co-driven, suggesting that ER
signaling remained a dependency for most of the post-progression
tumors and therefore should be targeted by the next generation of
therapies. In addition,wehavepreviously reported thatpalbo-resistant
breast cancer cell lines up-regulated cyclin E1 expression and became
sensitive to CDK2/4/6i (PF3600) due to its CDK2 inhibitory activity15.
Since IC1 also over-expressedCCNE1 compared to other clusters, CDK2
inhibition could be an effective treatment against ER-independent
tumors.

To examine this therapeutic hypothesis, we used the elastic net
algorithm to develop machine learning models (ENRS) to predict
dependency on four drug target genes—ESR1, CDK2, CDK4, and CDK6
(Fig. 5a). The models were trained on CRISPR-KO screen and gene
expression data from a pan-cancer panel of cell lines from the DepMap
project28 (see “Methods”). Using tumor CSE as input, each ENRSmodel
estimates a score for a target gene similar to the CERES dependency
score29, where lower score indicates a higher likelihood that inhibiting
the gene functionwould kill the cancer cell (Supplementary Data 9). In

support of our hypothesis, the models predicted increased depen-
dency onCDK2 alongwith decreased dependency on ESR1 andCDK4 in
IC1 compared to IC2-5 (Fig. 5b). Consistent with this observation,
tumor dependency onCDK2was predicted to increase at Post vs. Pre in
contrast to decreased dependency on ESR1 and CDK4 (Fig. 5c). Pre-
dicted CDK6 dependency decreased in IC1 and post-progression but
the change is less drastic than CDK4 or ESR1 (Fig. 5b, c). These results
suggest the need for a differentiated therapeutic approach to address
the relative shift in cancer dependency from ESR1 and CDK4 in ER-
driven tumors towards CDK2 in ER-independent tumors.

Experimental validation of therapeutic hypotheses in geneti-
cally modified cell lines
The ER driven and co-driven tumor subgroups (IC2-4) frequently har-
bored ESR1 gain-of-function (GOF) mutations. In contrast, the ER-
independent tumor subgroup is enriched in RB1 and TP53 mutations
with low prevalence of ESR1 mutations (Fig. 2g). These oncogenic
mutationsmay be used to create preclinicalmodels that harbor similar
therapeutic vulnerability as the corresponding tumor archtypes in the
clinical setting although these models cannot fully recapitulate the
complex genomic profiles of individual tumors. Like the dependency
pattern observed in ER-dependent tumors, perturbation response
models predicted increased dependency on ESR1 and CDK4 compared
to wild types in ESR1 mutant tumors (Fig. 5d), suggesting that ESR1
activatingmutations do not confer resistance to CDK4 inhibition or ER
ablation. The ER-Y537S mutation has been shown to promote con-
stitutive ER signaling and induce resistance to fulvestrant30. To validate
our in-silico prediction, we created an isogenic ERGOFmutant (Y537S)
cell line fromMCF7and compared treatment effects by fulvestrant and
palbociclib on the ESR1mutant andwild-type cell lines using an in vitro
competitive growth assay. The ERGOFmutant cells maintained similar
sensitivity to palbociclib as the parental MCF cells (Fig. 6a) but were
resistant to fulvestrant (Fig. 6b), suggesting that post-treatment
tumors that developed drug resistance through acquired ESR1 muta-
tions are still sensitive to CDK4 inhibition. Perturbation response
models also predicted that RB1 and TP53 mutant tumors harbored
increased dependency on CDK2 when compared to the wild-type
tumors (Fig. 5d). An isogenic RB LOFmutant cell line was created from
the Luminal breast cancer cell line T47D, which endogenously har-
bored a TP53 mutation L194F. We then performed colony formation
assays and found that shRNA mediated CDK2 knockdown resulted in
greater reduction in cell viability in RB LOFmutant T47D compared to
the parental cells (Fig. 6c, e), supporting the causality between RB1
loss-of-function and increased CDK2 dependency.

Discussion
Our retrospective analysis of a real-world multi-omics dataset from
metastatic BC patients who received CDK4/6i plus ET confirmed sig-
nificant increases in the prevalence of ESR1 and RB1 mutations among
post-progression tumors. Integrative analysis further identified three
tumor subgroups—ER driven, ER co-driven and ER independent. The ER-
independent subgroup is down-regulated in estrogen receptor medi-
ated signaling and enriched CDK4/6i resistance markers including RB1
LOF and TP53 LOF mutation. In contrast, the ER-driven and co-driven
subgroups harbored fewer TP53 mutations but more frequent ESR1

Fig. 3 | Differential expression patterns of tumor intrinsic gene signatures
associated with ER independence. a Waterfall plot showing the differential
expression of 50Hallmark signatures in IC1 vs. IC2-5. The y-axis shows the statistical
significance as signed log10(p) values representing the statistical significanceof the
difference in mean signature scores between two groups. The dotted lines repre-
sent the significance cutoff (p =0.05). Each signature is colored based on its sta-
tistical significance, with red indicating up-regulation in IC1 and blue indicating up-
regulation in IC2-5. P-value is determined by Wilcoxon rank sum test. Distribution

of IC1 up-regulated signatures vs. IC1-5 clusters (b) andPAM50subtypes (c). Sample
sizes for IC1-5 clusters are 57 (IC1), 127 (IC2), 97 (IC3), 107 (IC4), and 39 (IC5). Sample
sizes for PAM50 subtypes are 19 (Basal), 32 (Her), 248 (LumA), and 121 (LumB).
Statistical significancewasdeterminedusing two-sidedWilcoxon rank sumtest. For
all box-and-whisker plots, the box is bounded by the first and third quartile with a
horizontal line at the median and whiskers extend to the maximum and minimum
value. Source data are provided as a Source Data file.
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Fig. 4 | Trajectory inference analysis revealed a bifurcation of drug resistance
mechanisms. a Heatmap showing the tumor intrinsic expression patterns of 23
Hallmark gene signatures correlated with PT (Pearson correlation |r | >0.35). Shown
in the top two panels are ESR1, PGR and CCNE1 gene expression (Gene) and four
Paloma3 NMF factors (Paloma3). Samples are sorted by PT value shown in the top
bar plot, and Proliferative Index is shown in the bar plot below. b Elastic Principal
Graph (EPG) analysis identified a topology comprised of 3 branches and 21 nodes.
Dotted lines represent inferred trajectory 1 (A-B) and trajectory 2 (A-C).

c Distributions of EPG branches vs. integrative clusters. d Distributions of ESR1,
PGR, and CCNE1 expression vs. EPG branches, with sample sizes n = 118 (A), 88 (B),
and 84 (C). Statistical significance was determined using two-sided Wilcoxon rank
sum test. Distributions of TP53, ESR1, RB1, GATA3 mutation statuses (e) and MYC,
CCND1 and FGFR1 amplification statuses (f) vs. branches. For all box-and-whisker
plots, the box is bounded by the first and third quartile with a horizontal line at the
median and whiskers extend to themaximum andminimum value. Source data are
provided as a Source Data file.
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mutations along with up-regulation of ER signaling signatures. Com-
putational modeling and experimental validation demonstrated that
tumors with RB LOFmutations harbored stronger dependency on CDK2
whereas ER GOF tumors harbored stronger dependency on ESR1 and
CDK4. Altogether, our results suggest that precisionmedicine strategies
are necessary for treating different patient segments whose tumors
harbor distinct drug resistance mechanisms.

Our study revealed a dichotomybetween ERGOF andRB LOF, two
major mechanisms for acquired drug resistance. The standard of care
is a combination of both CDK4/6i and ET. On the one hand, ER GOF
confers resistance to ET but not to CDK4/6 inhibition, but on the other
hand, RB LOF confers resistance to CDK4/6 inhibition but not to ET.
Thus, one could infer that resistance to either single agent is sufficient
to hamper the efficacy of the combination treatment and lead to
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disease progression. Even though ET could be effective as mono-
therapy, our findings suggest that inhibitions of both resistance
mechanisms would be the most effective treatment strategy for this
indication. Based on the integrative clustering analysis, the vast
majority (95%) of the pre-treatment tumors are dependent on ER sig-
naling. Even in the post-treatment setting, most tumors (79%) retain
dependency on the ER signaling pathway. Thus, treatment strategies
targeting this pathway with improved therapies, including the next
generation of anti-ER and CDK4/6 inhibitors, ought to improve out-
comes for patients naïve to CDK4/6i plus ET and most patients who
progressed on CDK4/6i plus ET. At the same time, we must take note
that tumors can adopt alternative drug resistancemechanisms that no
longer rely upon ER signaling.

Studies of endocrine resistance indicate that tumors under the
pressure of anti-estrogen therapies can evolve via distinct paths
including reactivating ERα signaling or bypassing ERα signaling alto-
gether. Some cancers that lose ER dependency become driven by
orthogonal signaling pathways such as HER2 or mitogen-activated
protein kinases (MAPKs) while others lose ERα expression and show
evidence of lineage plasticity24. An important insight from our study is
that down-regulation of ER signaling is a common characteristic for a
segment of patients whose tumors are enriched in various markers
associated with CDK4/6i resistance and disease progression. The pre-
valence of this segment is very low before treatment (5%), indicating
that itmayhaveevadeddetectionpreviously due to a lack ofmolecular
profiling data from post-treatment tumor samples. Our analyses fur-
ther suggested that CDK2 inhibition may bemore effective against ER-
independent tumors when compared to ER driven or co-driven
tumors. CDK2 is the canonical partner of cyclin E1, overexpression of
which could lead to aberrant CDK2 activation and G1/S transition.
CDK2 blockade has been shown to be effective in aggressive cancers
such as high-grade serous ovarian cancers that harbored frequent
amplification of CCNE1 and overexpression of MYC31. Previously we
also demonstrated the efficacy of a CDK2/4/6 inhibitor against pal-
bociclib resistant models characterized by up-regulation of cyclin E1
and the MYC/E2F activation expression factor15, which was also
observed for the ER independent tumors in our cohort (Fig. 2d, Sup-
plementary Fig. 7c). Hence, our results indicate that patients who
developed drug resistance via ER independent mechanisms could
benefit from CDK2 inhibitors currently in clinical development.

We noticed a distinctive segregation of intrinsic breast cancer
subtypes based on the PAM50 classification vs. the three tumor sub-
groups with different dependency on ER signaling. While Basal and
Her2 subtypes are enriched in ER-independent tumors (IC1), Luminal B
is enriched in ER co-driven (IC2-3) and Luminal A is enriched in the ER
driven subgroups (IC4-5). The basal-like subset of the ER-independent
tumors up-regulate tumor intrinsic EMT and inflammatory signatures.
Moreover, the ER-independent subgroup, similar to Her2-like and
Basal-like subtypes, is enriched in TP53 mutations but has lower fre-
quency of ESR1 mutations. The evolution of resistance towards
increased ER signaling driven by ER GOFmutations aligns well with the
paradigm of punctuated evolution caused by selection of drug-
resistant mutations. However, it is less clear what mechanisms drive
cancer cells towards the ER-independent state, and why TP53

mutations are associated with this molecular state and are mutually
exclusive with ER GOF.

Intrinsic breast tumor subtypes are believed to originate from
epithelial subpopulations segregated along the normal differentiation
hierarchy of mammary epithelial cells32. The basal-like tumors harbor
similar expression profile as the luminal progenitor cells while Her2
and Luminal subtypes are mapped to different subsets within the
Luminal lineage, with Luminal A most resembling the mature luminal
cells. By co-opting mechanisms of dedifferentiation, trans-
differentiation and epithelial-to-mesenchymal transition, cancer cell
plasticity enables cancer cells to transition across distinct cell states,
such as from a differentiated state to a stem cell-like state, and con-
tributes to tumor initiation, progression and drug resistance33. In
breast cancer, induced TP53 loss has been shown to promote cell
plasticity and predisposemousemammary luminal cells to developing
mammary tumorswith stem-like cellular state34. Amulti-omics studyof
longitudinally paired primary and metastatic tumors reported that
TP53 mutation was associated with intrinsic subtype switching from
Luminal A/B to HER2 in metastatic breast cancers35. It has also been
demonstrated that luminal breast tumors expressing lower levels of ER
represent a distinct subset characterized by basal-like features that
arose from luminal cells through cellular plasticity25. Hence, it is pos-
sible that under the selective pressure of CDK4/6i plus ET, TP53
mutations predispose luminal breast cancers to evolving into a non-
luminal molecular state through reversal of the normal epithelial dif-
ferentiation trajectory.

We applied machine learning to estimate cancer-specific expres-
sion profiles and model evolution of cancer-specific resistance to
CDK4/6i plus ET. Subsequently, trajectory inference analyses revealed
a latent descriptor variable of disease progression called pseudotime
and two bifurcated evolutionary paths towards drug resistance—ER
gain-of-function vs. ER independence. Our analysis indicated that ER-
independence is a continuum strongly correlatedwith the pseudotime
of disease evolution driven by CDK4/6i plus ET. Moreover, we identi-
fied a major disease evolution trajectory spanning two branches cor-
responding to increasing ER-independence and pseudotime. This
sequential set of trajectory nodes approximates the continuous evo-
lution through molecular states and resembles cancer cell develop-
mental plasticity states in reverse order. Thus, ER-independence could
result from reprogramming of luminal cancer cells into stem-like cells
that become resistant to therapies targeting the ER signaling pathway
through cancer cell plasticity.

This real-world clinical genomics study has added to the body of
knowledge regarding the molecular landscape of the HR+/HER2-
metastatic breast cancers in the post CDK4/6i plus ET setting. Our
observations such as the frequency of resistance mechanisms may be
limited in generalizability as the patients included in our cohort were
selected for having a perceived benefit from genomic profiling and
thus may not represent the broader population with HR+/HER2- mBC.
Our study does not have a control arm, so it is difficult to ascertain
whether any reported marker association is treatment-specific or
prognostic. This real-world cohort is also heterogeneous in prior
treatment status including both treatment naïve patients as well as
patientswhohad failed one ormore lines of therapies in themetastatic

Fig. 5 | Drug target gene dependencies changed in ER-independent vs. ER-
driven tumors. aWorkflow for applying elastic net models trained on CRISPR loss-
of-function knockout (KO) screen data in cell lines to predict gene-level depen-
dency using tumor gene expression profiles. b Distributions of predicted depen-
dency scores for the four drug target genes ESR1, CDK4, CDK6, and CDK2 vs.
integrative clusters, with sample sizes n = 57 (IC1), 127 (IC2), 97 (IC3), 107 (IC4), and
39 (IC5). A lower score indicates stronger dependency and greater sensitivity to
gene knockout. Statistical significance was determined using two-sided Wilcoxon
rank sum test. c Relative change in dependency scores for the four drug target

genes in Post vs. Pre tumors. d Relative change in dependency scores for the four
drug target genes vs. themutation statuses of ESR1, RB1, and TP53. The y-axis shows
the signed log10(p) values representing the statistical significance of the change in
gene-level dependency scores between two subgroups, determined by two-sided
Wilcoxon rank sum test. The dotted lines represent the significance cutoff
(p <0.05). MUT: mutated. WT: wild type. For all box-and-whisker plots, the box is
bounded by the first and third quartile with a horizontal line at the median and
whiskers extend to themaximum andminimum value. Source data are provided as
a Source Data file.
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Fig. 6 | Experimental validation of therapeutic hypotheses. Dose response
curves evaluating the viability ofMCF7 andMCF7ESR1 Y537Scells after exposure to
Palbociclib (a) or Fulvestrant (b) at different concentrations for 7 days. Cells treated
with DMSO were used as control for normalization. Data shown on the y-axis are
mean ± SD (n= 3). P-values were calculated by one-tailed student’s t-test. cWestern
blot analysis was performed to determine the expression of CDK2 in the presence
of 100 ng/ml Doxycycline. Cells were harvested at 4 days after the Doxycycline
treatment and lysates were immunoblotted with the indicated antibodies. d Cell

Colony formation assay was conducted in the 12-well plates in the absence or
presence of 50ng/ml Doxycycline. Crystal violet staining of cells was performed
after 14 days of cell growth. Three shRNAs against CDK2 and one non-targeted
shRNA as control were tested. e Quantitative analysis of cells colony formation by
scanning the intensities of crystal violet stained cell colonies using LI-COROdyssey
CLx Imaging System. Data shown on the y-axis are mean± SD (n= 12) of six repli-
cates in two independent experiments. P-values were calculated by one-tailed
Student’s t-test. Source data are provided as a Source Data file.
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setting. Most of the patients in this cohort had de novo metastatic
disease, which is higher than expected based on the epidemiology of
breast cancer. Due to the inclusion of biopsies up to 1 year prior to
CDK4/6i treatment or after disease progression, intervening therapies
could alter the tumor molecular profiles in ways that would confound
the Pre/Post comparison analyses intended for studying CDK4/6i
resistance mechanisms. We should seek to replicate our findings in
future studies with larger sample sizes and more focused treatment
settings. Regardless of these caveats, our work has derived unique
insights into the dichotomy of ER dependent vs. independent
mechanisms of CDK4/6i resistance, highlighted the need for the next
generation of anti-ER and cell cycle inhibitors and provided guidance
for precision medicine strategies.

Methods
Patient enrollment and sample collection
This retrospective analysis used clinical and molecular real-world health
data from the Tempus Database, which includes longitudinal structured
and unstructured de-identified data from geographically diverse
oncology practices (www.tempus.com). Real-world data included 400
breast cancer samples profiled with the Tempus xT assay and whole-
transcriptome RNA sequencing, as previously described36–40.

Genomic assessment
Tumor biopsy andmatched normal sampleswere sequenced using the
Tempus xT assay, a targeted NGS-based panel that detects single-
nucleotide variants, insertions and/or deletions, and copy number
variants in 648 cancer-related genes, as well as chromosomal rear-
rangements in 22 genes with high sensitivity and specificity36. Sample
processing, library construction, sequencing, and variant classifica-
tions were performed by Tempus as previously described38,39.

Gene expression data collection and normalization
Tempus RNA whole-transcriptome sample processing, library con-
struction, and sequencingwith aminimumdepth of 30million reads per
samplewereperformedbyTempus as previously described39. Transcript
level pseudo-alignment and quantification to the Ensembl GRCh37
Release 75 (July 2019) reference was performed using Kallisto (version
0.44). The transcript-level abundance was normalized using all mapped
transcripts per million (TPM) obtained from the Kallisto pseudoalign-
ment. The gene-level abundance was obtained by summing transcripts
independent of the Ensembl label for all genes with at least one anno-
tated protein coding transcript covered by the RNAseq assay.

Detection of gene fusion
Gene fusions were determined from DNA and RNA sequencing data as
previously described39. DNAseq data alignment utilized BWA and
mapping to GRCh37, while RNAseq data utilized STAR aligner and
mapping to GRCh38. DNA rearrangements were called if read support
included at least 50 supporting reads, with a minimum of 2 of those
reads being discordant pairs, and a minimum of 30 split reads. RNA
rearrangements were called if ≥1 high-quality spanning reads (i.e., a
significant fraction of the readwaspresent onboth the 5' and 3' sides of
the breakpoint).

Tumor mutational burden
TMB was calculated by dividing the number of non-synonymous
mutations by themegabase size of the panel, as previously described39.
All non-silent somatic codingmutations, includingmissense, indel and
stop-loss variants with coverage greater than 100X and an allele fre-
quency >5% were included as non-synonymous mutations.

Germline variant calls
Germline variant calls were determined utilizing the Tempus bioin-
formatics variant-calling algorithm and variant allele frequency39.

Germline alterationswere classifiedusing specific classification criteria
andmatched against the Tempus knowledge database, which includes
recommendations by the American College of Medical Genetics,
National Comprehensive Cancer Network Genetic/Familial High-Risk
Assessment Guidelines, and other data sources41.

Tumor purity
The tumor purity of each sample was determined utilizing two meth-
ods, a bioinformatics algorithmand expert pathology slide review. The
final tumor purity estimate was determined via the Tempus bioinfor-
matics copy number algorithm (CONA) for solid tumor samples and
CNVkit for liquid biopsy samples. The final tumor percentage was
determined by a pathologist based on the macrodissected specimen
slide and takes into consideration the final tumor purity estimate.

Genomic and molecular features
We applied a suite of multi-omics data analysis tools to compute 63
molecular features in 9 categories that characterize different aspects
of breast cancer biology: (1) 5 summary features such as tumor
mutationburden (TMB) andproliferative index; (2)6 features basedon
PAM50 subtype classification; (3) 6 features for estimated immune cell
fractions; (4) 4 features from tumor microenvironment and purity
analysis; (5) 5 features based on mutation signature analysis; (6) 5
features based on genomics scar analysis; (7) 6 features for germline
pathogenic mutation statuses; (8) 12 gene-expression factors identi-
fied by de novo NMF analysis of gene expression profiles; (9) 14 gene-
expression factors identified by a previous NMF analysis of the
PALOMA-3 gene expression profiles15.

(1) The proliferative index was calculated as the geometric mean
of gene expression (TPM) using an 11-gene signature including BIRC5,
CCNB1, CDC20, NUF2, CEP55, NDC80, MKI67, PTTG1, RRM2, TYMS, and
UBE2C. The cytolytic activity score was calculated as the geometric
mean of GZMA and PRF1 expressions42. The tumor mutational burden
(TMB) was calculated as the number of protein-altering mutations in
each sample, including essential splice site, frameshift, in-frame indel,
missense, nonsense, and stop-loss mutations. (2) PAM50 classification
was performed using the “intrinsic.cluster.predict” function in the R
package Genefu v2.14.0. For each tumor sample, the function calcu-
lated the Spearman correlation coefficients between the PAM50 gene
expressions in the tumor and the PAM50 gene expression centroids of
five PAM50 subtypes: Basal, Her2, Luminal A, Luminal B, and Normal-
like. The tumor was then classified as the molecular subtype with the
highest correlation. Differences in technology and normalization
method between the microarray data used for training the original
PAM50 classifiers and the Tempus RNA-Seq data could lead to inac-
curate PAM50classifications43. To adjust for this bias,we employed the
subgroup-specific gene-centering method44,45. The ER+/HER2-
subgroup-specific gene centering columns derived from the UNC232
training set, used for training the original PAM50 classifier, were used
to correct the PAM50 gene expressions in our samples before running
the PAM50 classifier. The UNC232 training set and the code used for
correction were downloaded from the website (https://unclineberger.
org/peroulab/algorithms/). (3) The estimated proportion of immune
cell infiltrates compared to tumor and stroma cells, as well as the
relative proportion of immune cell subtypes were determined utilizing
RNA sequencing data as previously described39. (4) Tumor purity,
stromal and immune cell fractions were calculated using ESTIMATE
v1.0.1346 based on gene expression profiles. (5)

The panel sequencing mutational signature analysis was per-
formed using SigMA v1.047, by setting tumor type to breast, and
check_msi to true, the NNLS output was extracted using function
get_sig_exps for downstream analysis. (6) The calculated genomic scar
features include large-scale transitions (LST), telomeric allelic
instability (TAI), and loss of heterozygosity (HRD-LOH) using allele-
specific copy number, tumor purity, and ploidy inferred by
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FACETS10,48. TheHRD indexwas derived as the unweighted sumof LST,
TAI, and HRD-LOH. (7) The germline variants were filtered by focusing
on 19 breast cancer related genes (ATM, BARD1, BRCA1, BRCA2, CDH1,
CHEK2, EPCAM, MLH1, MSH2, MSH6, NBN, NF1, PALB2, PMS2, PTEN,
RAD51C, RAD51D, STK11, TP53). In addition, we required the variants to
be annotated as “Pathogenic” or “Pathogenic/Likely Pathogenic” in
Clinvar database version 20220213. (8) The NMF algorithm factorizes
the gene expression matrix V (g genes by s samples) into two non-
negativematricesWandH,whereW is gene factormatrix (g genes byk
factors) representing the different expression pattern of the k factors,
and H is sample factormatrix (k factors by s samples) representing the
contribution of each of k factors in each sample49. We removed
5 sampleswith tissue origin frombloodorbonemarrowor classified as
normal-like subtype beforeNMF analysis. NMFwas then performed on
gene expression TPM matrix with the R package “NMF” v0.21.0 with
“brunet” algorithm. To determine the optimal k, we used the cophe-
netic coefficient and chose k = 12 to balance the coefficient score and
number factors derived50. (9) We projected the 14 NMF gene expres-
sion factors derived from PALOMA-3 HTG data15 onto the gene
expression profiles using metagene projection method51. To maintain
consistency with PALOMA-3 NMF analysis, the gene expression values
for each case were first rank transformed before projection.

To evaluate treatment induced expression changes in key path-
ways implicated in tumor biology, we calculated gene signature scores
for 50 Hallmark genesets from the molecular signatures database
(MsigDB) v7.214 using the gene set variation analysis (GSVA) R package
v1.32.052. Linear mixed effect regression (LMER) analysis was then
performed to identify numerical features and expression signatures
with significant changes Pre vs. Post after adjusting for tumor purity
and metastatic tissue sites. Two-tailed fisher’s exact test and chi-
squared test were performed to identify significant changes in cate-
gorical features in Pre vs. Post. We also calculated PFS associations for
molecular features and gene expression signatures at baseline to
identify those associated with disease progression.

Comparison analysis of genomic alteration frequencies
We selected 611 genes with DNA-Seq coverage ≥400 samples for
genomic alteration analyses including somatic mutations, copy num-
ber amplification and deletion and gene fusions. A total of 546 genes
were mutated, with 140 genes mutated ≥ 10 samples. 290 genes
harbored copy number amplifications with 141 genes amplified ≥
10 samples and 209 genes harboring copy number deletions with 14
genes deleted in ≥ 10 samples. Gene fusionswere detected in 85 genes
with ESR1 and CCNE1 harboring gene fusions in ≥ 10 samples. Gene
expression for 11,724 genes was analyzed after filtering out genes with
low expression or variation.

To systematically compare the gene level alteration frequency
difference between Post and Pre samples, we aggregated the geno-
mic alteration events at the gene level per sample for each gene
including mutations, copy number variation (CNV), germline and
fusion events. The following filtering criteria were applied before
frequency calculation. First, the mutations identified as false posi-
tives by further manual review were removed. Second, only the CNVs
filtered by Tempus threshold (copy number ≥ 7 or =0) were kept.
Third, germline pathogenic mutation for selected genes after Clinvar
filtering was included. Forth, for structural variations (SV) identified
from RNASeq, any SVs with <5 rearr_num_reads were removed due to
low evidence. Fifth, for SVs identified from DNA, we first removed
any SVs that have the exact identical breakpoints in different
patients, as it is almost impossible to have somatic SV with identical
genomic breakpoint in different patients. We then removed any DNA
SVs with <3 discordant reads support or SVs with the discordant
reads found in normal samples. For the remaining DNA SV candi-
dates, we manually reviewed to remove any SVs that have softclip
reads evidence in normal samples at the breakpoints. We applied a

one-tailed Fisher exact test to test alteration enrichment in Post
samples (Supplementary Data 5).

To calculate genomic alterations frequency for paired samples, a
cohort of 26 patients with DNA sequencing available from paired Pre
and Post samples were used. One pair was excluded due tomissing the
matched normal for the Post tumor sample. The same filtering criteria
and frequency calculation were repeated for the 26 patients (Supple-
mentary Data 5). We also calculated Post-specific genomic alteration
frequency based on the 26 paired patients. A genomic alteration was
deemed Post-specific if it was detected in the Post but not in Pre
samples (Supplementary Data 5).

PFS association analysis of clinico-genomic variables
UnivariateCoxProportionalHazard regression analysiswasperformed
to identify clinico-genomic data variables and Hallmark gene sig-
natures significantly associated (p <0.05) with PFS at pre-CDK using
the survival R package v3.5-5, adjusting for line-of-treatment and
patient age. Estimates of hazard ratios reflect the change in risk of
progression by changing 1 unit of the continuous variables whereas for
categorical variables the hazard ratio reflects the category risk com-
pared to its most frequent category. FDR (q-value) was calculated
using theBenjamini andHochbergmethod.All statistical analyseswere
performed using R version 4.3.0, and p <0.05 was considered to be
statistically significant.

Integrative multi-omics clustering analysis
The objective of this analysis is to apply an unsupervised machine
learning approach on different types of molecular features to examine
whether our cohort can be stratified into subgroups that harbor dis-
tinct molecular mechanisms of drug resistance. To represent different
aspects of breast cancer biology, we selected 67 multi-omics features
including 32 genomic alteration statuses, 18 analytical features, 10
gene signatures and 7 gene-level expressions (Supplementary Data 6).
We performed integrative clustering on these features using
iClusterPlus17 while varying the numbers of clusters (k) from 2 to 8. To
identify the optimal k, we examined the Bayesian information criteria
(BIC) and log-likelihood based deviance ratio which tend to increase
with larger k. We chose the median of 5 clusters to balance having too
few clusters that cannot sufficiently capture molecular heterogeneity
vs. toomany clusters that splinter into smaller subsets that are difficult
for biological interpretation. For the 5 clusters (IC1-5), we then per-
formed association analyses with the full set of molecular features to
evaluate whether any clusters exhibited distinctive association pat-
terns vs. disease progression. We excluded IC5 as it consisted of
diverse tissue origins for the tumor biopsies that likely confounded
bulk expression-based features and caused its separate classification.

Cell-type deconvolution of bulk RNA-seq data using BayesPrism
Cell-typedeconvolutionof thebulkRNA-seqdatawasperformedusing
BayesPrism18. The raw count matrix from the Tempus Breast Cancer
RNA-seq datawas used as the input bulk expressionmatrix and the raw
countmatrix from a breast cancer scRNA-seq dataset53 was used as the
input referencematrix. The cells with low library size <1000 UMI were
excluded and the cell types with less than 50 cells were excluded. A
total of 96,831 single cells passed BaysePrism input reference scRNA-
seq data criteria. For cell type and cell subtype labels, 17 broadcell type
annotations were used, and 117 more refined cell subtype annotations
were used. Among 117 more refined cell subtype annotations, 93
malignant cell clusters were included as cell subtype annotation after
intra-patient malignant cell clustering with log-normalized reads. The
“run.Ted” function was run with the ‘scRNA’ option andmitochondrial
and ribosomal protein genes were removed as suggested by the
BayesPrism authors. Normalized cancer cell-specific expressionmatrix
from the output was used for downstream cancer cell-specific ana-
lyses. A limitation of this approach is that we used the scRNA-seq data
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derived from primary breast cancers18 to deconvolve the bulk
expression profiles from metastatic breast cancers in the Tempus
cohort. However, there should be robust deconvolution due to the
stronger similarity in expression profiles between primary and meta-
static tumors when compared to that between tumor and non-tumor
compartments in the tumor microenvironment.

Differential expression analysis
The expression features including individual gene expressions or gene
signature scores were compared between Pre and Post, to identify
features with significant differences. The expression feature changes
over treatment time were modeled using linear mixed-effects regres-
sion model

y=β0 +β1t +β2p+β3o+Zd + ε ð1Þ

Where y is the observed expression value for a specific feature across
all samples, β0 is the intercept, β1 is the fixed effect of treatment time t
on expression, β2 is the effect of tumor purity p, β3 estimate the dif-
ferences due to different tissue origin o, Z is a binary design matrix
indicating if the sample are from the same patient or not, d is a vector
of randomeffect for donor patients, which is normally distributedwith
mean zero and represents the deviation from the overall mean of the
mean feature value for each donor patient, and ε is randomerrors. The
significance of β1 was assessed by Chi-squared tests to evaluate the
association between treatment time t and expression features. The
lmerTest R package v3.1-2 was used for the mixed-effects regression
model fitting. To test cancer specific expression feature difference
(individual gene expressions or gene signature scores) across
PAM50 subtypes, or IC clusters, a similar approach was applied. For
PAM50 subtype, the mixed-effects regression model is formulated as

y=β0 +βbasalIbasal +βher2Iher2 +βlumAI lumA +βlumBI lumB +β2p+β3o+Zd + ε

ð2Þ

where Ibasal , Iher2, IlumA, and IlumA are indicator variables for each
subtype, the regression coefficients βbasal , βher2, βlumA, and βlumA are
fixed effects for each subtype. For IC clusters, the mixed-effects
regression model is formulated as

y=β0 +βIC1I IC1 +βIC2I IC2 +βIC3I IC3 +βIC4I IC4 +β2p+β3o+Zd + ε ð3Þ

where IIC1, IIC2, IIC3, and IIC4 are indicator variables for each IC cluster,
the regression coefficients βIC1, βIC2, βIC3, and βIC4 are fixed effects for
each IC clusters.

Predictive modeling of cancer dependencies
We trained elastic-net based models (ENRS) to predict gene depen-
dency scores in cancer cell lines. For training of gene dependency
models, DepMap 21Q1 CERES scores were used as response variable
and DepMap 20Q3 gene expression profiles were used as input data54.
To derive a robust prediction model, we first applied elastic net and
cross validation to the training data to look for the optimal hyper-
parameters using R package glmnet v4.0-2. The default range of
hyperparameter λ was determined by glmnet. A sequence of values
between 0.1 and 1 with increment 0.1 was used for hyperparameter α
values.Theoptimalα and λ valueswithminimummean cross-validated
error were then used to select robust gene expression features by
bootstrap method. Specifically, we randomly collected the same
number of observations with replacement from training data and
repeat the process 100 times, each time we fit a new elastic net model
with the bootstrap samples and optimal α and λ values. The boot-
strapping frequency for each gene was defined as frequency of elastic
net models with the gene selected. To include only robust relevant
features and increase model generalizability, we kept only gene

features with bootstrapping frequency >0.9. We then derived the final
linear regression model using selected gene features by ordinary least
square regression (OLS). The model performance was evaluated using
Pearson correlation coefficient (PCC) between the responses and
predictions, and only models with PCC ≥0.3 was used for predictions.
If amodel has PCC<0.3, we also tried to get lower confidentmodelsby
relaxing the cutoff to include more genes with bootstrapping fre-
quency >0.8, >0.7, >0.6, or >0.5, until the model reached PCC > =0.3,
or else it was considered unreliable to predict perturbation response
from gene expression. For clinical tumor analysis, cancer-specific
expression profiles (CSE) were used as input to the model to closely
match the expression profile of cancer cell lines and minimize the
confounder effect of various non-tumor cells in the tumor micro-
environment. Themodel then used each tumorCSE to estimate a score
for each of the four target genes similar to the CERES dependency
score29, where lower score indicates a higher likelihood that eliminat-
ing the gene function would reduce cancer cell viability.

Pseudotime and trajectory inference analysis using Monocle
We used Monocle 326 to construct a tree-like trajectory of all tumors,
ordered samples along this trajectory, and assigned a numeric value
referred to as pseudotime to each sample to indicate how far it pro-
gresses along this dynamic process. The gene-sample cancer-specific
expression matrix was used as the input for Monocle 3. We excluded
liver biopsies fromsubsequent trajectory inference analyses to remove
the confounding effect due to the distinct transcriptional profiles of
liver tissues. Principal Components Analysis was run to select the top
50 PCs. The top 2000 most variable genes were used to construct the
pseudotime trajectory. Dimensionality reduction was implemented
using reduceDeminsion() which uses the UMAP algorithm. Samples
were then clustered using cluster_cells(), based a community detection
technique called “Leiden algorithm”55 and visualized in the UMAP
space. Our data resulted in 1 cluster which indicates that there is no
batch effect from different data batches nor tumor origins. Learn-
Graph() function was then applied to learn a principal graph that
resides in the same UMAP space and output the paths samples took as
they progressed. Lastly, Monole 3 used the principal graph as a guide
and computed the pseudotime of each sample as its geodesic distance
back to one root node in the trajectory. The root nodes were selected
based on the UMAP graph region enriched with pre-treatment
samples.

Disease trajectory analysis using Elastic Principal Graphs
Elastic Principal Graphs (EPG) method originates from principal
manifolds introduced by Hastie et al56. Principal manifolds are the
surfaces passing through the densest area of the multi-dimensional
cloud of data points. Multiple manifolds form tree-like structures
characterized by branching topology, so called principal tree. Elastic
Principal Graphs can be used to approximate such principal trees.
Elastic Principal Graphs are data approximators which consists of the
undirected graph embedded in the high dimensional space, thus
defining themanifold surface. The graphs are constructed tominimize
mean squared distance from the data points to the nodes of the graph
similar to k-means clustering. However, the embedded graph provides
an additional tree-like structure contrary to k-means. The graph is
modeled as a systemof connected strings, which connect the nodes of
the graph allowing the segments of the graph to bend and stretch. The
energy of the graph is defined as a function of both elastic energy of
the graph and k-mean-like penalty between the nodes and data points.
This creates the optimization problem to minimize the total energy
which can be solved analytically. To find the optimal graph structure,
first, topological grammar which defines the graph operations is used
to generate the set of possible graph structures. Secondly, the spaceof
generated graph structures is explored with the optimization algo-
rithm which directs the search in a manner similar to the gradient-
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decent search. After removing liver biopsies, we performed trajectory
analyses on cancer-specific expression profiles of 298 samples. First,
we selected 5000 most variable genes for which 40 principal com-
ponents were computed. The principal tree was computed using the
ClinTrajan and ElPiGraph packages for Python57. We varied the number
of nodes for ElPiGraph from 20 to 100 and observed that the learned
principal trees look similar, and the larger numbers of nodes reveal
more bifurcations. Given the limited sample size, we chose the prin-
cipal tree with 20 nodes. We also applied tree pruning to remove
branches consisting of only one node.

Cell Lines and Culture
ER + BC cell lines (MCF7 and T47D) were obtained from the American
Type Culture Collection (ATCC). T47D Rb-/- cells were acquired from
UT Southwestern. MCF7 ESR1 Y537S was a subclone of MCF7 that
CRISPR knock-in ESR1 with Y537S mutation. All cells were cultured
with RPMI-1640 media supplemented with 10% FBS and penicillin-
streptomycin in a humidified incubator at 37 °C with 5% CO2. Tet-
inducible Lentiviral Expression of shRNA System were used to
knockdown human CDK2 in T47D and T47D Rb−/- cells. The cells of
T47D (or T47D Rb-/-)/shCDK2 and /shNT were generated using
shRNA against CDK2 (target sequence: shCDK2-1: 5’- CCGAGA-
GATCTCTCTGCTTAA-3’; shCDK2-2: 5’-ACGACCCTAACAAGCGGA
TTT-3’; shCDK2-3: 5’-GCCTTCCTACACGTTAGATTT-3’), LUC (target
sequence: 5’-CGCTGAGTACTTCGAAATGTC-3’) as non-target control
(shNT) and selected using 1.5μg/ml Puromycin and CDK2 protein
knockdown was validated using Western blotting.

Cell Proliferation Assay
Cells were seeded in 96-well plates and treated with serial dilution of
Palbociclib or Fulvestrant for 7 days in an incubator at 37 °C with 5%
CO2. The CyQUANTTM Direct Cell Proliferation Assay (ThermoFisher
Scientific) was performed according to manufacturer ‘s recommen-
dations and the fluorescence signal was read on Tecan Spark Multi-
mode Microplate Reader (Tecan) at 485 nm excitation wavelength/
535 nm emission wavelength. Relative cell growth was normalized to
DMSO alone treatment, and IC50 curves were generated using Graph-
Pad Prism® software. The results shown represent average of readings
from three wells per data point.

Western blotting
Cells were lysed with Cell Lysis Buffer (InvitrogenTM, ThermoFisher
Scientific) containing protease and phosphatase inhibitor cocktail
(Sigma-Aldrich), followed by centrifugation at 13,000 rpm at 4 °C for
10min. The protein concentration of the lysates was determined using
Bradford Assay (Bio-Rad Laboratories). Equal amounts of protein from
each cell lysate were denatured, separated on SDS-PAGE and trans-
ferred to nitrocellulose membranes, blocked in 5% non-fat milk in 1x
TBST and reacted with antibodies against CDK2 (Cell Signaling Tech-
nology), β-tubulin (Cell Signaling Technology). The membranes were
then washed with TBST (Cell Signaling Technology), incubated with
HRP-conjugated anti-rabbit IgG (Cell Signaling Technology) secondary
antibodies, and the target proteins were detected with SuperSignal
West Dura Extended Duration Substrate (Thermo Scientific).

Colony formation assay
T47D/shNT, T47D/shCDK2, T47D Rb-/-/shNT, and T47D Rb-/-/shCDK2
cells were seeded in 12-well plates at the density of 5000 cells per well,
maintained in growth medium in the absence or presence of 50ng/ml
Doxycycline. Colonieswere allowed to formfor 2weeks, and themedia
were replenished every 3–4days. After 2weeks, the colonieswerefixed
with methanol, stained with 0.1% crystal violet (Sigma-Aldrich). The
images of crystal violet-stained colonies were scanned on LICOR
Odyssey CLx Imaging system. The quantification of image intensities
was analyzed with Image Studio Software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Tempus deidentified data used in this research including clinical out-
come and tumor sequencing data was collected in a real-world health
care setting and is subject to controlled access for privacy and pro-
prietary reasons. When possible, derived data supporting the findings
of this study have been made available within the paper and its sup-
plementary data. Restrictions apply to the availability of additional
data, which were used under license for this study. Source data are
provided with this paper. Tempus may make access to further data
available pending a signed data use agreement. Requests for access
should be sent to publication.inquiry@tempus.com. Source data are
provided with this paper.

Code availability
Code for data cleaning and analysis is provided as part of the replica-
tion package. It is available at: https://doi.org/10.6084/m9.figshare.
27085321
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